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Abstract

This article is about Minkowski difference of sets, which is one of the
Minkowski operators. The necessary and sufficient conditions for the existence
of the Minkowski difference of given regular polygons in the plane are derived.
The method of finding the Minkowski difference of given regular tetrahedrons
in the Euclidean space R

3 is explained. Results for finding the Minkowski
difference of given n-dimensional cubes in space R

n are also presented.

At the end of the article, the obtained results are summarized and a geo-
metric method for finding the Minkowski difference of the convex set M and
compact set N given in R

n is shown. The theory of foliations is applied to
find the Minkowski difference of sets. New geometric concepts such as “dense
embedding” and “completely dense embedding” are introduced. An impor-
tant geometric property of the Minkowski operator is introduced and proved
as a theorem.
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1. Introduction

Not all operations on sets may have a geometric meaning. On sets whose
elements are arbitrary in nature, we can perform union of sets, intersection
of sets, and difference of sets. For example, let’s take sets A = {4, 5, 6, 7}
and B =

{(
2 0
0 2

)
,

(
1 −5
9 2

)}
. Set A is a part of the set of natural

numbers, and set B is a part of the set of matrices of the second order, that is,
they consist of elements of different natures. Their union is in form A ∪ B ={
4, 5, 6, 7,

(
2 0
0 2

)
,

(
1 −5
9 2

)}
.

So, the above operations do not necessarily mean geometrically in some
cases. The Minkowski sum and difference on the sets were introduced precisely
for the purpose of solving geometric problems, and these operations depend
on the nature of the elements that make up the sets. That is why Minkowski
operations are not performed for the sets given in the above example.

Definitions and some properties of Minkowski operators are presented in
works [1, 2]. Among the known scientific works, the Minkowski difference was
first used in [3] to solve the problem of pursuit in differential games under
the name “geometric difference”. Later, in other works such as [4, 5], various
properties of this “geometric difference” were studied, and with their help,
the conditions for solving the problem of chasing were eased. Also, many
geometric properties of Minkowski’s difference and sum are presented in [6, 7].
To date, several scientific researches have been conducted to find algorithms
for calculating the Minkowski sum. A. Kaul, M.A. O’Connor , V. Srinivasan,
M.S. Kim, K. Sugihara, D. Leven, M. Sharir, J. Mikusinski, D. Mount, R.
Silverman, E.R. Oks, P.K. Agarwal, E. Flato, D. Halperin, G.D. Ramkumar
and other scientists obtained fundamental results on the calculation of the
Minkowski sum of polygons in the plane [8, 9, 10, 11].

Finding the Minkowski difference of sets is more complicated than finding
their Minkowski sum. There is also not much work on finding the Minkowski
difference of given sets[12, 13, 14]. Several properties and calculation methods
of the Minkowski difference are presented in the works of specialists such as K.
Sugihara, Y.T. Feng, Y. Tan, S. Tomiskova, Y. Martinez-Maure, V.I. Danilov,
G.A. Koshevoy, S.N. Avvakumov, Z.R. Gabudillina [15, 16, 17]. However, so
far, the conditions for the Minkowski difference of an arbitrary given set to be
empty or non-empty have not been obtained.

The theory of foliation is one of the developing branches of modern geom-
etry, and it has applications to many areas of geometry, [18, 19, 20, 21]. In
summarizing the obtained results in this article, the foliation theory was also
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used. Through new geometrical concepts, an efficient method for finding the
Minkowski difference of given compact sets in R

n has been created.

This article presents important geometric properties of the Minkowski op-
erator and geometric ways to find the Minkowski difference of some sets using
these properties. In this article, we solved the following problems:

(1) A new geometric method and exact formula for finding the Minkowski
difference of given regular polygons in the plane R

2;
(2) Finding the Minkowski difference of two given regular tetrahedrons in

the Euclidean space R
3;

(3) The condition that the Minkowski difference of two n-dimensional
cubes given in space R

n is non-empty;
(4) A new geometric property for finding the Minkowski difference of ar-

bitrary sets;
(5) Applying foliation theory to finding the Minkowski difference.

2. Research methodology

As we know, arbitrary points x and y in the Euclidean space Rn can be rep-
resented by coordinates consisting of n numbers as follows: (x1, x2, ..., xn) and
(y1, y2, ..., yn). In addition, these points can be determined by their position
vectors, that is, the position vector of point x is �x = x1�e1+x2�e2+...+xn�en and
the position vector of point y is �y = y1�e1 + y2�e2 + ...+ yn�en. Here �e1, �e2, ..., �en
are basis vectors in Euclidean space.

In that case, the sum of these points means the point determined by the
vector formed as a result of the sum of their position vectors:

�x+ �y = x1�e1 + x2�e2 + ...+ xn�en + y1�e1 + y2�e2 + ...+ yn�en =

= (x1 + y1)�e1 + (x2 + y2)�e2 + ...+ (xn + yn)�en.

So, as a result of adding points (x1, x2, ..., xn) and (y1, y2, ..., yn), a point of
form (x1 + y1, x2 + y2, ..., xn + yn) is formed.

Definition 2.1. Let the sets A and B be non-empty sets of the n dimen-
sional Euclidean space R

n. Their Minkowski sum is the set of points formed
by adding each point of set A to each point of set B, i.e.

A+B = {c ∈ R
n : c = a+ b, a ∈ A, b ∈ B}. (1)

Using this introduced operation, the Minkowski difference of two sets is
defined as follows.

