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Abstract

We study a one-dimensional fractional diffusion equation with the Caputo
time-derivative of order p € (0,1]. Applying spectral projectors, we find a
series solution of the problem for a special choice of the initial function. Then,
using operational calculus approach of Dimovski, we obtain an explicit repre-
sentation of the solution in the general case. The expression obtained contains
a non-classical convolution product of the particular solution and an arbitrary
initial function. This result is an extension of the classical Duhamel principle,
but for the space variable.
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1. Introduction

We consider the following initial-boundary value problem:

Di'u(x,t) — ugy(z,t) = F(z,t), 0<z<1,0<t, (1)
u(z,0) = f(z), 0<x<1, (2)
u(0,t) =0, 0<t, (3)
uz(0,1) = ug(1,t) + au(l,t), 0<t. (4)
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Here D} denotes the Caputo fractional derivative of order p € (0,1], (@) is
a a nonlocal boundary condition involving a real parameter « # 0. Problem
() with p = 1 is introduced by Mokin in [9] and [10]. In [I0] a represen-
tation of the solution in series is found. In Ali and Malik []] it is obtained a
series solution of problem (IH4)) with fractional derivative of order 0 < p < 1.
Bazhlekova and Dimovski obtained explicit solution of Thornley’s problem for
one-dimensional fractional diffusion equation with the Caputo time-derivative
of order p € (0,1] and nonlocal boundary condition in [2]. Here we use the
operational calculus approach of Dimovski, we obtain Duhamel representation
of the solution.

2. Preliminaries

Let
th—1

b= 1
SR
where I'(p) is the Gamma function.

t>0, p>0,

The operation

f*g /ft—T (r)dr, f,g€ C|0,0), (5)

bears the name of Duhamel convolution, but sometimes it is called either
Borel, or Laplace convolution. The Riemann-Liouville fractional integral I}' is
defined on C_1(I) by

t
W) = (ou * F)). (6)

The Caputo fractional derivative of order p > 0 is defined by

(bm—p * ¢")(B), m~1<p<mmeN

g"™m(t), p=m.

The Caputo derivative D} is a left inverse of I}’ : DI f(t) = f(¢), but in
general, it is not a right inverse, since

Dig(t) =

m—1

UDLF(E) = ()= Y fB0)gpra(t), m—1<p<m. (7)

k=0
For more details on fractional calculus operators, see e.g. [3], [1I, [6], [7]
The Mittag-Leffler function is the entire function defined by

0 k

z
E = _ C.
M(Z) ;)F(/Lk—i-l)’ N>07 S
The Cauchy problem for the ordinary fractional differential equation
Di'y(t) = Ay(t), y(0)=yo, p€(0,1], t>0. (8)



EXPLICIT SOLUTION OF TIME ... 207

has a unique solution given by
y(t) = yo E(At"). (9)

3. One-dimensional spectral problem,
connected with BVP () - ()

In order to find the a series solution of () - (@), we are to consider the
following non-local eigenvalue problem in C?[0, 1]:
2

— 2y(z) = 1 1
dxzy(a:)+)\ y(z) =0, 0<ax<1, (10)
y(0) =0,  @{y(§)} =0,
where )
Cefy(©)} = —(ay(1) + y'(1) = 4'(0)) = 0. (11)
The sine indicatrix of the functional ® is
sin A§ 1 sin A
E()\)—Cbg{ 3 }—a<a By +cos)\—1>. (12)
We obtain 5 ) ) )
. « .
E\) = - sin §(X cos o — sin 5) ,
Acos A — (a + A2)sin A
E\) =2 .

1
The zeros of sin 5)\:0 are \y = 2km, k = 1,2,3,.... The zeros =, of

1
tan 5)\ = % satisfy 2mn < 4, < 2rn+m,n=0,1,2,.... (see [9] Lemma 1). All

the zeros are simple and coresponding eigenfunctions are sin Agx, kK = 1,2, 3, ...
and siny,z, n =0,1,2,.... (Remark: 0 is not an eigenvalue.)

