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Abstract

In the present paper, we consider Bayesian estimation of the parameters
and reliability function of the Gompertz Lindley distribution based on three
different loss functions. Bayesian estimators are obtained by using different
priors under the symmetric squared error and asymmetric linear exponential
and general entropy loss functions. Approximate Bayes estimators are com-
puted using Markov chain Monte Carlo (MCMC) methods. These estimators
are compared by using bias and mean squared error through simulation study.
Finally, a real life data application is reported as an illustration.
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1. Introduction

The Gompertz-Lindley (GL) distribution with parameters α and λ was
first introduced by [8]. This distribution has a probability density function
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f(x) =
α2λ

α+ 1

eλx(eλx + α+ 1)

(eλx + α− 1)3
, x > 0, α, λ > 0, (1)

reliability function (RF)

R(x) = P (X > x)

=
α2

α+ 1

eλx + α

(eλx + α− 1)2
, x > 0, α, λ > 0, (2)

and hazard rate function (HRF)

h(x) =
f(x)

R(x)

=
λeλx(eλx + α+ 1)

(eλx + α− 1)(eλx + α)
, x > 0, α, λ > 0. (3)

Figure 1 shows that the PDF of the GL distribution can be decreasing or
unimodal. This figure shows also that the RF of the GL distribution increases
as α increases.

Figure 2 shows that the HRF of the GL distribution can be decreasing,
increasing or unimodal. That is, the GL distribution has a flexible HRF than
well known two-parameter distributions in the literature.
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Figure 1. PDF and RF of the GL distribution for selected
values of α and λ = 1.

The authors in [8] demonstrated that the GL distribution can be effectively
used in reliability applications than the gamma and Weibull distributions.

Recently, [1] investigated several frequentist estimation methods of the
GL distribution. In this paper, we consider Bayesian estimation of the GL
distribution based on different loss functions.
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Figure 2. HRF of the GL distribution for selected values of
α and λ = 1.

The rest of the paper is organized as follows. In Section 2, Bayesian esti-
mation for model parameters, reliability and hazard rate functions are derived
under squared error, linear exponential and general entropy loss functions.
Markov chain Monte Carlo (MCMC) methods such as Metropolis-Hastings
algorithm has been introduced in Section 3. The Bayesian estimators are
compared using Monte Carlo simulation and results are presented in Section
4. Application to real data set is given in Section 5. Finally, we conclude the
paper in Section 6.

2. Bayesian Estimation

In general, when conducting a Bayesian analysis, an important aspect is
considering a loss function. Loss function represents the loss associated with
an error in estimation. In the statistical literature, a number of symmetric
and asymmetric loss functions are available. The symmetric loss function is
equally penalizes under estimation or overestimation which is the most real
life situations. However, in other situations, positive loss maybe more severe
than the negative loss and vice-versa requiring asymmetric loss functions.

Here we have considered one symmetric, that is, squared error loss function
(SELF) and two asymmetric, that is, linear exponential (LINEX) and general
entropy (GELF) loss functions. The mathematical form of these loss functions
and their respective Bayes estimators are discussed below.

The most widely used loss function in Bayesian inference is the squared
error loss function (SELF), that is defined as

LS(θ, θ̂) = (θ − θ̂)2, (4)
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and the Bayes estimator of the parameter θ based on this type of loss function
is known as the posterior mean, assuming it exists, and is given by

θ̂S = Eθ [θ|data] , (5)

where Eθ[·|data] is the expectation with respect to posterior distribution of θ.
The asymmetric loss function is the linear exponential (LINEX) loss func-

tion which was originally introduced by [15]. It penalizes underestimation and
overestimation for negative and positive ν, respectively, and is defined as

LL(θ, θ̂) = exp[ν(θ − θ̂)]− ν(θ − θ̂)− 1, ν ̸= 0, (6)

where the sign of the shape parameter ν reflects the direction of symmetry,
and its magnitude reflects the degree of asymmetry. The Bayes estimate of θ
relative to LINEX loss function is given by

θ̂L = −1

ν
logEθ[exp(−νθ)|data]. (7)

Another useful asymmetric loss function is the general entropy loss func-
tion (GELF) proposed by [3] as a simple generalization of the entropy loss,
and is defined as

LG(θ, θ̂) =

(
θ̂

θ

)w

− w log

(
θ̂

θ

)
− 1, w ̸= 0, (8)

where w is the loss parameter which reflects the departure from symmetry.
The corresponding Bayes estimator θ under GELF loss function is given by

θ̂G =
(
Eθ[θ

−w|data]
)−1/w

. (9)

Note that, for w = −1, the above equation reduced to the Bayes estimator
under SELF loss function.