Definition 2.2. Let the sets A and B be non-empty sets of the n di-
mensional Euclidean space R

n. The following set is called their Minkowski
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difference:
D = A∗B = {d ∈ R

n : d+B ⊂ A}. (2)

Definition 2.3. The Minkowski operators of a multi-valued mapping
G : Rn → 2R

n
are the operators AG : 2R

n → 2R
n
and BG : 2R

n → 2R
n
given

by the formulas

AGS =
⋃
x∈S

(x+G(x)),

BGS = R
n\(AG(R

n\S)),
for any set S.

If, in particular, we take the multi-valued mapping G to be constant
G(x) = G0 for all x ∈ S, the Minkowski operators correspond to Minkowski
sum and difference, respectively:

AGS = S +G0, BGS = S ∗(−G0). (3)

The Minkowski sum and Minkowski difference have been used to obtain suffi-
cient conditions for ending the game in differential games [3]-[5]. Today, the
approximate calculation of Minkowski sum and difference takes an important
place in solving practical problems with the help of differential games. At the
same time, it is one of the most important issues to evaluate the Minkowski
difference from below and above in theoretical studies.

The Minkowski operator was first applied to the study of differential games
in the works of L.S. Pontryagin [3], [4]. He called this operator geometric
difference and marked it as (∗ ). Also, the application of the Minkowski oper-
ator to differential games was made by N.Yu. Satimov[5], G.E. Ivanov, P.E.
Dvurechensky [7]. In [12], the results on the calculation of the Minkowski
difference of arbitrary triangles in the plane are described. In [13], a neces-
sary and sufficient condition for the Minkowski difference of two squares to be
non-empty was obtained. Formulas for calculating Minkowski differences are
also presented in these works. Summarizing the methods in works [12] and
[13], we derive a method for finding the Minkowski difference of two arbitrary
regular n-sided polygons in the plane R

2.

3. Minkowski difference of regular polygons

On the Euclidean plane R
2, let regular n-sided polygons PA and PB be

given by vertices A1, A2, ..., An and B1, B2, ..., Bn, respectively. Using these
points, we can express vectors corresponding to the sides of regular polygons
PA and PB : −−→

A1A2 = �a1,
−−→
A2A3 = �a2, ...,

−−→
AnA1 = �an, (4)

−−→
B1B2 = �b1,

−−→
B2B3 = �b2, ...,

−−→
BnB1 = �bn. (5)
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Figure 1. The Minkowski difference of regular polygons with
parallel sides

Theorem 3.1. In order for the Minkowski difference PA ∗PB of regular

polygons PA and PB given on the Euclidean plane R
2 to be non-empty, the

following relation is necessary and sufficient:

|�a1|
2 tan

(
π
n

) ≥

∣∣∣�b1
∣∣∣

2 sin
(
π
n

) · cos
(π
n
− αi

)
. (6)

Here αi = min
i=1,n

{
arccos

(〈�a1,�bi〉
|�a1||�bi|

)}
is the smallest angle between vectors �a1

and �bi, i = 1, n.

P r o o f. Since PA is a regular polygon, the centers of the circumcircle
and incircles of this polygon are at the same point. Let’s denote this point as
OA. In the same way, we mark the center of circumcircle and incircles of the
polygon PB as OB. PA ∗PB 	= Ø means that the set PB can be nested inside

the set PA. For this, we move the set PB parallel until the point OB falls on

the point OA, that is, we move the set PB parallel along the vector
−−−−→
OBOA.

There can be two cases.
In the first case, it can be �a1 ↑↑ �b1, �a2 ↑↑ �b2, ...,�an ↑↑ �bn (see Figure 1).

In such a situation, the images of points B′
1, B

′
2, ..., B

′
n formed by parallel

displacement of points B1, B2, ..., Bn along vector
−−−−→
OBOA will be located on
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straight lines OAAi, i = 1, n. In order for the points B′
1, B

′
2, ..., B

′
n to be-

long to the regular polygon PA (here, the points inside the polygon are also
considered to belong to the polygon), it is necessary and sufficient to satisfy
the relation ∣∣OAAi

∣∣ ≥ ∣∣OAB′
i

∣∣ , i = 1, n. (7)

The length of the segments OAB′
i, i = 1, n is equal to the radius of the

circumcircle of the PB polygon, i.e

∣∣OAB′
i

∣∣ =
∣∣∣�b1

∣∣∣
2 sin

(
π
n

) , i = 1, n. (8)

The length of the segment OAAi, i = 1, n is equal to the radius of the circum-
circle of polygon PA, but if we express it by the radius of the incircle of the
polygon PA, it be in the form of

∣∣OAA′
i

∣∣ = |�a1|
2 tan

(
π
n

) · 1

cos
(
π
n

) , i = 1, n. (9)

Since �a1 ↑↑ �b1, follows that αi = min
i=1,n

{
arccos

(〈�a1,�bi〉
|�a1||�bi|

)}
= 0. From this we

can write equation(9) as

∣∣OAA′
i

∣∣ = |�a1|
2 tan

(
π
n

) · 1

cos
(
π
n − αi

) , i = 1, n. (10)

If we put equations (10) and (8) to relation (7), condition (6) is obtained.