3.1. The spectral projectors. Let us consider the eigenvalues —)\%, k=
1,2,.... Then the spectral Riesz’ projectors Py, : C[0,1] — &, = span{sin \yz}
are

P f} = % g R_,2 f(z)pdp
2 1
- _m</o Ak cos((1 = n)Ag) f(n)dn (13)

1
—I-a/ sin((1 — n)A@f(n)dn) sin Apx,
0

where I'y, is a simple contour containing the zero A; only.
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We have the same representation for P,, {f}, but in (I3) we have replaced
A with v,, and n =10,1,2, ....

Let ug(z,t) = Py {u(z,t)} = Ap(t)sin gz, k = 1,2,3,..., where Py,
acts with respect to x. Analogically u,(z,t) = P,, {u(z, t)} = B, (t)siny,z,
n=0,1,2,..., where P, acts with respect to x.

DEFINITION 3.1. Let f € C[0,1]. The formal spectral expansion of f(z)
for eigenvalue problem ([I0]) is the correspondence

z)~Y Py +> P (14)
k=1 n=0

This formal spectral expansion, in fact, is not completely formal, since it
has the uniqueness property: if Py, {f} =0 for k = 1,2,... and P, {f} =0
for n = 0,1,2,..., then f = 0. This follows immediately from a theorem
of Bozhinov (see [II]). In general, it is not supposed the series in (4] to
be convergent. If additionally it happens this series to be uniformly con-

vergent on [0,1], then f(x ZPM —I—ZPn A sufficient condition for
k=1 n=0

absolute uniform convergence of the series is: f € C2[0,1] with f(0) = 0 and

DA{f(E)} = —( f(1) + f/(1) — f/(0)) = 0. Indeed, then, after integrating by

My M-
parts in (I3) one obtains: |Py, {f}| < — 2 ykE>>0, [P, {f}] < —22, n >> 0,
n

where My, M are constants nondependlng on k and n. This ensures, absolute
and uniform convergence of the spectral expansion (I4]) of f and thus its sum
to be a function from C[0,1]. Applying the uniqueness property, it follows
that the sum of the series (I4)) is exactly f(z), since their spectral projectors
coincide.

4. Nonclassical convolutions

THEOREM 4.1. (see Dimovski [4], p. 119) Let f,g € C]0,1], then the
operation

(1)@ =30 { [ niw. 0] (19
with

h(z, )

¢
= [*stc o= mawan— [ ¢~ aalasentoic o - n)in
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is a bilinear, commutative and associative operation on C|0, 1] such that

Royaf = {%} ‘f (16)

and Lf(x) ={z} * f.

In [4] the corresponding theorem is stated for an arbitrary linear functional
® in C'[0,1]. Next we will combine both the Duhamel convolution (Gl and
the Dimovski convolution (15) into a two-dimensional convolution in C(G) =

C(]0,1] x [0, 00)).

THEOREM 4.2. Let u,v € C(G). Then the operation

z,

t
t
(u * v)(x,t) = / u(z,t — 1) i’l)(x,T)dT,
0
is a bilinear, commutative and associative operation in C(G), such that

W Lou(z,t) = {w¢,} % ula, t), (17)
pn—1

t
where ¢, = ——,t >0, u > 0.

IN(D)

For a proof, see [5] or [3].

5. Ring of the multiplier fractions

7t . .
We consider the convolution algebra (C’(G),x* ). Our direct operational
calculus approach is based on the notion of a multiplier of the convolution

algebra (C’(G),wﬂit) (see Larsen [13]).

DEFINITION 5.1.  (Larsen [13]) An operator M : C(G) x C(G) is said to be
z,t

a multiplier of the convolution algebra (C’(G),xit) iff M(u ¥ v) = (Mu) * v
for all u,v € C(G).

Here we will remind only some specific notations. The multipliers of the
7t . . .
form {u(zx,t)} % will be denoted by {u} or u and the result of the application

of the operator u Y to a function F' € C(D) will be denoted simply by {u}F
or uF.
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LeMMA 5.1. Let f be a function from C0,1]. The convolution operator
f %, defined in C(G) by (f ¥)u = f ¥ u is a multiplier of the convolution

algebra (C(G), x%t).