Here, we study the performance of Bayes estimators that depends on the
prior distribution and the loss functions that are considered. Many authors
have been discussed the performance of the Bayes estimators under different
assumptions of prior and loss functions, for example, [5], and [12] have obtained
the Bayes estimators under different loss functions for generalized exponential
distribution and inverse Gaussian distribution respectively. Moreover, [13]
have obtained the Bayes estimator for the parameters of exponentiated gamma
distribution under the general entropy loss function.

In the following, Bayesian estimation procedure is developed to estimate
the parameters α, λ, the RF R(t), and HRF h(t), for given value t > 0, of the
GL distribution under different loss functions considered in this paper.

Let X1, X2, · · · , Xn be a random sample of size n from GL distribution
with PDF given in (1). Let x = (x1, x2, · · · , xn) be a vector of realization, the
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likelihood function as

L(α, λ;x) =
α2nλn

(α+ 1)n

n∏
i=1

eλxi(eλxi + α+ 1)

(eλxi + α− 1)3
. (10)

An important aspect to implement Bayesian analysis is the choice of prior
distribution that reflects the prior information about the parameters of inter-
est prior to collecting the data, however weakly informative prior could be
considered if there is no such information.

Thus, we consider informative prior for each parameter, assuming inde-
pendent gamma distributions with the following PDFs

π1(α; a1, b1) =
ba11

Γ(a1)
αa1−1e−b1α, α > 0, a1, b1 > 0, (11)

π2(λ; a2, b2) =
ba22

Γ(a2)
λa2−1e−b2λ, λ > 0, a2, b2 > 0, (12)

where the hyper parameters a1, b1 (a2, b2) are chosen to reflect prior knowl-
edge about α (λ). For the gamma prior to be weakly informative, the hyper
parameters are assumed to equal small values such as 0.0001.

Combining the prior distributions given in (11)-(12) and the likelihood
function in (10), then using Bayes theorem, the joint posterior PDF of α and
λ given the data can be expressed as

π∗(α, λ|x) =
α2n+a1−1e−b1αλn+a2−1e−(b2−

∑n
i=1 xi)λ

C(α+ 1)n

×
n∏

i=1

(eλxi + α+ 1)

(eλxi + α− 1)3
, (13)

where

C =

∫ ∞

0

∫ ∞

0

α2n+a1−1e−b1αλn+a2−1e−(b2−
∑n

i=1 xi)λ

(α+ 1)n

×
n∏

i=1

(eλxi + α+ 1)

(eλxi + α− 1)3
dα dλ. (14)

The posterior density in (13) involves complex integrals, and hence cannot
be evaluated analytically.

In the following, considering the loss function SELF, LINEX and GELF,
respectively, we derive the Bayes estimates of α, λ,R(t) and h(t).

(i) Bayes estimators under SELF:

α̂S = E[α|x]

=

∫ ∞

0

∫ ∞

0
α π∗(α, λ|x) dα dλ, (15)
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λ̂S = E[λ|x]

=

∫ ∞

0

∫ ∞

0
λ π∗(α, λ|x) dα dλ, (16)

R̂S(t) = E [R(t;α, λ)|x]

=

∫ ∞

0

∫ ∞

0
R(t;α, λ) π∗(α, λ|x) dα dλ, (17)

ĥS(t) = E [h(t;α, λ)|x]

=

∫ ∞

0

∫ ∞

0
h(t;α, λ) π∗(α, λ|x) dα dλ. (18)

(ii) Bayes estimators under LINEX:

α̂L = −1

ν
log (E[exp(−να)|x])

= −1

ν
log

{∫ ∞

0

∫ ∞

0
e−να π∗(α, λ|x) dα dλ

}
, (19)

λ̂L = −1

ν
log (E[exp(−νλ)|x])