In the second case, relations �ai ↑↑ �bj ; i, j = 1, n are appropriate, that is,

none of the sides of the polygons PA and PB are parallel to each other (see
Figure 2). In studying this situation, we must first determine the smallest

angle between the vectors �a1 and �bi, i = 1, 4 and we denote this angle as αi

and calculate it as follows

αi = min
i=1,n

⎧⎨
⎩arccos

⎛
⎝
〈
�a1,�bi

〉

|�a1|
∣∣∣�bi

∣∣∣

⎞
⎠
⎫⎬
⎭ . (11)

Suppose this angle is the angle between the vector
−−→
A1A2 and the vector−−→

BkBk+1,k = 1, n (Bn+1 = B1). In that case, we construct the vector
−−−→
OAA,

whose beginning is at the point OA, and whose end is at the point A, the mid-
dle of the segment A1A2. This vector forms an angle π

n − αi with the vector−−−−→
OAB′

k, whose beginning is at point OA and whose end is at point B′
k. In

order for the points to belong to the regular polygon PA, it is necessary and

sufficient that the length of the orthogonal projection of the vector
−−−−→
OAB′

k
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Figure 2. The Minkowski difference of regular polygons with
corresponding sides not parallel.

onto the vector
−−−→
OAA is not greater than the length of the vector

−−−→
OAA(see

Figure 2), i.e. ∣∣∣∣
−−−→
OAA

∣∣∣∣ ≥
∣∣∣∣
−−−−→
OAB′

k

∣∣∣∣ · cos
(π
n
− αi

)
. (12)

The length of the vector
−−−→
OAA is equal to the radius of the incircle of the

regular polygon PA, ∣∣∣∣
−−−→
OAA

∣∣∣∣ = |�a1|
2 tan

(
π
n

) . (13)

The length of the vector
−−−−→
OAB′

k is equal to the radius of the circumcircle of
the regular polygon PB ,

∣∣∣∣
−−−−→
OAB′

k

∣∣∣∣ =
∣∣∣�b1

∣∣∣
2 sin

(
π
n

) . (14)

If we put equations (14) and (13) to relation (12), condition (6) is obtained.
This completes the proof. �

During the proof of the theorem, we created an algorithm (way) for finding
the Minkowski difference of two regular n-sided polygons given by their vertices
in a plane. Accordingly, to find the difference of polygons, the following is done
sequentially:
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1) First, we determine the coordinates of the vectors corresponding to the
sides of the polygons PA and PB through the given vertices. If the points
A1 = {α1

1, α
2
1, }, A2 = {α1

2, α
2
2},..., An = {α1

n, α
2
n} are the vertices of the

polygon PA and the points B1 = {β1
1 , β

2
1}, B2 = {β1

2 , β
2
2}, ..., Bn = {β1

n, β
2
n}

are the vertices of the polygon PB , then we can find the vectors

�a1 =
−−−→
A1A2 = {α1

2 − α1
1, α

2
2 − α2

1} ,

�a2 =
−−−→
A2A3 = {α1

3 − α1
2, α

2
3 − α2

2} ,
...

�an =
−−−→
AnA1 = {α1

1 − α1
n, α

2
1 − α2

n} ;
and

�b1 =
−−−→
B1B2 = {β1

2 − β1
1 , β

2
2 − β2

1} ,
�b2 =

−−−→
B2B3 = {β1

3 − β1
2 , β

2
3 − β2

2} ,
...

�bn =
−−−→
BnB1 = {β1

1 − β1
n, β

2
1 − β2

n} ;
2) By calculating the angles between the vector �a1 and the vectors�b1,�b2, ...,�bn,

we find the smallest of these angles and designate it as αi,

αi = min
i=1,n

⎧⎨
⎩arccos

⎛
⎝
〈
�a1,�bi

〉

|�a1|
∣∣∣�bi

∣∣∣

⎞
⎠
⎫⎬
⎭ ;

3) We check that the Minkowski difference of polygons PA and PB is not
empty. For this, we calculate the expression (6) and check that if the relation
(6) is fulfilled, the difference PA ∗PB is not empty, otherwise, the difference
consists of an empty set;

4) Suppose that in relation (6) the equality |�a1|
2 tan(π

n )
=

|�b1|
2 sin(π

n)
·cos (πn − αi

)
is satisfied and the difference PA ∗PB is not empty. Then this difference
consists of a single point resulting from the subtraction of the centers of the
circumcircles of the polygons PA and PB . Denoting these centers as OA and

OB , respectively, we can define these points by vectors
−−−→
A2O

A and
−−−→
B2O

B .

The direction of the vector
−−−→
A2O

A is the same as the direction of the vector−−→
A2A3 −

−−→
A1A2 = �a2 − �a1 =

{
α1
1 + α1

3 − 2α1
2, α

2
1 + α2

3 − 2α2
2

}
, and its length is

equal to the length of the radius of the circumcircle of the polygon PA, which
we denote by rA: ∣∣∣∣

−−−→
A2O

A

∣∣∣∣ = rA =
|�a1|

2 sin
(
π
n

) .
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Then, the coordinate of the vector
−−−→
A2O

A is of the form

−−−→
A2O

A =

{
rA

|�a2 − �a1|
(
α1
1 + α1

3 − 2α1
2

)
,

rA

|�a2 − �a1|
(
α2
1 + α2

3 − 2α2
2

)}
.

Using this vector, we determine the coordinate of point OA:

OA =

{
rA

|�a2 − �a1|
(
α1
1 + α1

3 − 2α1
2

)
+

(
α1
3 − α1

2

)
,

rA

|�a2 − �a1|
(
α2
1 + α2

3 − 2α2
2

)
+

(
α2
3 − α2

2

)}
.

