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Abstract

We study a one-dimensional fractional diffusion equation with the Caputo
time-derivative of order μ ∈ (0, 1]. Applying spectral projectors, we find a
series solution of the problem for a special choice of the initial function. Then,
using operational calculus approach of Dimovski, we obtain an explicit repre-
sentation of the solution in the general case. The expression obtained contains
a non-classical convolution product of the particular solution and an arbitrary
initial function. This result is an extension of the classical Duhamel principle,
but for the space variable.
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1. Introduction

We consider the following initial-boundary value problem:

Dμ
t u(x, t)− uxx(x, t) = F (x, t), 0 < x < 1, 0 < t, (1)

u(x, 0) = f(x), 0 ≤ x ≤ 1, (2)

u(0, t) = 0, 0 ≤ t, (3)

ux(0, t) = ux(1, t) + αu(1, t), 0 ≤ t. (4)
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Here Dμ
t denotes the Caputo fractional derivative of order μ ∈ (0, 1], (4) is

a a nonlocal boundary condition involving a real parameter α �= 0. Problem
(1-4) with μ = 1 is introduced by Mokin in [9] and [10]. In [10] a represen-
tation of the solution in series is found. In Ali and Malik [8] it is obtained a
series solution of problem (1-4) with fractional derivative of order 0 < μ < 1.
Bazhlekova and Dimovski obtained explicit solution of Thornley’s problem for
one-dimensional fractional diffusion equation with the Caputo time-derivative
of order μ ∈ (0, 1] and nonlocal boundary condition in [2]. Here we use the
operational calculus approach of Dimovski, we obtain Duhamel representation
of the solution.

2. Preliminaries

Let

φμ =
tμ−1

Γ(μ)
, t > 0, μ > 0,

where Γ(μ) is the Gamma function.

The operation

(f
t∗ g)(t) =

∫ t

0
f(t− τ)g(τ)dτ, f, g ∈ C[0,∞), (5)

bears the name of Duhamel convolution, but sometimes it is called either
Borel, or Laplace convolution. The Riemann-Liouville fractional integral lμt is
defined on C−1(Ī) by

lμt f(t) = (φμ
t∗ f)(t). (6)

The Caputo fractional derivative of order μ > 0 is defined by

Dμ
t g(t) =

⎧⎨
⎩(φm−μ

t∗ g(m))(t), m− 1 < μ < m,m ∈ N

g(m)(t), μ = m.

The Caputo derivative Dμ
t is a left inverse of lμt : Dμ

t l
μ
t f(t) = f(t), but in

general, it is not a right inverse, since

lμt D
μ
t f(t) = f(t)−

m−1∑
k=0

f (k)(0)φk+1(t), m− 1 < μ < m. (7)

For more details on fractional calculus operators, see e.g. [3], [1], [6], [7]

The Mittag-Leffler function is the entire function defined by

Eμ(z) =

∞∑
k=0

zk

Γ(μk + 1)
, μ > 0, z ∈ C.

The Cauchy problem for the ordinary fractional differential equation

Dμ
t y(t) = λy(t), y(0) = y0, μ ∈ (0, 1], t > 0. (8)
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has a unique solution given by

y(t) = y0Eμ(λt
μ). (9)

3. One-dimensional spectral problem,
connected with BVP (1) - (4)

In order to find the a series solution of (1) - (4), we are to consider the
following non-local eigenvalue problem in C2[0, 1]:

d2

dx2
y(x) + λ2y(x) = 0, 0 < x < 1, (10)

y(0) = 0, Φξ{y(ξ)} = 0,

where

Φξ{y(ξ)} =
1

α
(αy(1) + y′(1)− y′(0)) = 0. (11)

The sine indicatrix of the functional Φ is

E(λ) = Φξ

{
sinλξ

λ

}
=

1

α

(
α
sinλ

λ
+ cos λ− 1

)
. (12)

We obtain

E(λ) =
2

α
sin

λ

2
(
α

λ
cos

λ

2
− sin

λ

2
) ,

E′(λ) =
αλ cos λ− (α+ λ2) sin λ

αλ2
.

The zeros of sin
1

2
λ = 0 are λk = 2kπ, k = 1, 2, 3, .... The zeros γn of

tan
1

2
λ =

α

λ
satisfy 2πn < γn < 2πn+π, n = 0, 1, 2, .... (see [9] Lemma 1). All

the zeros are simple and coresponding eigenfunctions are sinλkx, k = 1, 2, 3, ...
and sin γnx, n = 0, 1, 2, .... (Remark: 0 is not an eigenvalue.)