= −1

ν
log

{∫ ∞

0

∫ ∞

0
e−νλ π∗(α, λ|x) dα dλ

}
, (20)

R̂L(t) = −1

ν
log (E[exp(−νR(t;α, λ)|x])

= −1

ν
log

{∫ ∞

0

∫ ∞

0
e−νR(t;α,λ) π∗(α, λ|x)dα dλ

}
, (21)

ĥL(t) = −1

ν
log (E[exp(−νh(t;α, λ)|x])

= −1

ν
log

{∫ ∞

0

∫ ∞

0
e−νh(t;α,λ) π∗(α, λ|x)dα dλ

}
. (22)

(iii) Bayes estimators under GELF:

α̂G = E[α−w|x]−1/w

=

{∫ ∞

0

∫ ∞

0
α−w π∗(α, λ|x) dα dλ

}−1/w

, (23)

λ̂G = E[λ−w|x]−1/w

=

{∫ ∞

0

∫ ∞

0
λ−w π∗(α, λ|x) dα dλ

}−1/w

, (24)
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R̂G(t) = E
[
R(t;α, λ)−w|x

]−1/w

=

{∫ ∞

0

∫ ∞

0
R(t;α, λ)−w π∗(α, λ|x) dα dλ

}−1/w

, (25)

ĥG(t) = E
[
h(t;α, λ)−w|x

]−1/w

=

{∫ ∞

0

∫ ∞

0
h(t;α, λ)−w π∗(α, λ|x) dα dλ

}−1/w

. (26)

It is clear that all the above Bayes estimators are involved the double
integrals for which simple closed forms cannot be obtained. Therefore, an ap-
proximation methods are needed such as Markov chain monte carlo (MCMC)
methods, namely Gibbs sampler ([7], [14]) and Metropolis-Hastings (M-H) al-
gorithm ([9], [2]) can be used to simulate from the posterior density and the
sample based inference can be performed.

3. Markov Chain Monte Carlo

In this section, we apply the Markov chain monte carlo (MCMC) method
to obtain the approximate Bayes estimators of α, λ,R(t), and h(t) under the
three loss functions considered in this paper.

The MCMC method is a general simulation method that is used to sam-
ple posterior distribution and compute posterior quantities of interest. This
method is usually applied to solve integration and optimization problems in
large dimensional spaces, however, in most cases, the integration does not
have a closed structure. For more details of the MCMC methods, see [7]. By
applying MCMC we can generate the random sample of unknown quantities
by using the posterior densities. The generated sample is then used to obtain
the Bayes estimators with respect to the proposed loss functions.

Integrating joint posterior π∗(α, λ|x) in (13) with respect to λ and α re-
spectively, we obtain the marginal posterior densities of α and λ as

π∗
1(α|λ,x) ∝ α2n+a1−1e−b1αλn

(α+ 1)n

n∏
i=1

eλxi(eλxi + α+ 1)

(eλxi + α− 1)3
, (27)

π∗
2(λ|α,x) ∝ λn

n∏
i=1

eλxi(eλxi + α+ 1)

(eλxi + α− 1)3
. (28)

It is clear from (15) and (16) that the marginal posterior densities of
α and λ are not in a closed form. Therefore, we consider the Metropolis
Hastings (M-H) algorithm. This algorithm is one of the MCMC methods that
first created by [10] and later extended by [9] and had many applications.
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The M-H algorithm allows for sampling from an analytic target complicated
distributions by filtering samples from a proposal distribution. Here, we adopt
the M-H algorithm with normal distribution as a proposal distribution, to
generate samples of α and λ from (15) and (16) (see [6]).

The Gibbs sampler algorithm proposed is summarized as follows:

• Step 1: Start with selecting an initial values of the parameters α(0), λ(0)

and set j = 1.

• Step 2 : Generate α(j) from π∗
1(α|λ(j−1),x) by M-H considering the

normal proposal distribution q(α) = I(α > 0)N(α(j−1), 1). The pro-
posed value is accepted with probability

ρ(α(j−1), α(j)) = min

{
1,

π(α(j))q(α(j−1))

π∗(α(j−1))q(α(j))

}
,

or accept α(j−1) with probability 1− ρ(α(j−1), α(j)).