Similarly, we find the coordinates of point OB using the vector
−−−→
B2O

B:

OB =

⎧⎨
⎩

rB∣∣∣�b2 −�b1

∣∣∣
(
β1
1 + β1

3 − 2β1
2

)
+

(
β1
3 − β1

2

)
,

rA∣∣∣�b2 −�b1

∣∣∣
(
β2
1 + β2

3 − 2β2
2

)
+
(
β2
3 − β2

2

)
⎫⎬
⎭ .

Here, rB is the radius of the circumcircle of the polygon PB. So, for the case

where |�a1|
2 tan(π

n )
=

|�b1|
2 sin(π

n)
· cos (πn − αi

)
is valid, the difference PA ∗PB consists

of points OA ∗OB ;

5) Suppose that the inequality |�a1|
2 tan(π

n)
≥ |�b1|

2 sin(π
n)

· cos (πn − αi

)
holds.

In order to calculate the difference PA ∗PB, we construct a regular n-sided
polygon, the vectors on the corresponding sides of which are in the same
direction as the vectors �a1,�a2, ...,�an, and on the sides of which the points
B1 = {β1

1 , β
2
1}, B2 = {β1

2 , β
2
2}, ..., Bn = {β1

n, β
2
n} lie. Let us mark the points

at the ends of this polygon as Ã1, Ã2, ..., Ãn (see Figure 2). If we can find
the coordinates of these points, we can determine the coordinates of the
points corresponding to the vertices of the polygon PA ∗PB. To do this, it

is enough to subtract the corresponding points Ã1, Ã2, ..., Ãn from the points
A1 = {α1

1, α
2
1}, A2 = {α1

2, α
2
2},...,An = {α1

n, α
2
n}. It is known from the con-

struction of polygon P̃A that the direction of vectors
−−−→
OBÃi, i =

−→
1, n is the

same to the direction of vectors
−−−→
OAAi, i =

−→
1, n, and its length is equal to the

length of the orthogonal projection of vector
−−−−→
OAB′

k to vector
−−−→
OAA multiplied

by the expression 1
cos(π

n)
, that is

∣∣∣∣
−−−→
OBÃi

∣∣∣∣ =
∣∣∣�b1

∣∣∣
2 sin

(
π
n

) · cos
(
π
n − αi

)
cos

(
π
n

) =

∣∣∣�b1
∣∣∣ · cos (πn − αi

)
sin

(
2π
n

) , i =
−→
1, n.
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Since the coordinates of the vectors
−−−→
OAAi, i =

−→
1, 4 are in the form

−−−→
OAAi =

{
α1
i −

rA

|�a2 − �a1|
(
α1
1 + α1

3 − 2α1
2

)− (
α1
3 − α1

2

)
,

α2
i −

rA

|�a2 − �a1|
(
α2
1 + α2

3 − 2α2
2

)− (
α2
3 − α2

2

)}
, i =

−→
1, n,

the coordinates of the vectors
−−−→
OBÃi, i =

−→
1, n are found in the form

−−−→
OBÃi =

⎧⎨
⎩

∣∣∣�b1
∣∣∣ · cos (πn − αi

)
rA · sin (2πn ) ·

(
α1
i −

rA

|�a2 − �a1|
(
α1
1 + α1

3 − 2α1
2

)− (
α1
3 − α1

2

))
,

∣∣∣�b1
∣∣∣ · cos (πn − αi

)
rA · sin (2πn ) ·

(
α2
i −

rA

|�a2 − �a1|
(
α2
1 + α2

3 − 2α2
2

)− (
α2
3 − α2

2

))}
, i =

−→
1, n.

With the help of these vectors, the exact coordinates of all points Ãi, i =
−→
1, n

can be determined:
Ãi =⎧⎨

⎩
∣∣∣�b1

∣∣∣ · cos (πn − αi

)
rA · sin (2πn )

(
α1
i −

rA

|�a2 − �a1|
(
α1
1 + α1

3 − 2α1
2

)− (
α1
3 − α1

2

))

+
rB∣∣∣�b2 −�b1

∣∣∣
(
β1
1 + β1

3 − 2β1
2

)
+
(
β1
3 − β1

2

)
,

∣∣∣�b1
∣∣∣ · cos (πn − αi

)
rA · sin (2πn )

(
α2
i −

rA

|�a2 − �a1|
(
α2
1 + α2

3 − 2α2
2

)− (
α2
3 − α2

2

))

+
rA∣∣∣�b2 −�b1

∣∣∣
(
β2
1 + β2

3 − 2β2
2

)
+

(
β2
3 − β2

2

)
⎫⎬
⎭ , i =

−→
1, n.

Using the determined points Ã1, Ã2, ..., Ãn and the previously given points
A1, A2, ..., An, we can find the vertices C1, C2, ..., Cn of the polygon resulting
from the difference PA ∗PB:

Ci = Ai − Ãi, i = 1, n.

Thus, the exact measures and geometric position of polygon PA ∗PB were
found.
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4. Minkowski difference of regular tetrahedrons

We know that a polyhedron is called a regular polyhedron if all its faces are
congruent regular polygons and all dihedral angles are also congruent. Since
at least three edges of the polyhedron pass through each vertex, the sum of all
plane angles at that end is less than 2π. A regular tetrahedron is a pyramid
with all faces consisting of equilateral triangles, and it has 4 vertices, 4 faces
and 6 edges. The spheres drawn inside and outside a regular tetrahedron have
their centers at the same point. To define a tetrahedron in a three-dimensional
Euclidean space, it is enough to give the coordinates of its vertices.

