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Abstract

This article is about Minkowski difference of sets, which is one of the
Minkowski operators. The necessary and sufficient conditions for the existence
of the Minkowski difference of given regular polygons in the plane are derived.
The method of finding the Minkowski difference of given regular tetrahedrons
in the Euclidean space R? is explained. Results for finding the Minkowski
difference of given n-dimensional cubes in space R™ are also presented.

At the end of the article, the obtained results are summarized and a geo-
metric method for finding the Minkowski difference of the convex set M and
compact set IV given in R" is shown. The theory of foliations is applied to
find the Minkowski difference of sets. New geometric concepts such as “dense
embedding” and “completely dense embedding” are introduced. An impor-
tant geometric property of the Minkowski operator is introduced and proved
as a theorem.
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1. Introduction

Not all operations on sets may have a geometric meaning. On sets whose
elements are arbitrary in nature, we can perform union of sets, intersection
of sets, and difference of sets. For example, let’s take sets A = {4,5,6,7}

2 1 - .
and B = {( 0 g > , < 9 25 . Set A is a part of the set of natural
numbers, and set B is a part of the set of matrices of the second order, that is,
they consist of elements of different natures. Their union is in form AU B =

voon (5 5):(s 3}

So, the above operations do not necessarily mean geometrically in some
cases. The Minkowski sum and difference on the sets were introduced precisely
for the purpose of solving geometric problems, and these operations depend
on the nature of the elements that make up the sets. That is why Minkowski
operations are not performed for the sets given in the above example.

Definitions and some properties of Minkowski operators are presented in
works [I, 2]. Among the known scientific works, the Minkowski difference was
first used in [3] to solve the problem of pursuit in differential games under
the name “geometric difference”. Later, in other works such as [4] 5], various
properties of this “geometric difference” were studied, and with their help,
the conditions for solving the problem of chasing were eased. Also, many
geometric properties of Minkowski’s difference and sum are presented in [0, [7].
To date, several scientific researches have been conducted to find algorithms
for calculating the Minkowski sum. A. Kaul, M.A. O’Connor , V. Srinivasan,
M.S. Kim, K. Sugihara, D. Leven, M. Sharir, J. Mikusinski, D. Mount, R.
Silverman, E.R. Oks, P.K. Agarwal, E. Flato, D. Halperin, G.D. Ramkumar
and other scientists obtained fundamental results on the calculation of the
Minkowski sum of polygons in the plane [, [9, 10} 1T].

Finding the Minkowski difference of sets is more complicated than finding
their Minkowski sum. There is also not much work on finding the Minkowski
difference of given sets[12] 13} [14]. Several properties and calculation methods
of the Minkowski difference are presented in the works of specialists such as K.
Sugihara, Y.T. Feng, Y. Tan, S. Tomiskova, Y. Martinez-Maure, V.I. Danilov,
G.A. Koshevoy, S.N. Avvakumov, Z.R. Gabudillina [15, 16} [I7]. However, so
far, the conditions for the Minkowski difference of an arbitrary given set to be
empty or non-empty have not been obtained.

The theory of foliation is one of the developing branches of modern geom-
etry, and it has applications to many areas of geometry, [I8] 19} 20, 21]. In
summarizing the obtained results in this article, the foliation theory was also



ON THE GEOMETRIC PROPERTIES ... 177

used. Through new geometrical concepts, an efficient method for finding the
Minkowski difference of given compact sets in R™ has been created.

This article presents important geometric properties of the Minkowski op-
erator and geometric ways to find the Minkowski difference of some sets using
these properties. In this article, we solved the following problems:

(1) A new geometric method and exact formula for finding the Minkowski
difference of given regular polygons in the plane R?;

(2) Finding the Minkowski difference of two given regular tetrahedrons in
the Euclidean space R?;

(3) The condition that the Minkowski difference of two n-dimensional
cubes given in space R™ is non-empty;

(4) A new geometric property for finding the Minkowski difference of ar-
bitrary sets;

(5) Applying foliation theory to finding the Minkowski difference.

2. Research methodology

As we know, arbitrary points  and y in the Euclidean space R can be rep-
resented by coordinates consisting of n numbers as follows: (x1, 9, ..., x,) and
(y1,Y2, .-, Yn). In addition, these points can be determined by their position
vectors, that is, the position vector of point x is ¥ = z1€1 +x2€5+...+ T, €, and
the position vector of point y is f = y1€1 + y2€5 + ... + yn€,. Here €1, €5, ..., €,
are basis vectors in Euclidean space.