• Step 3: Generate λ(j) from π∗
2(λ|α(j),x) by M-H with the normal pro-

posal distribution q(λ) = I(λ > 0)N(λ(j−1), 1). The proposal value is
accepted with probability

ρ(λ(j−1), λ(j)) = min

{
1,

π(λ(j))q(λ(j−1))

π∗(λ(j−1))q(λ(j))

}
,

or accept λ(j−1) with probability 1− ρ(λ(j−1), λ(j)).

• Step 4: Compute, for given value t, R(t;α(j), λ(j)) using equation (2)

and h(t;α(j), λ(j)) using equation (3) and set j = j + 1.

• Step 5: Repeat steps 2-4 for large number of iterations, say T , until
convergence is assured and then obtain α(j), λ(j), R(t;α(j), λ(j)), and

h(t;α(j), λ(j)) for j = 1, · · · , T.

Samples of α, λ, R(t), and h(t), for given t, are obtained from the resulted
posterior samples. In the following we derive the Bayes estimates of α, λ,R(t)
and h(t) under the considered loss functions.
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(i) MCMC estimators under SELF:

α̂S =
1

T

T∑
j=1

α(j) (29)

λ̂S =
1

T

T∑
j=1

λ(j), (30)

R̂S(t) =
1

T

T∑
j=1

R(t;α(j), λ(j)), (31)

ĥS(t) =
1

T

T∑
j=1

h(t;α(j), λ(j)). (32)

(ii) MCMC estimators under LINEX:

α̂L = −1

ν
log

 1

T

T∑
j=1

e−να(j)

 , (33)

λ̂L = −1

ν
log

 1

T

T∑
j=1

e−νλ(j)

 , (34)

R̂L(t) = −1

ν
log

 1

T

T∑
j=1

e−νR(t;α(j),λ(j))

 , (35)

ĥL(t) = −1

ν
log

 1

T

T∑
j=1

e−νh(t;α(j),λ(j))

 . (36)

(iii) MCMC estimators under GELF:

α̂G =

 1

T

T∑
j=1

(
1

α(j)
)w

−1/w

, (37)

λ̂G =

 1

T

T∑
j=1

(
1

λ(j)
)w

−1/w

, (38)

R̂G(t) =

 1

T

T∑
j=1

(
1

R(t;α(j), λ(j))
)w

−1/w

, (39)

ĥG(t) =

 1

T

T∑
j=1

(
1

h(t;α(j), λ(j))
)w

−1/w

. (40)
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4. Simulation Study

This section presents the simulation study which is carried out to assess the
performance of the various derived Bayes estimators under the three proposed
loss functions. The MCMC method have been applied for Bayesian analysis so
that sample based inference is carried out. All the computational algorithms
are performed using R Software [11]. We mainly compare the performance of
these estimates in terms of the average bias and mean square error (MSE).

The bias and MSE of an estimate θ̂ of θ is given respectively as

Bias(θ̂) =
1

T

T∑
i=1

(θ̂i − θi),

MSE(θ̂) =
1

T

T∑
i=1

(θ̂i − θi)
2,

where T = 50, 000 is the number of iterations in the simulation process. In
this simulation, we considered (α, λ) = (2, 1) and t = 1. Also, we considered
different sample sizes, n = 20, 40, 60, 80, 100, to represent small, moderate and
large sample sizes. We also considered two different choices of ν, w = −0.5, 1.5
for both LINEX and GELF loss functions, respectively.

For conducting Bayesian analysis two configurations of priors are consid-
ered. The first prior is a non-informative while the second is informative
having the following sets of hyper-parameters:

Prior I : a1 = b1 = a2 = b2 = 0.0001,

Prior II : a1 = 4, b1 = 2, a2 = 2, b2 = 2.

In case of informative prior, the hyper parameters are chosen in such away
that the prior mean equals to the true value of the parameter with varying prior
variance. The prior variance varies from large, moderate to small reflecting
the confidence of our prior guess.