Let us say that the points corresponding to the vertices of the tetrahedron
TA are given by A1 =

{
α1
1, α

2
1, α

3
1

}
, A2 =

{
α1
2, α

2
2, α

3
2

}
, A3 =

{
α1
3, α

2
3, α

3
3

}
,

A4 =
{
α1
4, α

2
4, α

3
4

}
coordinates, and the points corresponding to the vertices

of the tetrahedron TB are given by B1 =
{
β1
1 , β

2
1 , β

3
1

}
, B2 =

{
β1
2 , β

2
2 , β

3
2

}
,

B3 =
{
β1
3 , β

2
3 , β

3
3

}
, B4 =

{
β1
4 , β

2
4 , β

3
4

}
coordinates. Then the coordinate of the

center of the circumsphere and insphere of the tetrahedron TA is in the form

OA =

{
α1
1 + α1

2 + α1
3 + α1

4

4
,
α2
1 + α2

2 + α2
3 + α2

4

4
,
α3
1 + α3

2 + α3
3 + α3

4

4

}
.

Similarly, the coordinate of the center of the circumsphere and insphere of
the tetrahedron TB is also in the form

OB =

{
β1
1 + β1

2 + β1
3 + β1

4

4
,
β2
1 + β2

2 + β2
3 + β2

4

4
,
β3
1 + β3

2 + β3
3 + β3

4

4

}
.

We denote the vectors starting at point OA and ending at the points where
the medians of the faces of the tetrahedron TA intersect as �rA

1 ,�rA
2 , �rA

3 ,�rA
4 and

the coordinates of these vectors are in the form

�rA
1 =

{
α1
2 + α1

3 + α1
4 − 3α1

1

12
,
α2
2 + α2

3 + α2
4 − 3α2

1

12
,

α3
2 + α3

3 + α3
4 − 3α3

1

12

}
,

�rA
2 =

{
α1
1 + α1

3 + α1
4 − 3α1

2

12
,
α2
1 + α2

3 + α2
4 − 3α2

2

12
,

α3
1 + α3

3 + α3
4 − 3α3

2

12

}
,

�rA
3 =

{
α1
1 + α1

2 + α1
4 − 3α1

3

12
,
α2
1 + α2

2 + α2
4 − 3α2

3

12
,

α3
1 + α3

2 + α3
4 − 3α3

3

12

}
,

�rA
4 =

{
α1
1 + α1

2 + α1
3 − 3α1

4

12
,
α2
1 + α2

2 + α2
3 − 3α2

4

12
,
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α3
1 + α3

2 + α3
3 − 3α3

4

12

}
.

The lengths of these vectors are the same and equal to the radius of the
insphere of the tetrahedron TA, i.e.

∣∣�rA
i

∣∣ =
√
6

12
|�a1| , i = 1, 4.

Where �a1 =
−−→
A1A2 and represents the vector corresponding to the edge of the

tetrahedron TA.

Let us denote the vectors starting atOB and ending at points B1, B2, B3, B4

as �RB
1 ,

�RB
2 ,

�RB
3 ,

�RB
4 respectively, and the coordinates of these vectors are in the

form

�RB
1 =

{
3β1

1 − β1
2 − β1

3 − β1
4

4
,
3β2

1 − β2
2 − β2

3 − β2
4

4
,

3β3
1 − β3

2 − β3
3 − β3

4

4

}
,

�RB
2 =

{
3β1

2 − β1
1 − β1

3 − β1
4

4
,
3β2

2 − β2
1 − β2

3 − β2
4

4
,

3β3
2 − β3

1 − β3
3 − β3

4

4

}
,

�RB
3 =

{
3β1

3 − β1
1 − β1

2 − β1
4

4
,
3β2

3 − β2
1 − β2

2 − β2
4

4
,

3β3
3 − β3

1 − β3
2 − β3

4

4

}
,

�RB
4 =

{
3β1

4 − β1
1 − β1

2 − β1
3

4
,
3β2

4 − β2
1 − β2

2 − β2
3

4
,

3β3
4 − β3

1 − β3
2 − β3

3

4

}
.

The lengths of these vectors are equal to the radius of the circumsphere of the
tetrahedron TB: ∣∣∣�RB

i

∣∣∣ =
√
6

4

∣∣∣�b1
∣∣∣ , i = 1, 4.

Where �b1 =
−−→
B1B2 and represents the vector corresponding to the edge of

the tetrahedron TB. By α we denote the smallest angle between �rA
i , i = 1, 4

vectors and �RB
j , j = 1, 4 vectors.
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Figure 3. Minkowski difference of tetrahedrons

Theorem 4.1. In order for the Minkowski difference TA ∗TB of regular

tetrahedrons TA and TB given in Euclidean space R
3 to be non-empty, the

following relation is necessary and sufficient:
√
6

12
|�a1| ≥

√
6

4

∣∣∣�b1
∣∣∣ · cosα. (15)

P r o o f. To calculate the difference TA ∗TB, we move the tetrahedron

TB parallel to the vector
−−−−→
OBOA. Let us denote the images of points B1 ={

β1
1 , β

2
1 , β

3
1

}
, B2 =

{
β1
2 , β

2
2 , β

3
2

}
, B3 =

{
β1
3 , β

2
3 , β

3
3

}
, B4 =

{
β1
4 , β

2
4 , β

3
4

}
in this

parallel displacement as B′
1, B

′
2, B

′
3, B

′
4 respectively (see Figure 3). In order

for the difference TA ∗TB not to be empty, these points must lie inside the

tetrahedron TA or at most on its faces.