In that case, the sum of these points means the point determined by the
vector formed as a result of the sum of their position vectors:

T4y =x1€1 + 2265 + ... + Tpn€y + Y1€1 + Y25 + ... + Yn€p =

= (z1+y1)eL + (z2 +y2)€2 + ... + (T + Yn)n.

So, as a result of adding points (z1,z2,...,2,) and (y1,Y2,...,Yn), & point of
form (z1 + y1, 2 + Y2, ..., Tn + Ypn) is formed.

DEFINITION 2.1. Let the sets A and B be non-empty sets of the n dimen-
sional Euclidean space R™. Their Minkowski sum is the set of points formed
by adding each point of set A to each point of set B, i.e.

A+B={ceR":c=a+b,ac A be B}. (1)

Using this introduced operation, the Minkowski difference of two sets is
defined as follows.

DEFINITION 2.2. Let the sets A and B be non-empty sets of the n di-
mensional Euclidean space R™. The following set is called their Minkowski
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difference:
D=A*B={deR":d+ B C A}. (2)

DEFINITION 2.3. The Minkowski operators of a multi-valued mapping
G : R™ — 2R are the operators Ag : 28" — 2R" and Bg : 2" — 28" given
by the formulas
AgS = | (z + G(2)),
€S
BaS =R"\(Ag(R"\S5)),
for any set S.

If, in particular, we take the multi-valued mapping G to be constant
G(x) = Gy for all z € S, the Minkowski operators correspond to Minkowski
sum and difference, respectively:

AGS = S + Gy, BaS = 5%(—Gy). (3)

The Minkowski sum and Minkowski difference have been used to obtain suffi-
cient conditions for ending the game in differential games [3]-[5]. Today, the
approximate calculation of Minkowski sum and difference takes an important
place in solving practical problems with the help of differential games. At the
same time, it is one of the most important issues to evaluate the Minkowski
difference from below and above in theoretical studies.

The Minkowski operator was first applied to the study of differential games
in the works of L.S. Pontryagin [3], [4]. He called this operator geometric
difference and marked it as (£). Also, the application of the Minkowski oper-
ator to differential games was made by N.Yu. Satimov[5], G.E. Ivanov, P.E.
Dvurechensky [7]. In [I2], the results on the calculation of the Minkowski
difference of arbitrary triangles in the plane are described. In [13], a neces-
sary and sufficient condition for the Minkowski difference of two squares to be
non-empty was obtained. Formulas for calculating Minkowski differences are
also presented in these works. Summarizing the methods in works [12] and
[13], we derive a method for finding the Minkowski difference of two arbitrary
regular n-sided polygons in the plane R2.

3. Minkowski difference of regular polygons

On the Euclidean plane R?, let regular n-sided polygons P4 and PP be
given by vertices A1, As, ..., A, and By, Bs, ..., By, respectively. Using these
points, we can express vectors corresponding to the sides of regular polygons
P4 and PB:

(4)

()

_— L — L —
A1 Ay = a1, A Az = da, ..., An Ay

B?Q = 5‘17-@3 = 5‘27 ”'wﬂl

Qnp,
by,
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FiGURE 1. The Minkowski difference of regular polygons with
parallel sides

THEOREM 3.1. In order for the Minkowski difference PA*PP® of regular
polygons P4 and PP given on the Euclidean plane R? to be non-empty, the
following relation is necessary and sufficient:

-

b1

2sin (%

) - cos (% — ai) . (6)

|~
QL

Here o; = min {arccos (

bi . .
1‘g>‘ >} is the smallest angle between vectors dy
i=1,n i

1

B

and l;;-,z' =1,n.

P roof. Since P4 is a regular polygon, the centers of the circumcircle
and incircles of this polygon are at the same point. Let’s denote this point as
OA. In the same way, we mark the center of circumcircle and incircles of the
polygon PB as OB. PA:PB - () means that the set PP can be nested inside
the set PA. For this, we move the set PZ parallel until the point OF falls on

the point O, that is, we move the set PP parallel along the vector OPOA.
There can be two cases. . . .