In each case, a random sample of size n is generated from GL distribution
and the Bayes estimators of the unknown parameters are obtained by applying
the M-H algorithm provided in Section 3. We generated 50,000 realization of
the parameters α, λ,R(1) and h(1) from posterior densities in (15) and (16)
using M-H with 5000 burn in period to reduce the dependence of the starting
values. The MCMC run shows fine mixing of the chain. For reducing the
autocorrelation among the generated values of α and λ, we only recored every
5-th generated values of each parameter. The convergence of MCMC sample
is checked, and it was found that the Markov chain converges rapidly with any
arbitrary initial starting values.
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Tables 1 - 2 show the performance of the proposed Bayes estimators of the
model parameters α, λ,R(1) and h(1) for different values of n, ν and w, under
Prior I and Prior II, respectively.

These tables show that the bias of the Bayes estimators under the proposed
loss functions are small and can be negative or positive. Also, MSE of Bayes
estimators under different loss functions decreases as the sample size increases.
Finally, Bayes estimator of α under SELF has smaller MSE under LINEX and
GELF for both priors.

5. Illustrative Example

In this section, we present the analysis of a real data set to illustrate the
performance of the proposed Bayes estimators. The data set was reported by
[4] and represents 107 failure times (in hours) for right rear brakes on D9G-66A
caterpillar tractors.

56, 753, 1153, 1586, 2150, 2624, 3826, 83, 763, 1154, 1599, 2156, 2675,
3995, 104, 806, 1193, 1608, 2160, 2701, 4007, 116, 834, 1201, 1723, 2190, 2755,
4159, 244, 838, 1253, 1769, 2210, 2877, 4300, 305, 862, 1313, 1795, 2220, 2879,
4487, 429, 897, 1329, 1927, 2248, 2922, 5074, 452, 904, 1347, 1957, 2285, 2986,
5579, 453, 981, 1454, 2005, 2325, 3092, 5623, 503, 1007, 1464, 2010, 2337,
3160, 6869, 552, 1008, 1490, 2016, 2351, 3185, 7739, 614, 1049, 1491, 2022,
2437, 3191, 661, 1069, 1532, 2037, 2454, 3439, 673, 1107, 1549, 2065, 2546,
3617, 683, 1125, 1568, 2096, 2565, 3685, 685, 1141, 1574, 2139, 2584, 3756

Summary of descriptive statistics of this data set is shown in Table 3.

The MLE estimates, and the Bayes estimators of α, λ, R(1) and h(1) under
SELF, LINEX and GELF loss functions are presented in Table 4. For this
data set, Bayesian analysis is carried out in case of non-informative prior, that
is Prior I : a1 = b1 = a2 = b2 = 0.0001, since we do not have any prior
information.

By applying Metropolis-Hastings algorithm with normal proposal distri-
bution, we generated 50,000 random samples each of size 107 and discarded
the initial 5000 samples as a burn-in. The Bayes estimators are computed
based on the remaining observations.
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Table 1. MSE and Bias (in parenthesise) of Bayesian esti-
mates based on non-informative Prior I when (α, λ) = (2, 1).

SELF LINEX GELF
n v = −0.5 v = 1.5 w = −0.5 w = 1.5

20 α 0.001659 0.029721 0.257839 0.015901 0.393111
(0.018563) (-0.166501) (0.503411) (0.126334) (0.527721)

λ 0.017113 0.038887 0.002977 0.004133 0.059877
(-0.132388) (-0.191177) (0.051776) (-0.069881) (0.2229001)

R(1) 0.001877 0.001526 0.009444 0.005433 0.055255
(0.044771) (0.032771) (0.078661) (0.077119) (0.234450)

h(1) 0.015934 0.031133 0.000442 0.003141 0.024083
(-0.126231) (-0.176447) (0.021039) (-0.056045) (-0.155188)

40 α 0.000979 0.028977 0.251821 0.015122 0.342420
(0.014982) (-0.167334) (0.501496) (0.1200314) (0.589822)

λ 0.0175422 0.0381343 0.002811 0.004565 0.051744
(-0.133281) (-0.189117) (0.051221) (-0.067822) (0.223441)

R(1) 0.001077 0.001255 0.006198 0.005512 0.052296
(0.035519) (0.025517) (0.087895) (0.067899) (0.251118)

h(1) 0.015925 0.031016 0.000382 0.003091 0.020703
(-0.126355) (-0.176115) (0.019556) (-0.055597) (0.020703)