Let the points B′
1, B

′
2, B

′
3, B

′
4 lie on the faces of the tetrahedron TA.

The radius of the insphere of the tetrahedron TA drawn from the point OA

to the face formed by the vertices A2 =
{
α1
2, α

2
2, α

3
2

}
, A3 =

{
α1
3, α

2
3, α

3
3

}
,

A4 =
{
α1
4, α

2
4, α

3
4

}
of the tetrahedron TA falls on the point where the medians

of the triangle �A2A3A4 intersect and is perpendicular to this face. Let us
designate the vector corresponding to this radius as �rA

1 , its coordinate will be
in the form

�rA
1 =

{
α1
2 + α1

3 + α1
4 − 3α1

1

12
,
α2
2 + α2

3 + α2
4 − 3α2

1

12
,

α3
2 + α3

3 + α3
4 − 3α3

1

12

}
.
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The length of the orthogonal projection of all vectors starting from OA

and ending at points lying on the face A2A3A4 onto the vector �rA
1 is equal to∣∣�rA

1

∣∣. Hence, if any point B′
1, B

′
2, B

′
3, B

′
4 belongs to face A2A3A4, equality

proj�rA
1

−−−−→
OAB′

i =
∣∣�rA

1

∣∣ , i = 1, 4 (16)

holds. Points B′
1, B

′
2, B

′
3, B

′
4 can also be located inside the tetrahedron TA,

so we generalize equation (16) and write it in the form

proj�rA
1

−−−−→
OAB′

i ≤
∣∣�rA

1

∣∣ , i = 1, 4. (17)

We can write the same relation for other faces of the tetrahedron TA:

proj�rA
2

−−−−→
OAB′

i ≤
∣∣�rA

2

∣∣ , i = 1, 4,

proj�rA
3

−−−−→
OAB′

i ≤
∣∣�rA

3

∣∣ , i = 1, 4,

proj�rA
4

−−−−→
OAB′

i ≤
∣∣�rA

4

∣∣ , i = 1, 4.

(18)

Summarizing relations (17) and (18), we can write as follows

proj�rA
j

−−−−→
OAB′

i ≤
∣∣�rA

j

∣∣ , i = 1, 4, j = 1, 4. (19)

We know that the lengths of vectors
−−−−→
OAB′

i are the same and equal to the
radius of the circumsphere of the tetrahedron TB. �rA

j vectors have the same
length and are equal to the radius of the insphere of the tetrahedron T . Based
on these, we write relation (19) in form√

6

12
|�a1| ≥

√
6

4

∣∣∣�b1
∣∣∣ · cosα.

Here α is the smallest of the angles between vectors �rA
j , j = 1, 4 and vectors

−−−−→
OAB′

i, i = 1, 4. Because the cosine of a smaller angle is greater than the
cosine of a larger angle. This means that if relation (15) holds for the smallest
angle, it holds for the rest of the angles as well. Therefore, (15) is considered
a necessary and sufficient condition for the relation TA ∗TB not to be empty.
�

5. The Minkowski difference of
n-dimensional cubes

Continuing the considerations for finding the Minkowski difference of squares
presented in [13] and generalizing the method presented in [14], we obtained
sufficient and necessary conditions for the existence of the Minkowski differ-
ence of two n-dimensional cubes given in Euclidean space R

n. In order for
the definition of an n-dimensional cube in the Euclidean space R

n to be one-
valued, it is enough to give its n + 1 vertices that do not lie in the same
hyperplane and are located on edges from one vertex. Let CA and CB be
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cubes given by vertices A0,A1,A2,...,An and B0,B1,B2,...,Bn respectively. We
introduce the following notations:

−−−→
A0A1 = �a1,

−−−→
A0A2 = �a2, ...,

−−−→
A0An = �an;

−−−→
B0B1 = �b1,

−−−→
B0B2 = �b2, ...,

−−−→
B0B3 = �b3.

The number of all diagonals of cube CB is found by the expression 2n−1, and
we can express the vectors corresponding to these diagonals by all combina-

tions of vectors �b1, �b2, ...�bn. For example, when n = 2 is a two-dimensional
cube, that is, a square, the number of diagonals is 2, but the number of the
vectors corresponding to the diagonals is 4, and we express these vectors by all

combinations of the two vectors �b1, �b2 that define the square and correspond
to its sides:

�d1 = �b1 +�b2,
�d2 = −�b1 +�b2,
�d3 = �b1 −�b2,
�d4 = −�b1 −�b2.

Since
∣∣∣�d1

∣∣∣ = ∣∣∣�d4
∣∣∣ and ∣∣∣�d2

∣∣∣ = ∣∣∣�d3
∣∣∣, the vectors �d1 and �d4 represent one diagonal

and the vectors �d2 and �d3 represent another diagonal.