In the first case, it can be @; 11 b1, d2 11 be, ..., d, 11 b, (see Figure [I).
In such a situation, the images of points B'y, B's, ..., B’ " formed by parallel

displacement of points By, Ba, ..., B,, along vector OPO4 will be located on
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straight lines O4A;, i = 1,n. In order for the points By, B's, ..., B’ to be-
long to the regular polygon P4 (here, the points inside the polygon are also
considered to belong to the polygon), it is necessary and sufficient to satisfy
the relation

|044;| > |0%B/|,i=T,n. (7)

The length of the segments O4B’;, i = 1,n is equal to the radius of the
circumcircle of the PP polygon, i.e

i

|0AB/;| = 25 (2)

,i=1,n. (8)

The length of the segment O A4;, i = 1, n is equal to the radius of the circum-
circle of polygon PA, but if we express it by the radius of the incircle of the
polygon P4, it be in the form of

@ 1
2tan (%) oS (%)

1

044 = In. (9)

|~
S

17g'>

N

o
N

||

B

1]

Since a; T 51, follows that «; = min {arccos <

i=1n

>} = 0. From this we

can write equation(d)) as
|| 1
2 tan (%) CoS (% — ozz-)

If we put equations (I0) and (R]) to relation (), condition (@) is obtained.

|oA4;| = Li=1,n. (10)

In the second case, relations a; 11 5}; i, 7 = 1,n are appropriate, that is,
none of the sides of the polygons P4 and PP are parallel to each other (see
Figure 2). In studying this situation, we must first determine the smallest
angle between the vectors @; and b;, i = 1,4 and we denote this angle as o
and calculate it as follows

<(_ila gz>
—=T | ¢ (11)
bi

o; = min < arccos
i=1n ||

|
Suppose this angle is the angle between the vector A;As and the vector

By, §k+1,k = T1,n (B,y1 = B1). In that case, we construct the vector O4 A,
whose beginning is at the point O, and whose end is at the point A, the mid-

dle of the segment A;As. This vector forms an angle - — «; with the vector

—
OAB'}, whose beginning is at point O4 and whose end is at point B’s. In
order for the points to belong to the regular polygon P4, it is necessary and

sufficient that the length of the orthogonal projection of the vector O4B/},
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FiGUrE 2. The Minkowski difference of regular polygons with
corresponding sides not parallel.

onto the vector O*A is not greater than the length of the vector O A(see
Figure [2)), i.e.

OAA‘ > ‘OAB’k

™
- cos (E - ai) . (12)
o
The length of the vector O4A is equal to the radius of the incircle of the
regular polygon P4,

O4A| =

.
| (13

e
The length of the vector O4B’), is equal to the radius of the circumcircle of
the regular polygon PZ,

—

s b
‘OAB’k S
2sin (%)

(14)

If we put equations (I4)) and (I3)) to relation ([I2I), condition (6]) is obtained.
This completes the proof. O

During the proof of the theorem, we created an algorithm (way) for finding
the Minkowski difference of two regular n-sided polygons given by their vertices
in a plane. Accordingly, to find the difference of polygons, the following is done
sequentially:
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1) First, we determine the coordinates of the vectors corresponding to the
sides of the polygons P4 and PP through the given vertices. If the points
Ap = {ad,02,}, Ay = {ad,a2},..., A, = {al, a2} are the vertices of the
polygon P4 and the points B = {8}, 8%}, Bo = {83,582}, ..., Bn = {B}, 52}
are the vertices of the polygon P2, then we can find the vectors

@ = A14; = o} — af,a} —af},

-_—
— 1 1 2 2
as = A2A3 = {043 — Q9,3 — 042},

—
— 1 1 2 27 .
Qp = AnAl = {al — Qp, 0 — an}7

and
by = BBy = {8} — 1, B2 — B2},

- =
by = BaB3 = {B3 — B3, 533 — B3},

- =
b, = B,B1 = {ﬁll - ﬁqlwﬁ% - 6721})
2) By calculating the angles between the vector d; and the vectors 51, 52, - 5n,
we find the smallest of these angles and designate it as «;,

<(11, b7,>
Q; = ImMin arccos — =T
i=1,n ‘&'1‘ bz

3) We check that the Minkowski difference of polygons P4 and P? is not
empty. For this, we calculate the expression (@) and check that if the relation
(6l) is fulfilled, the difference PA£PB is not empty, otherwise, the difference
consists of an empty set;

@y _ |5

4) Suppose that in relation (6l the equality Ztan(Z) — 2sin(Z) -COs (% — ai)

is satisfied and the difference PA*P® is not empty. Then this difference
consists of a single point resulting from the subtraction of the centers of the
circumcircles of the polygons P4 and PZ. Denoting these centers as O and

OB, respectively, we can define these points by vectors 4,04 and BQOB .