3.1. The spectral projectors. Let us consider the eigenvalues −λ2k, k =
1, 2, .... Then the spectral Riesz’ projectors Pλk

: C[0, 1] → Eλk
= span{sinλkx}

are

Pλk
{f} =

1

πi

∫
Γλk

R−μ2f(x)μdμ

= − 2

α λk E′(λk)

(∫ 1

0
λk cos((1− η)λk)f(η)dη (13)

+α

∫ 1

0
sin((1− η)λk)f(η)dη

)
sinλkx,

where Γλk
is a simple contour containing the zero λk only.
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We have the same representation for Pγn{f}, but in (13) we have replaced
λk with γn, and n = 0, 1, 2, ....

Let uk(x, t) = Pλk
{u(x, t)} = Ak(t) sinλkx, k = 1, 2, 3, ..., where Pλk

acts with respect to x. Analogically un(x, t) = Pγn{u(x, t)} = Bn(t) sin γnx,
n = 0, 1, 2, ..., where Pγn acts with respect to x.

Definition 3.1. Let f ∈ C[0, 1]. The formal spectral expansion of f(x)
for eigenvalue problem (10) is the correspondence

f(x) ∼
∞∑
k=1

Pλk
+

∞∑
n=0

Pγn . (14)

This formal spectral expansion, in fact, is not completely formal, since it
has the uniqueness property: if Pλk

{f} = 0 for k = 1, 2, ... and Pγn{f} = 0
for n = 0, 1, 2, ..., then f ≡ 0. This follows immediately from a theorem
of Bozhinov (see [11]). In general, it is not supposed the series in (14) to
be convergent. If additionally it happens this series to be uniformly con-

vergent on [0, 1], then f(x) =

∞∑
k=1

Pλk
+

∞∑
n=0

Pγn . A sufficient condition for

absolute uniform convergence of the series is: f ∈ C2[0, 1] with f(0) = 0 and

Φξ{f(ξ)} =
1

α
(αf(1) + f ′(1) − f ′(0)) = 0. Indeed, then, after integrating by

parts in (13) one obtains: |Pλk
{f}| ≤ M1

k2
, k >> 0, |Pγn{f}| ≤

M2

n2
, n >> 0,

whereM1,M2 are constants nondepending on k and n. This ensures, absolute
and uniform convergence of the spectral expansion (14) of f and thus its sum
to be a function from C[0, 1]. Applying the uniqueness property, it follows
that the sum of the series (14) is exactly f(x), since their spectral projectors
coincide.

4. Nonclassical convolutions

Theorem 4.1. (see Dimovski [4], p. 119) Let f, g ∈ C[0, 1], then the
operation

(f ∗ g)(x) = −1

2
Φξ

{∫ ξ

0
h(x, ζ)dζ

}
(15)

with

h(x, ζ)

=

∫ ζ

x
f(ζ + x− η)g(η)dη −

∫ ζ

−x
f(|ζ − x− η|)g(|η|)sgn(η(ζ − x− η))dη
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is a bilinear, commutative and associative operation on C[0, 1] such that

R−λ2f =

{
sinλx

λE(λ)

}
∗ f (16)

and Lf(x) = {x} ∗ f .

In [4] the corresponding theorem is stated for an arbitrary linear functional
Φ in C1[0, 1]. Next we will combine both the Duhamel convolution (5) and
the Dimovski convolution (15) into a two-dimensional convolution in C(G) =
C([0, 1] × [0,∞)).

Theorem 4.2. Let u, v ∈ C(G). Then the operation

(u
x,t∗ v)(x, t) =

∫ t

0
u(x, t− τ)

x∗ v(x, τ)dτ,

is a bilinear, commutative and associative operation in C(G), such that

lμt Lxu(x, t) = {xφμ}
x,t∗ u(x, t), (17)

where φμ =
tμ−1

Γ(μ)
, t > 0, μ > 0.

For a proof, see [5] or [3].

5. Ring of the multiplier fractions

We consider the convolution algebra (C(G),
x,t∗ ). Our direct operational

calculus approach is based on the notion of a multiplier of the convolution

algebra (C(G),
x,t∗ ) (see Larsen [13]).

Definition 5.1. (Larsen [13]) An operatorM : C(G)×C(G) is said to be

a multiplier of the convolution algebra (C(G),
x,t∗ ) iff M(u

x,t∗ v) = (Mu)
x,t∗ v

for all u, v ∈ C(G).

Here we will remind only some specific notations. The multipliers of the

form {u(x, t)} x,t∗ will be denoted by {u} or u and the result of the application

of the operator u
x,t∗ to a function F ∈ C(D) will be denoted simply by {u}F

or uF .



210 Y.T. Tsankov

Lemma 5.1. Let f be a function from C[0, 1]. The convolution operator

f
x∗, defined in C(G) by (f

x∗)u = f
x∗ u is a multiplier of the convolution

algebra (C(G),
x,t∗ ).

Lemma 5.2. Let ϕ be a function from C[0,∞). The convolution operator

ϕ
t∗, defined in C(G) by (ϕ

t∗)u = ϕ
t∗ u is a multiplier of the convolution

algebra (C(G),
x,t∗ ).