When n = 3 is a three-dimensional cube, the number of diagonals is 4, but
the number of the vectors corresponding to the diagonals is 8, and we express

these vectors by all combinations of the three vectors �b1, �b2,�b3 that define the
cube and correspond to its edges from one vertex:

�d1 = �b1 +�b2 +�b3, �d5 = −�b1 −�b2 −�b3,

�d2 = −�b1 +�b2 +�b3, �d6 = �b1 −�b2 −�b3,
�d3 = �b1 −�b2 +�b3, �d7 = −�b1 +�b2 −�b3,
�d4 = �b1 +�b2 −�b3, �d8 = −�b1 −�b2 +�b3.

Here two vectors represent one diagonal.

When n = 3 is a four-dimensional cube, a tesseract the number of diagonals
is 8, but the number of the vectors corresponding to the diagonals is 16, and

we express these vectors by all combinations of the four vectors �b1, �b2,�b3,�b4
that define the cube and correspond to its edges from one end:

�d1 = �b1 +�b2 +�b3 +�b4, �d9 = −�b1 −�b2 −�b3 −�b4,

�d2 = −�b1 +�b2 +�b3 +�b4, �d10 = �b1 −�b2 −�b3 −�b4,
�d3 = �b1 −�b2 +�b3 +�b4, �d11 = −�b1 +�b2 −�b3 −�b4,
�d4 = �b1 +�b2 −�b3 +�b4, �d12 = −�b1 −�b2 +�b3 −�b4,
�d5 = �b1 +�b2 +�b3 −�b4, �d13 = −�b1 −�b2 −�b3 +�b4,
�d6 = −�b1 −�b2 +�b3 +�b4, �d14 = �b1 +�b2 −�b3 −�b4,
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�d7 = −�b1 +�b2 −�b3 +�b4, �d15 = �b1 −�b2 +�b3 −�b4,

�d8 = −�b1 +�b2 +�b3 −�b4, �d16 = �b1 −�b2 −�b3 +�b4.

Here, too, one diagonal is represented by two vectors. Similarly, the number
of diagonals of an n-dimensional cube is 2n−1, but the number of the vectors
corresponding to the diagonals is 2n, and we can express these vectors by all

combinations of vectors �b1, �b2,...,�bn:

�d1 = �b1 +�b2 + ...+�bn,

�d2 = −�b1 +�b2 + ...+�bn,

�d3 = �b1 −�b2 + ...+�bn,

. . .

�d2n = −�b1 −�b2 − ...−�bn.

Theorem 5.1. In order for the Minkowski difference CA ∗CB not to be
empty, it is necessary and sufficient that the length of the orthogonal projection

of the vectors �di, i = 1, 2n−1 corresponding to all diagonals of the cube CB to
the vectors �a1, �a2,...,�an , should not be greater than the length of the vector−→a 1.

P r o o f. There can be two cases when calculating the difference CA ∗CB.

In the first case, all �a1, �a2,...,�an vectors are parallel to all �b1, �b2,...,�bn vec-

tors, respectively, then the orthogonal projections of vectors �di, i = 1, 2n to

vectors �a1, �a2,...,�an are equal to the vector length �b1, that is,∣∣∣proj�aj �di
∣∣∣ = ∣∣∣�b1

∣∣∣ , i = 1, 2n, j = 1, n .

According to the determination of the Minkowski difference, in this case, in
order to be able to place the cube CB inside the cube CA, that is, so that

the difference CA ∗CB is not empty, the relation |�a1| ≥
∣∣∣�b1

∣∣∣ is necessary and

sufficient. This means that
∣∣∣proj�aj �di

∣∣∣ ≤ |�a1| , i = 1, 2n, j = 1, n .

In the second case, at least one of the vectors �a1, �a2,...,�an is not parallel

to one of the corresponding vectors �b1, �b2,...,�bn. We assume that none of these
vectors are parallel to each other in the general case. Then the lengths of

orthogonal projections of vectors �di, i = 1, 2n to vectors �a1, �a2,...,�an are found
using the formula

∣∣∣proj�aj �di
∣∣∣ =

∣∣∣〈�aj , �di
〉∣∣∣

|�aj | , i = 1, 2n, j = 1, n .
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Here
〈
�aj , �di

〉
is the scalar product of vectors �aj and �di. We designate the vec-

tors whose length is the longest among the orthogonal projections of vectors
�di, i = 1, 2n onto vectors �aj and whose direction is the same as the direction

of the vectors �aj, respectively, as �b
′
1,
�b
′
2,...,

�b
′
n. We construct an n-dimensional

rectangular parallelepiped P
′
whose edges consist of vectors �b

′
j ,j = 1, n and

which contains the cube CB. According to the construction of this rectan-
gular parallelepiped, P

′ ∗CB 	= Ø is valid. As in the first case, so that the

parallelepiped P
′
can be placed inside the cube CA by parallel displacement.

It is necessary and sufficient that the edges of P
′
are not greater than the

corresponding edges of CA, i.e.

|�a1| ≥
∣∣∣�b′1

∣∣∣ , |�a2| ≥
∣∣∣�b′2

∣∣∣ , ..., |�an| ≥
∣∣∣�b′n

∣∣∣ , (20)

from the relations(20),

|�a1| ≥
∣∣∣proj�aj �di

∣∣∣ , i = 1, 2n , j = 1, n.