% direiio}n of the vector A;04 is the same as the direction of the vector
AsAz — A1 Ay =@y — @ = {of + od — 208,03 + o — 203}, and its length is
equal to the length of the radius of the circumcircle of the polygon P4, which
we denote by r4:

— A |1 | .

—
A,04
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. 4.
Then, the coordinate of the vector A3O“ is of the form

—_ A A
A r 1 1 1 r 2 2 2
A0 = {|&’2 — (ozl + a3 — 2a2) o (ozl + a3 — 2a2)}.

Using this vector, we determine the coordinate of point O4:

A
.
OA — {m (o1 + a3 — 2a3) + (a3 — a3)

A
ﬁ(a%—l—a%—?a%)—l—(a%—a%)}.

BQOEZ

Similarly, we find the coordinates of point OF using the vector

B
r
OF = ¢ —— (B + 85— 263) + (85 — 53) ,
by — by
rA 2 2 2 2 2
= (81 + 85 —263) + (85 — 53)
by — by
Here, 7P is the radius of the circumcircle of the polygon PZ. So, for the case
where ztﬁl(‘%) = 25}21(‘%) - COS (% — ozz-)is valid, the difference PA*PPB consists

of points 04205,

@1 [64]
an(%) - 2sin(%
In order to calculate the difference PA%PB, we construct a regular n-sided
polygon, the vectors on the corresponding sides of which are in the same
direction as the vectors di,ds,...,d,, and on the sides of which the points
By = {B},B%}, Ba = {B3, 5%}, ..., B, = {B}, 32} lie. Let us mark the points
at the ends of this polygon as Aj, Ay, ..., A, (see Figure B). If we can find
the coordinates of these points, we can determine the coordinates of the
points corresponding to the vertices of the polygon PA*PB. To do this, it

) - cos (E — ozz-) holds.

n

5) Suppose that the inequality T

is enough to subtract the corresponding points Ay, As, ..., A, from the points
Ay = {al}, a3}, Ay = {ad,a3},..., A4, = {al,a2}. Tt is known from the con-
. ~ . . = — .
struction of polygon P4 that the direction of vectors OPA;, i = 1,n is the
same to the direction of vectors O44;, i = 1,7, and its length is equal to the

length of the orthogonal projection of vector O4B’), to vector O A multiplied
by the expression coséﬁ)’ that is

1

b1 .cos(%—ai): 51 'cos( —ai) i:m

2 sin (%) cos (%) sin( )

313

OB 4;

o] -

.
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. . A . .
Since the coordinates of the vectors O“ A;, i = 1,4 are in the form

e
OAAi:{a%_m(a%Jraé—Za%)—(a%,—a%),
rA . T
a?—m(a%—l—a%—%ﬂ)—(a%—a%)}, 1 =1,n,

s N
the coordinates of the vectors OB A;, i = 1, n are found in the form

SN ‘5"605 I —q
OBAZ-: 1 . .(nzﬂ' Z)'
r -sm(;)
al—L(al—Fal—Qal)—(al—al)
1 |C—L»2_C—L»1| 1 3 2 3 2 ?
‘51‘ - COS (% — ai)
rA-sin(%”)
rA .
(07— 2 (o + 0 ~203) — (af —a) ) b i = T

- . R T
With the help of these vectors, the exact coordinates of all points A;, i =1,n

can be determined:

A, =
‘51‘ - COS (% —ai) A
1. T 1 o 1\ (1 1
’r’A-Sin (2%) <Oﬁz |(—1;2 _C_L,l| (Oél +Oé3 20{2) (043 Oé2)>
P 1 1 1 1 1
+— (/31 +53—252)+(53—/32)7
il
‘51‘ - COS (E — ozz-) A
i 2__° 2 2_2 2\ 2 2
r4 . sin (27”) (al |Gy — a1 (a1+a3 0‘2) (0‘3 O‘2)>
A
+#(ﬁf+ﬂ§—2ﬂg)+(ﬁ§—ﬁ§) Li=1n.
2 — 01

Using the determined points 1211,;12, ...,fln and the previously given points
A1, As, ..., Ay, we can find the vertices Cq,Csy, ..., C, of the polygon resulting
from the difference P42 PB:

OZ':AZ'—/L', izl,—n.