For proofs in more general situation, see [5].

Definition 5.2. Let f = f(x) ∈ C[0, 1] and ϕ = ϕ(t) ∈ C[0,∞),
but both are considered as functions of C(G). The operator [f ]t defined by

[f ]tu = f
x∗ u is said to be a partial numerical operator with respect to t and

the operator [ϕ]xu = ϕ
t∗ u is said to be partial numerical operator with respect

to x.

In these notations, we have Lx = [x]t and l
μ
t = [φμ(t)]x.

The notion of numerical operator for Duhamel convolution is introduced
in [14].

Lemma 5.3. (Larsen [13]) The set of all multipliers of the convolution

algebra (C(G),
x,t∗ ) is a commutative ring M.

The multiplicative set N of the non-zero non-divisors of 0 in M is non-

empty, since at least the operators {x} x∗ = [x]t and {φμ} t∗ = [φμ]x are
non-divisors of 0.

Next we introduce the ring M = N−1M of the multiplier fractions of the

form
A

B
where A ∈ M and B ∈ N. The standard algebraic procedure of

constructing of this ring, named “localization”, is described, e.g. in Lang [12].

Basic for our construction are the algebraic inverses Sx =
1

Lx
and sμt =

1

lμt
in

M, of the multipliers Lx and lμt correspondingly. If u ∈ C2(G), then uxx and
Dμ

t u are connected with Sxu and sμt u but they in general, are different from
them.
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Lemma 5.4. Let uxx, D
μ
t u be continuous on G. Then

uxx = Sxu+ Sx{(xΦ{1} − 1)u(0, t)} − [Φξ{u(ξ, t)}]x, (18)

Dμ
t u(x, t) = sμt − [u(x, 0)]ts

μ−1
t = sμt (u(x, t) − u(x, 0)). (19)

P r o o f. The relation (19) is similar to a corresponding relation in Mikusin-
ski [14] and its proof in [3]. Let us prove (18). It is easy to verify the identity

Lx{uxx} = u(x, t) + (xΦ{1} − 1)u(0, t) − xΦξ{u(ξ, t)}.
It remains to multiply it by Sx and to use Sx{x} = SxLx = 1, in order to get
(18). �

6. Algebraization of boundary value problem (1) - (4)

Relations (18) and (19) allow to reduce both the equation (1) and BVCs (2)
- (4) to a single linear algebraic equation for u. Indeed, substituting Dμ

t u(x, t)
and uxx from (18) and (19) in the equation Dμ

t u(x, t)−uxx(x, t) = F (x, t), we
get

sμt u− [u(x, 0)]ts
μ−1
t − Sxu

−Sx{(xΦ{1} − 1)u(0, t)} +Φξ{u(ξ, t)} = F (x, t).

Now using initial condition (2) and boundary value conditions (3) and (4), we
obtain

sμt u− [f(x)]ts
μ−1
t − Sxu = F (x, t),

(sμt − Sx)u = [f(x)]ts
μ−1
t + {F (x, t)}. (20)

Thus, we reduced BVP (1) - (4) to the single linear algebraic equation (20)
for u in M. It is reasonable to introduce the notation of a weak solution of
BVP (1) - (4).

Definition 6.1. A function u ∈ C(G) is said to be a weak solution of
BVP (1) - (4), if it is a solution of (20).

Let us consider the problem of uniqueness of the solution of (1) - (4).
Equation (20) reduces it to the algebraic question, whether st−Sx is a divisor
of zero in M or not.

Theorem 6.1. The element sμt − Sx is a nondivisor of zero in M.

P r o o f. Assume the contrary, i.e. that there exists a non-zero multiplier

fraction
A

B
�= 0 with (sμt − Sx)

A

B
= 0. The last relation is equivalent to (sμt −

Sx)A = 0. Since A �= 0, then there exist a function v ∈ C(D) such that
Av = u �= 0. Then (sμt − Sx)A = 0 implies (sμt − Sx)u = 0. We multiply



212 Y.T. Tsankov

the last equation by lμt and obtain u− Sxl
μ
t u = 0. If t = 0, then u(x, 0) = 0.

Next we multiply (sμt − Sx)u = 0 by ψk(x) and obtain (sμt − Sx)vk = 0, where
vk(x, t) = αk(t) sinμkx, k = 1, 2, .... We find

sμt {αk(t) sinμkx} − Sx{αk(t) sin μkx} = 0.

Using (18) and (19) we find

Dμ
t αk(t) sinμkx+ μ2kαk(t) sin μkx+ αk(t)Φξ{sinμkξ} = 0.

But Φξ{sin μkξ} = 0 and we get

Dμ
t αk(t) + μ2kαk(t) = 0, αk(0) = 0.