The theorem has been proved. �

6. Generalization of the results

In this section, we summarize the results obtained above [18, 19, 20, 21].
Let, we are given convex set M and compact set N in R

n. We denote by
∂M0 = L0 the boundary of a convex compact set M = M0. Mα, ∂Mα =
Lα, α ∈ A are chosen in such a way that: 1)

⋃
α∈A

Lα = M ; 2) Mα
∗Mβ 	= Ø

for arbitrary α, β ∈ A and α ≤ β. Based on I. Tamura [18], we call F =
{Lα : Lα = ∂Mα, α ∈ A} a foliation and Lα, α ∈ A a leaves of the foliation.
Let ∂

(
Mα

∗Mβ

) ∈ F be for arbitrary α, β ∈ A.

Theorem 6.1. If the condition N ⊂ Mα is satisfied for the convex
compact sets M ,Mα and compact set N given in R

n, the equality

M ∗N =
(
M ∗Mα

)
+

(
Mα

∗N
)

(21)

holds.

P r o o f. Let be z ∈ M ∗N , then we show that there are elements z1 ∈
M ∗Mα and z2 ∈ Mα

∗N such that z = z1 + z2. We can write the relation
z + N ⊂ M using the definition of the Minkowski difference for the element
z ∈ M ∗N . Therefore, for any c ∈ N , there is an element a ∈ M such that the
equality z + c = a holds. From this we get the expression

c = a− z ∈ N. (22)
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By condition, since N ⊂ Mα, relation Mα
∗N 	= Ø is valid. Let z2 ∈ Mα

∗N .
It follows that z2+N ⊂ Mα. This relation holds for all elements of the set N .
Hence, according to (22), we can write the relation

z2 + a− z ∈ Mα. (23)

According to the condition, M ∗Mα 	= Ø. Let z1 ∈ M ∗Mα. Then, z1 +Mα ⊂
M is appropriate. Since this relation holds for all elements of the set Mα, it
also holds for the element z2 + a− z in expression (23)

z2 + z1 + a− z ∈ M.

Since a ∈ M , z1 + z2 − z = 0 and hence, the equality z1 + z2 = z holds true.

Now, let z ∈ (
M ∗Mα

)
+

(
Mα

∗N
)
, then there are elements z1 ∈ M ∗Mα

and z2 ∈ Mα
∗N such that z1 + z2 = z. According to the definition of

Minkowski difference from relation z1 ∈ M ∗Mα, we can write relation z1 +
Mα ⊂ M , similarly, we get the expression z2 + N ⊂ Mα from the relation
z2 ∈ Mα

∗N . From these two expressions we get z1+z2+N ⊂ M , which leads
to z1 + z2 ⊂ M ∗N . The theorem is proved. �

Definition 6.1. A compact set N is said to be embedded in a foliation
F if such a leaf Lα = ∂Mα, α ∈ A and an element z ∈ R

n are found for which
the relation z +N ⊂ Mα holds.

Definition 6.2. A compact set N is said to be densely embedded in
a foliation F if z + N ⊂ Mα0 and the index α0 is the smallest among the
numbers α ∈ A for which the relation z +N ⊂ Mα holds.

It is easy to understand from this definition that if the compact set N is
densely embedded in foliation F , the dimension of the geometric difference
Mα

∗N is smaller than the dimension of the space R
n.

Definition 6.3. A compact set N is said to be completely densely em-
bedded in a foliation F if Minkowski difference Mα

∗N = {a} consists of a
single point.

Theorem 6.2. If compact set N completely densely embedded in a foli-
ation F , then the equality

M ∗N =
(
M ∗Mα

)
+ a (24)

holds.
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Using the concept of “complete dense embedding”, we can write the fol-
lowing results for cases where the “subtrahend” set in the theorems 3.1, 4.1,
5.1 above is an arbitrary compact set N .

Theorem 6.3. For polygons PA and PB in the Euclidean plane R
2,

condition (6) holds. If compact set N is completely dense embedded in set
PB , then the equality PA ∗N = PA ∗PB holds.

Theorem 6.4. For tetrahedrons TA and TB in the Euclidean space R
3,

condition (15) holds. If compact set N is completely dense embedded in set
TB , then the equality TA ∗N = TA ∗TB holds.

Theorem 6.5. For the given cubes CA and CB in the Euclidean space

R
n, let the lengths of the orthogonal projections of the vectors �di, i = 1, 2n−1

corresponding to all the diagonals of the cube CB onto the vectors �a1,�a2,...,�an
not be greater than the length of the vector �a1. If a compact set N is com-
pletely dense embedded in set CB, then the equality CA ∗N = CA ∗CB holds.

7. Conclusion

The Minkowski difference is actually useful as a research and conceptual
tool. But, unfortunately, it is well known that there are serious difficulties
in finding the Minkowski difference for given arbitrary forms of sets. This
is the main obstacle for using the Minkowski difference in various practical
applications. The results of the analysis of the work done by experts so far
on finding the Minkowski difference and sum have shown that the Minkowski
sum of sets is sufficiently studied, but there is a lack of data and literature on
the Minkowski difference and its calculation.

Above, we introduced new methods for finding Minkowski differences of
regular polygons given by vertices in the plane R

2, regular tetrahedron given
by vertices in space R

3. Taking these results, we came to the conclusion
that the form of the Minkowski difference of these sets will be similar to the
“minuend” set.

But we cannot state this conclusion for the Minkowski difference of n-
dimensional cubes in R

n. Because the Minkowski difference of two cubes can
also be a rectangular parallelepiped whose edges are parallel to the edges of
the “minuend” cube. At the end of the article, we stated a theorem that helps
to calculate the Minkowski difference of arbitrary convex compact sets in R

n

using the elements of the theory of foliation.
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