Thus, the exact measures and geometric position of polygon PA%PB were
found.
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4. Minkowski difference of regular tetrahedrons

We know that a polyhedron is called a regular polyhedron if all its faces are
congruent regular polygons and all dihedral angles are also congruent. Since
at least three edges of the polyhedron pass through each vertex, the sum of all
plane angles at that end is less than 27. A regular tetrahedron is a pyramid
with all faces consisting of equilateral triangles, and it has 4 vertices, 4 faces
and 6 edges. The spheres drawn inside and outside a regular tetrahedron have
their centers at the same point. To define a tetrahedron in a three-dimensional
Euclidean space, it is enough to give the coordinates of its vertices.

Let us say that the points corresponding to the vertices of the tetrahedron
T4 are given by A = {a},0f,0f}, Ay = {ad,03,03}, A3 = {ad, 03,03},
Ay = {ai,aﬁ,ai} coordinates, and the points corresponding to the vertices
of the tetrahedron TP are given by B; = {ﬂ%,ﬂ%,ﬂi”}, By = {,65,,8%,,83},
Bs = {ﬁ%, ﬁ%, ﬂg’} , By = {ﬁi, B2, ﬂi’} coordinates. Then the coordinate of the
center of the circumsphere and insphere of the tetrahedron 74 is in the form

0A — of+as+ai+af af+ai+al+al af+al+al+al

4 ’ 4 ’ 4 '

Similarly, the coordinate of the center of the circumsphere and insphere of

the tetrahedron 77 is also in the form

OB:{ﬁ%+ﬁ%+ﬁ§+ﬁi Bt + B3 + B3 + B ﬂi”+ﬁ§’+ﬁ§’+ﬁi’}.

4 ’ 4 ’ 4
We denote the vectors starting at point O and ending at the points where
the medians of the faces of the tetrahedron T4 intersect as 7,73, 75',7{* and
the coordinates of these vectors are in the form

a4 {a%+a§+a}1—3a% o3 +ad + af — 303

e 12 ’ 12 ’
a§+a§+ai—3a:{’}
12 ’
- {a%+a§+a}1—3a%,a%+a§+ai—3a§’
12 12
a?%—a%—l—ai—i&a%}
12 ’
. {a%+a§+a}1—3a§7a%+a§+ai—3a§’
12 12
a%%—a%—l—ai—i&a%}
12 '

=A {a%%—a%—l—aé—i&a}l of + a3 +af — 30

4 = 12 ’ 12 ’



186 M. Mamatov, J. Nuritdinov

of + a3 + o — 3ad
12 ’
The lengths of these vectors are the same and equal to the radius of the
insphere of the tetrahedron T4, i.e.

V6

—
Where a; = A1 A5 and represents the vector corresponding to the edge of the
tetrahedron T4.

Let us denote the vectors starting at OF and ending at points By, Ba, Bs, B4
as Rf ,RQB ,R? ,Rf respectively, and the coordinates of these vectors are in the
form

}-;B:{?)B%—B%—B%—ﬁi 367 — 53 — B3 — i
4 ’ 4 ’

355’—@—5%—52}
4 Y

és_{wzl—ﬁ%—ﬂ%—ﬁi 363 — Bt — B3 — 5%
2 4 ) 4 )

355’—ﬁf’—5§—ﬁi’}
4 )

EB_{?)ﬁ%—ﬂ%—ﬁzl—ﬁi 363 — B — B3 — i
3 4 ) 4 )

355’:—61”’—55’—52}
4 )

RB_{?)ﬁi—ﬂ%—ﬁ%—ﬁ% 361 — Bt — B3 — 53
4 — 4 ) 4 )

352—61”’—55’—55?}
1 :

The lengths of these vectors are equal to the radius of the circumsphere of the
tetrahedron TB:
V6

4

Where b, = By §2 and represents the vector corresponding to the edge of
the tetrahedron T2. By o we denote the smallest angle between f;A,z' =14

vectors and ﬁf .7 = 1,4 vectors.

