ANALYSIS STABILITY FOR A FRACTIONAL
VOLTERRA MODEL WITH TWO CONTROLS

Abstract


Abstract. The main purpose of this paper is to study the fractional-order system with Caputo derivative associated to 3-dimensional Volterra model with two controls. For this fractional system we investigate the existence and uniqueness of solution of initial value problem, asymptotic stability of its equilibrium states, stabilization problem using appropriate controls and numerical integration via the fractional Euler method.

Received: 22 August 2023

AMS Subject Classification: 26A33, 34A08, 65P20, 70H05

Key Words and Phrases: 3-dimensional fractional-order Volterra model with two controls, asymptotic stability, control of stability, numerical integration

Download paper from here.


How to cite this paper?
DOI: 10.12732/ijam.v36i6.5
Source:
International Journal of Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 2023
Volume: 36
Issue: 6


References

  1. [1] E. Ahmed, A.M.A. El-Sayed, H.A.A. El-Saka, Equilibrium points, stability and numerical solutions of fractional order predator–prey and rabies models. J. Math. Anal. Appl., 325, No 1 (2007), 542–553; doi:10.1016/j.jmaa.2006.01.087.
  2. [2] D. Baleanu, O.P. Agrawal, Fractional Hamilton formalism within Caputo’s derivative. Czech. J. Physics, 56, No 10 (2006), 1087-1092.
  3. [3] P.A. Damianou, The Volterra model and its relation to the Toda lattice. Phys. Lett. A, 155 (1991), 126-132.
  4. [4] K. Diethelm, N.J. Ford, Analysis of fractional differential equations. J. Math. Anal. Appl., 265 (2002), 229–248.
  5. [5] L.D. Fadeev, L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons. Springer-Verlag (1986).
  6. [6] Gh. Ivan, A general method for stability controllability in the theory of fractional-order differential systems. ArXiv Math., 2022, 1-10; doi:10.48550/arxiv.2210.12751.
  7. [7] Gh. Ivan, M. Ivan, D. Opris, Fractional dynamical systems on fractional Leibniz algebroids. An. Stiint. Univ. Al. I. Cuza Iasi, Mat. (N.S.), 53 (2007), Supl., 222-234.
  8. [8] Gh. Ivan, M. Ivan, C. Pop, Numerical integration and synchronization for the 3-dimensional metriplectic Volterra system. Math. Probl. Eng., 2011, Art. ID 723629 (11 pp.); doi:10.1155/2011/723629.
  9. [9] Gh. Ivan, D. Opris, M. Ivan, Stochastic fractional equations associated to Euler top system. Int. J. Geom. Met. Mod. Phys., 10, No 1 (2013), 1220018 (10 pp.); doi:10.1142/S02198878.12200186.
  10. [10] M. Ivan, Control chaos in the fractional Lorenz-Hamilton system. Fract. Diff. Calc., 6, No 1 (2016), 111-119; doi:10.7153/fdc-06-07.
  11. [11] M. Ivan, A fractional model for the single Stokes pulse from the nonlinear optics. Journal of Applied Mathematics and Physics, 10 (2022), 2856-2875; doi:10.4236/jamp.2022.1010191
  12. [12] M. Ivan, Gh. Ivan, The almost metriplectic realization of the 4-dimensional periodic Volterra lattice. Tensor N.S., 71, No 1 (2009), 43-50.
  13. [13] M. Ivan, Gh. Ivan, On the fractional Euler top system with two parameters. Int. J. Modern Eng. Research, 8, No 4 (2018), 10-22.
  14. [14] M. Ivan, Gh. Ivan, D. Opris, Fractional equations of the rigid body on the pseudo-orthogonal group SO(2, 1). Int. J. Geom. Met. Mod. Phys., 6, No 7 (2009), 1181-1192; doi:10.1142/S0219887809004168.
  15. [15] J. Llibre, Y.P. Martinez, Dynamics of a family of Lotka-Volterra Systems in R*. Nonlinear Analysis, 199 (2020), 111915.
  16. [16] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland, Math. Stud., 204 (2006).
  17. [17] D. Matignon, Stability results for fractional differential equations with applications to control processing. In: Proc. of the Comput. Eng. in Systems and Appl., IMACS, IEEE-SMC, Lille, France, July 1996, 2 (1996), 963-968.
  18. [18] Z.M. Odibat, S. Momani, An algorithm for the numerical solution of differential equations of fractional order. J. Appl. Math. Inf., 26 (2008), 15-27.
  19. [19] I. Petrґa.s, Fractional-Order Nonlinear Systems: Modelling, Analysis and Simulation, Springer-Verlag (2011).
  20. [20] I. Podlubny, Fractional Differential Equations. Academic Press (1999).
  21. [21] C. Pop, A. Aron, C. Galea, M. Ciobanu, M. Ivan, Some geometric aspects in theory of Lotka-Volterra system. Proc. of the 11-th WSEAS Int. Conf. on Sust. in Sci. Eng., Timisoara, Romania, May (2009), 91-97.
  22. [22] M. Puta, M. Khashan, Poisson geometry of the Volterra model. Analele Univ. Timisoara, Seria Mat.-Inf., 39 (2001), 377-384.
  23. [23] Y. Salihi, K. Rasimi, Dynamics of fractional-order Lorenz system applying different numerical methods, International Journal of Applied Mathematics, 35, No 2 (2022), 297–306; doi: 10.12732/ijam.v35i2.8.
  24. [24] H.G. Sun, A. Chang, Y. Zhang, W. Chen, A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical models and applications. Fract. Calc. Appl. Anal., 22, No 1 (2019), 27–59; doi: 10.1515/fca-2019-0003.
  25. [25] D. Valerio, J.T. Machado, V. Kiryakova, Some pioneers of the applications of fractional calculus, Fract. Calc. Appl. Anal., 17, No 2 (2014), 552–578; doi: 10.2478/s13540-014-0185-1.