This initial problem has unique solution αk(t) = 0. We find u(x, t) = 0. �

The solution of (20) in M is

u =
sμ−1
t

sμt − Sx
[f(x)]t +

1

sμt − Sx
{F (x, t)}. (21)

We may call (21) the formal (generalized) solution of problem (1)- (4).

7. Interpretation of the formal (generalized) solution
of (1)- (4) as a function

Our next task is to interpret (if possible) (21) as a function of C(D).
To this end, we consider a special case of problem (1)- (4) for F (x, t) ≡ 0

and f(x) = Lx{x} = L2
x =

1

S2
x

=
x3

6
− x(3 + α)

6α
. We denote its solution, if it

exists, by Ω = Ω(x, t). Having in mind that Lx{x} = L2
x =

1

S2
x

, we have the

following algebraic representation of this solution:

Ω =
sμ−1
t

sμt − Sx

[
x3

6
− x(3 + α)

6α

]
t

=
sμ−1
t

S2
x(s

μ
t − Sx)

. (22)

As for the special solution Ω(x, t), it can be found in an explicit series form,
using the spectral projectors (13). Thus we obtain the following result.

Lemma 7.1. If f(x) =
x3

6
− x(3 + α)

6α
and F (x, t) ≡ 0, then the solution

Ω(x, t) of the BVP (1)-(4) is:

Ω(x, t) =

∞∑
k=1

Uk(x, t) +

∞∑
n=0

Vn(x, t), (23)

where

Uk(x, t) = Eμ(−λ2ktμ)
2 sinλkx

λ4kE
′(λk)

,
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Vn(x, t) = Eμ(−γ2ntμ)
2 sin γnx

γ4nE
′(γn)

,

k = 1, 2, ..., n = 0, 1, ....

The proof may be accomplished by a direct check, too.

The generalized solution of problem (1) - (4) for arbitrary f(x) and F (x, t)
can be written in the form:

u =
sμ−1
t

sμt − Sx
[f(x)]t +

1

sμt − Sx
{F (x, t)}

= S2
x

sμ−1
t

S2
x(s

μ
t − Sx)

[f(x)]t +
S2
x

sμ−1
t

sμ−1
t

S2
x(s

μ
t − Sx)

F (x, t). (24)

By virtue of (22) and (18), we obtain for the first term in (24)

S2
x

sμ−1
t

S2
x(s

μ
t − Sx)

[f(x)]t = S2
x Ω [f(x)]t =

∂4

∂x4

[
Ω

x∗ f(x)
]
.

Now we can rewrite the second term in (24) as follows:

S2
x

sμ−1
t

sμ−1
t

S2
x(s

μ
t − Sx)

F (x, t) = S2
x

1

sμ−1
t

ΩF (x, t) = S2
x

st
sμt

ΩF (x, t)

= lμt
∂4

∂x4

[
∂

∂t
(Ω

x,t∗ F )(x, t) + (Ω
x,t∗ F )(x, t)

∣∣
t=0

]

= lμt
∂4

∂x4
∂

∂t
(Ω

x,t∗ F )(x, t).

Under the corresponding assumptions for smoothness of the functions f(x)
and F (x, t), the solution can be written as a function of the form

u =
∂4

∂x4

[
Ω

x∗ f(x) + ∂

∂t
(φμ

t∗ Ω
x,t∗ F (x, t))

]
. (25)

Then (25) gives the following Duhamel-type representation of the solution of
(1) - (4).

Theorem 7.1. I) If f(x) ∈ C2[0, 1], f(0) = 0 and Φξ{f(ξ)} =
1

α
(αf(1)+

f ′(1)− f ′(0)) = 0, then

u =
∂4

∂x4
(Ω(x, t)

x∗ f(x))

=
1

2α

∫ 1

0

(
α
(
Ωx(1− x− η, t)− Ωx(1 + x− η, t)

)
+ Ωxx(1− x− η, t) −Ωxx(1 + x− η, t)

)
f ′′(η)dη
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is a weak solution of (1) -(4) for F (x, t) ≡ 0.

II) If Fxx(x, t) ∈ C(G), F (0, t) = 0 and

Φξ{F (ξ, t)} =
1

α
(αF (1, t) + Fx(1, t) − Fx(0, t)) = 0,

then

u =
∂4

∂x4
∂

∂t
(φμ

t∗ Ω
x,t∗ F (x, t))

=
1

2α

∂

∂t

∫ 1

0

(
α
(
Ωx(1− x− η, t)− Ωx(1 + x− η, t)

)
+ Ωxx(1− x− η, t)− Ωxx(1 + x− η, t)

)
t∗ Fxx(η, t)

t∗ φμ(t)dη

is a weak solution of (1) -(4) for f(x) ≡ 0.

The proof may be accomplished by a direct check, too.
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