IJAM: Volume 37, No. 2 (2024)

DOI: 10.12732/ijam.v37i2.7

 

NON-INSTANTANEOUS PERIODIC

BVP OF FRACTIONAL

VOLTERRA-FREDHOLM MODELS

 

Saif Aldeen M. Jameel 1,§ , Esraa A. Hussein 2

 

1,2 Department of Statistics Techniques

Middle Technical University

Institute of Administration Rusafa

Baghdad-10045, IRAQ

Abstract.  In this manuscript, we study the sufficient conditions for existence results of PC-mild solutions of non-instantaneous impulses Caputo fractional Volterra-Fredholm integro-differential equations with periodic boundary conditions. Fractional calculus, semigroup theory, Krasnoselskii and Sadovskii fixed point theorems are used to prove the existence results. Moreover, an example is finally presented.

 

Download paper from here

 

How to cite this paper?
DOI: 10.12732/ijam.v3
7i2.7
Source: 
International Journal of Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 202
4
Volume: 3
7
Issue: 2

 

References

 

[1] M. Alesemi, N. Iqbal and A. A. Hamoud, The analysis of fractional order proportional delay physical models via a novel transform, Complexity, 2022 (2022), 1-13.

[2] S. Abbas, M. Benchohra, Uniqueness and Ulam stabilities results for partial fractional differential equations with not instantaneous impulses, Appl. Math. Comput., 257 (2015), 190-198.

[3] P. Chen, X. Zhang, Y. Li, Non-autonomous parabolic evolution equations with  noninstantaneous impulses governed by noncompact evolution families, J. Fixed Point Theory Appl., 21, No 3 (2019), 84-101.

[4] A. Debbouche, D. Baleanu, Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems. Comput. Math. Appl., 62 (2011), 1442-1450.

[5] F. Ge, H. Zhou, C. Kou, Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique, Appl. Math. Comput., 275 (2016), 107-120.

[6] H. Gou, B. Li, Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 204-214.

[7] A. Hamoud, Existence and uniqueness of solutions for fractional neutral Volterra-Fredholm integro differential equations, Adv. Theory Nonlinear Anal. Appl., 4, No 4 (2020), 321-331.

[8] A. Hamoud, S. A. M. Jameel, N. M. Mohammed, H. Emadifar, F. Parvaneh, and M. Khademi,

On controllability for fractional Volterra-Fredholm system, Nonlinear Functional Analysis and Applications (2023), 407-420.

[9] A. Hamoud, K. Ghadle, Giniswamy, and M. Sh. B. Issa, Existence and uniqueness theorems for fractional Volterra-Fredholm integro-differential equations, International Journal of Applied Mathematics, 31, No 3 (2018), 333-348; DOI: 10.12732/ijam.v31i3.3.

[10] A. Hamoud, and K. Ghadle, Some new existence, uniqueness and convergence results for fractional Volterra-Fredholm integro-differential equations, J. Appl. Comput. Mech., 5, No 1 (2019), 58-69.

[11] A.A. Hamoud, N.M. Mohammed, R. Shah, Theoretical analysis for a system of nonlinear

R-Hilfer fractional Volterra-Fredholm integro-differential equations, J. Sib. Fed. Univ. Math. Phys., 16, No 2 (2023), 216-229.

[12] E. Hernandez, D. O’Regan, On a new class of abstract impulsive differential equations, Proc. Am. Math. Soc., 141 (2013), 1641-1649.

[13] S. A. M. Jameel, S. Abdul Rahmn, and A. A. Hamoud, Analysis of Hilfer fractional Volterra-Fredholm system, Nonlinear Functional Analysis and Applications (2024), 259-273.

[14] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam (2006).

[15] H. Li, Y. Kao, Mittag-Leffler stability for a new coupled system of fractional-order differential equations with impulses, Appl. Math. Comput., 361 (2019), 22-31.

[16] L. Liu, F. Guo, Y. Wu, Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces, J. Math. Anal. Appl., 309 (2005), 638-649.

[17] L. Liu, Iterative method for solutions and coupled quasi-solutions of nonlinear integro-differential equations of mixed type in Banach spaces, Nonlinear Anal., 42 (2000), 583-598.

[18] Y. Liu, Piecewise continuous solutions of initial value problems of singular fractional differential equations with impulse effects, Acta Math. Sci., 36B (2016), 1492-1508.

[19] M. Malik, V. Kumar, Existence, uniqueness and UHR stability of solutions to nonlinear ordinary differential equations with noninstantaneous impulses, IMA J. Math. Control Inf., 37, No 1 (2020), 276-299.

[20] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering. Academic Press, New York/London/Toronto (1999).

[21] M. Pierri, D. O’Regan, V. Rolnik, Existence of solutions for semilinear abstract differential equations with not instantaneous impulses, Appl. Math. Comput., 219 (2013), 6743-6749.

[22] Y. Tian, J. Wang, Y. Zhou, Almost periodic solutions for a class of noninstantaneous

impulsive differential equations, Quaest. Math., 42, No 7 (2019), 885-905.

[23] J. Wang, X. Li, Periodic BVP for integer/fractional order nonlinear differential equations with noninstantaneous impulses, Appl. Math. Comput., 46 (2014), 321-334.

[24] Z. Yan, F. Lu, Approximate controllability of a multi-valued fractional impulsive stochastic partial integro-differential equation with infinite delay, Appl. Math. Comput., 292 (2017), 425-447.

[25] X. Yang, C. Li, T. Huang, Q. Song, Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses, Appl. Math. Comput., 293 (2017), 416-422.

[26] X. Yu, J. Wang, Periodic boundary value problems for nonlinear impulsive evolution equations on Banach spaces, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 980-989.

 

·       IJAM

 

(c) 2010-2024, Academic Publications, Ltd.https://www.diogenes.bg/ijam/