\Fzﬁ =25, i=T4
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FI1GURE 3. Minkowski difference of tetrahedrons

THEOREM 4.1. In order for the Minkowski difference TA*TB of regular
tetrahedrons T4 and TP given in Euclidean space R? to be non-empty, the
following relation is necessary and sufficient:

V6 V6 |
= g+l > =— . X
12 |d1] > 1 ‘b1‘ cos « (15)

Proof. To calculate the difference TA*T5, we move the tetrahedron

T
T8 parallel to the vector OPO#. Let us denote the images of points B; =
{81, 83,8}, Ba={B5,85,65}, Bs = {3,063, 3} , Bs = {Bi, 57,4} in this
parallel displacement as B'y, B'y, B's, B4 respectively (see FigureB]). In order
for the difference T4%T® not to be empty, these points must lie inside the
tetrahedron T4 or at most on its faces.

Let the points B’1, B', B's, B4 lie on the faces of the tetrahedron T4.
The radius of the insphere of the tetrahedron 74 drawn from the point O4
to the face formed by the vertices Ay = {a3,03,03}, A3 = {a}, a3, aj},
Ay = {ajf,a},al} of the tetrahedron T4 falls on the point where the medians
of the triangle AAyA3A, intersect and is perpendicular to this face. Let us
designate the vector corresponding to this radius as FlA, its coordinate will be
in the form

<A _ ab+al+al —3a} a2+ aZ+ a2 —3a?
! 12 ’ 12 ’

a%’+a§—|—a§—3a:{’
12 '
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The length of the orthogonal projection of all vectors starting from O4

and ending at points lying on the face As A3A4 onto the vector 7_"1‘4 is equal to

|771A‘. Hence, if any point B’y, B'y, B'3, B'4 belongs to face Ay A3Ay, equality

W

: Ap/ A
proy,?l,qO B = ‘7‘1

L i=1, (16)

holds. Points By, By, B'3, B'4 can also be located inside the tetrahedron T4,
so we generalize equation (I6]) and write it in the form

A A
projzaO”B'; < |, i =T1,4. (17)
We can write the same relation for other faces of the tetrahedron 7
ARl o |=A|
proyFQAO B < |r2 ‘ , 1=1,4,
projraOA B < ||, i =174, (18)
proijOAB’i < !Ff ,i=1,4.
Summarizing relations (I7) and (18], we can write as follows
A A
projya0 B <|ff|, i=14, j=14 (19)

—

We know that the lengths of vectors O4B’; are the same and equal to the

radius of the circumsphere of the tetrahedron T°5. 7_"]-‘4 vectors have the same

length and are equal to the radius of the insphere of the tetrahedron T'. Based
on these, we write relation (19) in form

V6 V6

12 al| > e ‘bl

Here « is the smallest of the angles between vectors FJA, j = 1,4 and vectors

‘ - COS .

—> -

OAB';, i = 1,4. Because the cosine of a smaller angle is greater than the
cosine of a larger angle. This means that if relation (I5) holds for the smallest
angle, it holds for the rest of the angles as well. Therefore, ([I5]) is considered
a necessary and sufficient condition for the relation T74*T5 not to be empty.
O

5. The Minkowski difference of
n-dimensional cubes

Continuing the considerations for finding the Minkowski difference of squares
presented in [I3] and generalizing the method presented in [I4], we obtained
sufficient and necessary conditions for the existence of the Minkowski differ-
ence of two n-dimensional cubes given in Euclidean space R™. In order for
the definition of an n-dimensional cube in the Euclidean space R™ to be one-
valued, it is enough to give its m + 1 vertices that do not lie in the same
hyperplane and are located on edges from one vertex. Let C4 and CP be
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cubes given by vertices Ag,A1,A4s,...,A, and By,B1,Bs,...,B, respectively. We
introduce the following notations:

AoAl = 61, AOA2 = 62, vony AOAn = Qp;

BoB1 = b1, BoBj = by, .., ByBs = bs.
The number of all diagonals of cube CB is found by the expression 2!, and
we can express the vectors corresponding to these diagonals by all comblna—
tions of vectors bl, bg, ...by. For example, when n = 2 is a two-dimensional
cube, that is, a square, the number of diagonals is 2, but the number of the
vectors corresponding to the diagonals is 4, and we express these vectors by all
combinations of the two vectors 51, 52 that define the square and correspond
to its sides:

dy = by + by,
dy = —by + by,
ds = by — by,
dy = —by — by.
Since ‘cfl‘ = ‘d_;;‘ and ‘cfg‘ = ‘d_;),‘, the vectors d_i and (f4 represent one diagonal

and the vectors do and d3 represent another diagonal.