60 α 0.000773 0.029654 0.247854 0.014544 0.337003
(0.013441) (-0.166771) (0.489979) (0.117440) (0.571121)

λ 0.018112 0.037665 0.003219 0.014433 0.051987
(-0.127660) (-0.193441) (0.051455) (-0.067231) (0.230113)

R(1) 0.001977 0.000877 0.005126 0.005541 0.051776
(0.042551) (0.031226) (0.078301) (0.074331) (0.245572)

h(1) 0.015921 0.030462 0.000356 0.011569 0.021037
(-0.126180) (-0.174535) (0.018883) (-0.107560) (-0.145044)

80 α 0.000452 0.026544 0.241338 0.014781 0.343031
( 0.006991) (-0.175402) (0.487550) (0.118909) (0.589110)

λ 0.018119 0.037119 0.002187 0.003661 0.051228
(-0.005881) (-0.087221) (0.228777) (0.105779) (0.899760)

R(1) 0.001233 0.000897 0.004977 0.005692 0.0517748
(-0.412287) (-0.458601) (-0.241781) (-0.346327) (-0.085498)

h(1) 0.015873 0.030213 0.000336 0.003011 0.0209241
(-0.125991) (-0.173820) (0.018346) (-0.054874) (-0.144651)

100 α 0.000766 0.022883 0.242190 0.013790 0.327001
(0.007211) (-0.175543) (0.491887) (0.116101) (0.571322)

λ 0.017088 0.038101 0.002577 0.005421 0.050198
(-0.302117) (-0.193881) (0.052188) (-0.0621188) (0.226558)

R(1) 0.001981 0.000799 0.005302 0.005788 0.0524331
(0.040113) (0.027332) (0.077916) (0.075447) (0.224087)

h(1) 0.015568 0.030219 0.000361 0.002960 0.020921
(-0.124773) (-0.174411) (0.019000) (-0.054405) (-0.144641)
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Table 2. MSE and Bias (in parenthesise) of Bayesian esti-
mates based on informative Prior II when (α, λ) = (2, 1).

SELF LINEX GELF
n ν = −0.5 ν = 1.5 w = −0.5 w = 1.5

20 α 0.000811 0.037822 0.146658 0.009113 0.177299
(0.000211) (-0.187712) (0.279009) (0.087299) (0.371331)

λ 0.000766 0.004792 0.026504 0.006711 0.103801
(0.019559) (-0.045547) (0.164474) (0.077622) (0.333281)

R(1) 0.000265 0.000733 0.000344 0.000311 0.032119
(-0.016678) (-0.024224) (0.014767) (0.010331) (0.179960)

h(1) 0.000709 0.002385 0.014346 0.005182 0.075405
(-0.026643) (-0.048843) (-0.119775) (-0.071988) (-0.274600)

40 α 0.000650 0.031776 0.143288 0.006991 0.174110
(0.001771) (-0.181771) (0.375111) (0.081655) (0.412899)

λ 0.000433 0.004661 0.024114 0.004855 0.099166
(0.007221) (-0.059144) (0.153677) (0.066821) (0.315117)

R(1) 0.000211 0.000455 0.000410 0.000344 0.032773
(-0.012201) (-0.022788) (0.019144) (0.014188) (0.171335)

h(1) 0.000391 0.002472 0.012325 0.007340 0.072125
(-0.019793) (-0.049724) (-0.111020) (-0.061107) (-0.268561)

60 α 0.000601 0.033554 0.143177 0.007311 0.173120
(0.002766) (-0.179332) (0.377885) (0.083455) (0.415101)

λ 0.000344 0.004866 0.023166 0.004122 0.098765
(0.002011) (-0.065122) (0.151665) (0.062111) (0.31233)

R(1) 0.000161 0.000478 0.000411 0.000344 0.031877
(-0.010055) (-0.020721) (0.021358) (0.016570) (0.175222)

h(1) 0.000274 0.002420 0.011407 0.003080 0.071537
(-0.016566) (-0.049194) (-0.106807) (-0.055505) (-0.267465)

80 α 0.000455 0.032655 0.141280 0.007187 0.171122
(0.000299) (-0.183422) (0.375237) (0.080933) (0.412899)