LEMMA 5.2, Let ¢ be a function from C|0,00). The convolution operator
© i, defined in C(G) by (¢ i)u = Yuisa multiplier of the convolution

z,t

algebra (C(G), * ).
For proofs in more general situation, see [5].

DEFINITION 5.2. Let f = f(z) € C[0,1] and ¢ = p(t) € C[0,0),
but both are considered as functions of C'(G). The operator [f]; defined by
[fliu=f ¥ u is said to be a partial numerical operator with respect to ¢ and

t
the operator [p]|,u = ¢ * u is said to be partial numerical operator with respect
to x.

In these notations, we have L, = [z, and I} = [¢,,(t)],-

The notion of numerical operator for Duhamel convolution is introduced
in [14].

LeMmmA 5.3.  (Larsen [13]) The set of all multipliers of the convolution
algebra (C(G), wit) is a commutative ring .

The multiplicative set 91 of the non-zero non-divisors of 0 in 9t is non-
empty, since at least the operators {z} ¥ = [z]; and {¢,} ¥ = [Oule are
non-divisors of 0.

Next we introduce the ring M = 91790 of the multiplier fractions of the
form g where A € MM and B € 9. The standard algebraic procedure of

constructing of this ring, named “localization”, is described, e.g. in Lang [12].

Basic for our construction are the algebraic inverses S, = - and s}’ = T in
x t

M, of the multipliers L, and I} correspondingly. If u € C?(G), then u,, and
Di'u are connected with S,u and siu but they in general, are different from
them.
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LEMMA 5.4. Let ug,, Dfu be continuous on GG. Then
Ugy = Sy + Sp{(z@{1} — Du(0,t)} — [@g{U(f,t)}]x, (18)
Diu(w,t) = si' — [u(x,0)}pst ™" = st (u(x,t) — u(x,0)). (19)

P r o o f. Therelation (I9]) is similar to a corresponding relation in Mikusin-
ski [I4] and its proof in [3]. Let us prove ([I8]). It is easy to verify the identity

Lo{uga} = u(z,t) + (@@{1} — 1)u(0,1) — 2®c{u({, 1)}
It remains to multiply it by S, and to use Sy{z} = S, L, = 1, in order to get

(@s). 0
6. Algebraization of boundary value problem (Il - (4)

Relations (I8]) and (19) allow to reduce both the equation (Il) and BVCs (2I)
- (@) to a single linear algebraic equation for u. Indeed, substituting D}u(z,t)
and gy, from ([I8) and (1) in the equation D}u(z,t) — uz(x,t) = F(z,t), we
get
sty — [u(z, 0] — Su
—Se{(x®{1} — Du(0, )} + Pe{u(&, 1)} = F(x,1).
Now using initial condition (2) and boundary value conditions (3) and (), we
obtain
stu = [f(@))es) ™" = Sau = F(x,1),
(s} = So)u = [f(@)]es " +{F(x,1)}. (20)
Thus, we reduced BVP () - () to the single linear algebraic equation (20])
for w in M. It is reasonable to introduce the notation of a weak solution of

BVP (@) - @).

DEFINITION 6.1. A function u € C(G) is said to be a weak solution of
BVP () - @), if it is a solution of (20).

Let us consider the problem of uniqueness of the solution of () - ().
Equation (20) reduces it to the algebraic question, whether s; — S, is a divisor
of zero in M or not.

THEOREM 6.1. The element s} — S, is a nondivisor of zero in M.