When n = 3 is a three-dimensional cube, the number of diagonals is 4, but
the number of the vectors corresponding to the diagonals is 8, and we express
these vectors by all combinations of the three vectors by, bs, b3 that define the
cube and correspond to its edges from one vertex:

dy =b1+by+bs, ds=—by —by—bs,

dy = —by + by +b3, dg=>b —by— b,

d3=0b1 —by+0b3, dr=—by+by—0s,

dg = b1 + by — bs, dg = —by — by + b3.
Here two vectors represent one diagonal.

When n = 3 is a four-dimensional cube, a tesseract the number of diagonals
is 8, but the number of the vectors corresponding to the dlagonals is 16 and
we express these vectors by all combinations of the four vectors bl, bg, b3, b4
that define the cube and correspond to its edges from one end:

dy = by + bs + b3 + by, dg = —by — by — b3 — by,
do = ~by +by+bs+0bs, dio=Dby—by— b3 — b,
d3 = by — ba + b3 + by, dir = —by + by — bz — by,
dy = by + b — b3 + by, dig = —by — by + b3 — by,
ds = by + by + b3 — by, dig = —by — by — b3 + by,
do = —b1 — by + b3 +by,  dia=b1+by— by — bu,
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d7 = by + by — b3+ by,  di5=b1 — b+ b3 — ba,
65;32—614-524-53—64, %6251—62—63+54.
Here, too, one diagonal is represented by two vectors. Similarly, the number

of diagonals of an n-dimensional cube is 2”71, but the number of the vectors
corresponding to the diagonals is 2", and we can express these vectors by all

-

combinations of vectors 51, 52,...,bn:
dy = by + by + ... + by,
dy=—by + by + ... + by,
dy =Dby — by + ... + bn,

don = —by — by — ... — by,

THEOREM 5.1. In order for the Minkowski difference CA*C® not to be
empty, it is necessary and sufficient that the length of the orthogonal projection
of the vectors dZ, i =1,2""1 corresponding to all diagonals of the cube C® to
ﬂi)e vectors dq, ag,...,c_in , should not be greater than the length of the vector
aiq.

P r o o f. There can be two cases when calculating the difference CA*C5.

In the first case, all @y, @s,...,a@, vectors are parallel to all 51, 52,...,5n vec-
tors, respectively, then the orthogonal projections of vectors d;,i = 1,2" to
vectors dy, do,...,d, are equal to the vector length by, that is,

‘proya ‘bl‘ =1,2" j=1,n.

According to the determination of the Minkowski difference, in this case, in
order to be able to place the cube CF inside the cube C4, that is, so that

the difference CA*CP is not empty, the relation |a@;| > ‘51 is necessary and

sufficient. This means that ‘projajd_; < =1,2" j=1,n.

In the second case, at least one of the vectors dy, ds,...,d, is not parallel
to one of the corresponding vectors 51, 52, ,5 We assume that none of these
vectors are parallel to each other in the general case. Then the lengths of
orthogonal projections of vectors dz, i =1,2" to vectors @y, do,...,d, are found

using the formula
5.9)

e | -
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Here <Eij, d_;> is the scalar product of vectors a; and ci; We designate the vec-
tors whose length is the longest among the orthogonal projections of vectors
d_;-,z' = 1,2" onto vectors @; and whose direction is the same as the direction
of the vectors dj, respectively, as l_)ﬁl,l_)’;,...,l_)’;l. We construct an n-dimensional
rectangular parallelepiped P’ whose edges consist of vectors g;-,j = 1,n and
which contains the cube CB. According to the construction of this rectan-
gular parallelepiped, P'*CE # @ is valid. As in the first case, so that the
parallelepiped P’ can be placed inside the cube C”:l by parallel displacement.
It is necessary and sufficient that the edges of P are not greater than the
corresponding edges of C4, i.e.

from the relations(20]),
@ = |proja,di| . i =127, j =T,
The theorem has been proved. O

6. Generalization of the results

In this section, we summarize the results obtained above [I8] 19 20l 21].
Let, we are given convex set M and compact set N in R™. We denote by
OMy = Lg the boundary of a convex compact set M = My. M,, OM, =

Lo, o € A are chosen in such a way that: 1) |J Lo = M; 2) M,*Mg # O
acA
for arbitrary a,8 € A and a < . Based on 1. Tamura [18], we call F =

{Ly: Lo, = 0M,, a € A} a foliation and L,, a € A a leaves of the foliation.
Let 0 (ManB) € F be for arbitrary «, 8 € A.