λ 0.000346 0.004677 0.022899 0.004213 0.099874
(0.000877) (-0.067221) (0.15012) (0.061890) (0.313542)

R(1) 0.000102 0.000398 0.000410 0.000298 0.031158
(-0.010329) (-0.021782) (0.021223) (0.0168264) (0.177892)

h(1) 0.000266 0.002408 0.011324 0.002994 0.071661
(-0.016330) (-0.049073) (-0.106418) (-0.054723) (-0.267696)

100 α 0.000422 0.032144 0.139521 0.006913 0.173258
(-0.001860) (-0.185344) (0.372538) (0.080131) (0.411879)

λ 0.000320 0.004401 0.023488 0.003564 0.098769
(-0.001239) (-0.066761) (0.149583 (0.057690) (0.311767)

R(1) 0.000167 0.000301 0.000367 0.000315 0.0312776
(-0.008767) (-0.021341) (0.021075) (0.0167331) (0.181766)

h(1) 0.000248 0.002251 0.011065 0.002775 0.070800
(-0.015778) (-0.047451) (-0.105194) (-0.211113) (-0.266083)
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Bayesian graphical diagnostics tools involving trace and the autocorrela-
tion function (ACF) plots are used to check the convergence of Metropolis-
Hastings algorithm. Figures 3 to 6 show the MCMC trace plots and autocor-
relation function (ACF) plots of α, λ,R(1) and h(1), respectively. It is clear
from the trace plots, for the simulated values of α, λ,R(1) and h(1), that we
have random scatters about some mean value represented by a solid line with
a fine mixing of the chains.

The MLEs and the Bayes estimates of α, λ,R(1) and h(1), respectively,
are given in Table 4. This table shows that the MLE of α and α̂S are quite
close. The value of α̂S is more than that of α̂L, and α̂G. However, the value of
α̂L for ν = 1.5 and α̂G for w = 1.5 have smaller values than the corresponding
estimates for ν = −0.5 and for w = −0.5. A similar trend is noted for the
estimates of R(1).

All trace plots in Figures 3 to 6 indicate that the MCMC samples are well
mixed and stationary. All ACF plots in Figures 3 to 6 show that the chains
have low autocorrelations indicating rapid convergence of the Metropolis-
Hastings algorithm.

Table 3. Descriptive Statistics for Data set

Min Q1 Median Q3 Max Mean Standard deviation

56 1018.25 1795 2614 7739 2042.262 1397.770

Table 4. MLE and Bayesian Estimates for Data set parameters

Estimate α λ R(1) h(1)

MLE 6.109700 0.000100 0.999981 0.000019
SELF 5.992000 0.039930 0.992200 0.007868

LINEX ν = −0.5 5.985142 0.040023 0.992179 0.007897
ν = 1.5 5.760748 0.039486 0.992157 0.008122

GELF w = −0.5 5.978675 0.035419 0.992168 0.006971
w = 1.5 5.922888 0.000727 0.992146 0.000141
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Figure 3. MCMC trace plot (left) and ACF plot (right) of
simulated posterior samples by Metropolis-Hastings algorithm
for α.
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Figure 4. MCMC trace plot (left) and ACF plot (right) of
simulated posterior samples by Metropolis-Hastings algorithm
for λ.
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Figure 5. MCMC trace plot (left) and ACF plot (right) of
simulated posterior samples by Metropolis-Hastings algorithm
for the R(1) function.
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Figure 6. MCMC trace plot (left) and ACF plot (right) of
simulated posterior samples by Metropolis-Hastings algorithm
for the h(1) function.

6. Conclusion

In this paper, we have considered the statistical inference of the Gompertez-
Lindley distribution under Bayesian framework. We have estimated the un-
known parameters, reliability and hazard rate functions under the squared er-
ror, linear, and general entropy loss functions. We obtained the Bayes estima-
tors by applying Markov chain Monte Carlo and Metropolis-Hastings methods.
In a simulation study, we compared the performance of the Bayes estimators
on the basis of bias and mean-squared error by varying sample sizes and prior
distributions. We hope that the Bayesian approach to the Gompertz-Lindley
distribution presented here will be found useful for data analysts.
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