P r o o f. Assume the contrary, i.e. that there exists a non-zero multiplier
A
fraction B # 0 with (s} — Sw)E = 0. The last relation is equivalent to (s} —

Sz)A = 0. Since A # 0, then there exist a function v € C(D) such that
Av = u # 0. Then (s} — S;)A = 0 implies (s}’ — S;)u = 0. We multiply
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the last equation by I/} and obtain u — S,l{'u = 0. If ¢ = 0, then u(z,0) = 0.
Next we multiply (s} — S;)u = 0 by ¢, (z) and obtain (s}’ — S, )vx = 0, where
vg(z,t) = ag(t) sin px, k =1,2,.... We find

sp{a(t) sin ppr} — Sp{ou(t) sin g} = 0.
Using (I8)) and (I9) we find
DY (t) sin g + pag, (t) sin gz + ag, () Pe{sin &} = 0.
But ®¢{sin p,&} = 0 and we get
DFay(t) + i (t) =0, ax(0) = 0.
This initial problem has unique solution ay(t) = 0. We find u(z,t) =0. O
The solution of (20) in M is

pn—1

u= g U@+ g (P} (21

We may call ([21]) the formal (generalized) solution of problem (I))- ().

7. Interpretation of the formal (generalized) solution
of (I)- (M) as a function

Our next task is to interpret (if possible) ([2I]) as a function of C(D).

To this end, we consider a special case of problem (Il)- (]) for F(x,t) = 0
4 ()= Lofa} = L2 = = = & _ P89 o tenote its solution, if it
and f(z) = Ly{z} = PTG T 6o e denote its solution, if i

exists, by Q = Q(z,t). Having in mind that L,{z} = L2 = we have the

1
52’
following algebraic representation of this solution:
sit [333 z(3+ )

-1
o

- o
sy — Sy

0=

= . 22
6 6a } S = 51) @)
As for the special solution Q(z,t), it can be found in an explicit series form,
using the spectral projectors (I3]). Thus we obtain the following result.

3 234+ a)

LEmMMA 7.1. If f(z) = % T e and F(x,t) =0, then the solution

Q(x,t) of the BVP (1)-(4) is:

Qz,t) = 3 Ukla,t) + 3 Vala, 1), (23)
k=1 n=0
where
2sin \px

Up(z,t) = B, (= ) ——2—
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2sin y,x

Vilz,t) = E,(—2tH ,
(@) = Bu(— )vél?(vn)

k=1,2,..,n=0,1,...

The proof may be accomplished by a direct check, too.

The generalized solution of problem () - () for arbitrary f(x) and F(z,t)
can be written in the form:
sh1

u= g @+ g (Pe0)

St —

p—1 2 p—1
=57 52(2 S,) [f (@) + S?ﬂ S%(jé ~ 5,
By virtue of (22)) and (I8]), we obtain for the first term in (24])
S (= 82 9 @ = 2 [0F )]
T82(s — Sy) v ozt
Now we can rewrite the second term in (24)) as follows:
S2 sh!
n=1 S2(sy — Si)

F(z,t). (24)

Fla,t) = 538:—_191?(95,15) _ sgz—éQF(x,t)
t
4
~ g [ 5@ % w0+ @ Do),
9 ot o

" ozt ot
Under the corresponding assumptions for smoothness of the functions f(z)

and F(z,t), the solution can be written as a function of the form

Q% F)(,1).

T ot r@+ L, b0 P (25)
~ Oat ot ’ '
Then (28) gives the following Duhamel-type representation of the solution of

@ - @.

THEOREM 7.1. 1) If f(z) € C?[0,1], f(0) = 0 and ®c{f(&)} = é(af(l)Jr
f'(1) = f'(0)) = 0, then
84

u = (e t) * ()
1 1
= ) QAQAl—x—nJ)—QA1+x—nJD

+ Que(l =2 —m,t) — Quu(1 + 2 — n,t)) f"(n)dn



214 Y.T. Tsankov

is a weak solution of ([Il) -(@) for F(z,t) = 0.
II) If Fyp(x,t) € C(G), F(0,t) =0 and

PF(E 1) = (o (1,0) + Fa(1,) ~ Fo(0,1)) = 0,
then
ot o z,
u = w&(%ig ¥ F(a,t)

10 [t
- o (a(nzu—x—n,t)—Qz<1+x—n,t>>

+ Qmm(l — T — U,t) - wa(l +z— 777t)> i Fww(nvt) i ébu(t)dn

is a weak solution of ([Il) -(4]) for f(x)=0.

The proof may be accomplished by a direct check, too.
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