THEOREM 6.1. If the condition N C M, is satisfied for the convex
compact sets M ,M, and compact set N given in R", the equality

M*AN = (M*M,) + (My*N) (21)
holds.

Proof. Let be z € M*N, then we show that there are elements z; €
MM, and 29 € M,%N such that z = 21 + 29. We can write the relation
z+ N C M using the definition of the Minkowski difference for the element
z € MXN. Therefore, for any ¢ € N, there is an element a € M such that the
equality z 4+ ¢ = a holds. From this we get the expression

c=a—2z€N. (22)
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By condition, since N C M,, relation M,*N # @ is valid. Let z0 € M,%N.
It follows that zo + N C M,. This relation holds for all elements of the set V.
Hence, according to (22]), we can write the relation

zo+a—2z € M,. (23)

According to the condition, M*M, # @. Let 21 € M*M,. Then, z; + M, C
M is appropriate. Since this relation holds for all elements of the set M,, it
also holds for the element 2z; + a — z in expression (23])

Zo+z14+a—z€ M.

Since a € M, z1 + z3 — z = 0 and hence, the equality z; + zo = z holds true.

Now, let z € (MiMa) + (MafN), then there are elements 21 € M*M,
and zo € MyEN such that z; + 220 = z. According to the definition of
Minkowski difference from relation z; € MZ*M,, we can write relation z; +
M, C M, similarly, we get the expression zo + N C M, from the relation
29 € My,2N. From these two expressions we get 21 + 20+ N C M, which leads
to 21 + 29 C MXN. The theorem is proved. O

DEFINITION 6.1. A compact set N is said to be embedded in a foliation
F if such a leaf L, = OM,, o € A and an element z € R™ are found for which
the relation z + N C M, holds.

DEFINITION 6.2. A compact set N is said to be densely embedded in
a foliation F' if z + N C M,, and the index ap is the smallest among the
numbers «« € A for which the relation z + N C M, holds.

It is easy to understand from this definition that if the compact set N is
densely embedded in foliation F', the dimension of the geometric difference
M,%N is smaller than the dimension of the space R™.

DEFINITION 6.3. A compact set N is said to be completely densely em-
bedded in a foliation F' if Minkowski difference M,*N = {a} consists of a
single point.

THEOREM 6.2. If compact set N completely densely embedded in a foli-
ation F', then the equality

M*N = (M*M,) +a (24)

holds.
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Using the concept of “complete dense embedding”, we can write the fol-
lowing results for cases where the “subtrahend” set in the theorems 3.1, E.T]
B above is an arbitrary compact set N.

THEOREM 6.3. For polygons P4 and PP in the Euclidean plane R2,
condition (@) holds. If compact set N is completely dense embedded in set
PB | then the equality PA*N = PA%PB holds.

THEOREM 6.4. For tetrahedrons T and T® in the Euclidean space R3,
condition (I5) holds. If compact set N is completely dense embedded in set
T8, then the equality TA*N = TAXTB holds.

THEOREM 6.5. For the given cubes C4 and C® in the Euclidean space
R™, let the lengths of the orthogonal projections of the vectors d;, i = 1,27
corresponding to all the diagonals of the cube C'B onto the vectors @1,ds,...,dn

not be greater than the length of the vector @,. If a compact set N is com-
pletely dense embedded in set CB, then the equality CA:N = CA2CP holds.

7. Conclusion

The Minkowski difference is actually useful as a research and conceptual
tool. But, unfortunately, it is well known that there are serious difficulties
in finding the Minkowski difference for given arbitrary forms of sets. This
is the main obstacle for using the Minkowski difference in various practical
applications. The results of the analysis of the work done by experts so far
on finding the Minkowski difference and sum have shown that the Minkowski
sum of sets is sufficiently studied, but there is a lack of data and literature on
the Minkowski difference and its calculation.

Above, we introduced new methods for finding Minkowski differences of
regular polygons given by vertices in the plane R2, regular tetrahedron given
by vertices in space R3. Taking these results, we came to the conclusion
that the form of the Minkowski difference of these sets will be similar to the
“minuend” set.

But we cannot state this conclusion for the Minkowski difference of n-
dimensional cubes in R™. Because the Minkowski difference of two cubes can
also be a rectangular parallelepiped whose edges are parallel to the edges of
the “minuend” cube. At the end of the article, we stated a theorem that helps
to calculate the Minkowski difference of arbitrary convex compact sets in R
using the elements of the theory of foliation.
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