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Abstract: In this paper, we introduce a new subclass Mg”;’y(% J, ) of ana-

lytic and bi-univalent functions involving a certain fractional integral operator
which is defined based on quasi-subordination. For this class, we estimate
the second and third coefficients of the Taylor-Maclaurin series expansions and
upper bounds for Feketo-Szeg6 inequality. Furthermore, some relevant connec-
tions of certain special cases of the main results with those in several earlier
works are also pointed out.
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1. Introduction and definitions

Let A denote the class of functions f(z) of the form
o0
fl2) =2+ anz", (1)
n=2

which are analytic in the open unit disk U = {z: z € C and |z| < 1}. We also
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denote by S the class of all functions in A which are univalent in the unit disk
U. Let h(z) be an analytic function in U and |h(z)| < 1, such that

h(z) = ho + h1z + hgz? + hgz® 4+ - | (2)

which all coefficients are real. Also let ¢ be an analytic and univalent function
with positive real part in U with ¢(0) = 1, ¢/(0) > 0 and ¢ maps the unit disk
U onto a region starlike with respect to 1 and symmetric with respect to the
real axis. Taylor’s series expansion of such function is of the form

©(2) =1+ Biz+4 Boz? + B3z + - - -, (3)
where all coefficients are real and By > 0. Throughout this paper we assume

that the function h and ¢ satisfy the above conditions one or otherwise stated.

For analytic functions f and g with f(0) = ¢g(0), f is said to be subordinate
to g if there exists an analytic function w on U such that w(0) =0, |w(z)| < 1
and f(z) = g(w(z)) for z € U. The subordination will be denoted by

=g or f(z) <g(z) in U.

Note that f < g if and only if f(0) = ¢g(0) and f(U) C g(U) when g is univalent
in U.

For analytic functions f and g, the function f is quasi-subordinate to ¢ in
U if there exist analytic functions h and w, with |h(z)] < 1, w(0) = 0, and
lw(z)| < 1, such that f(z)/h(z) is analytic in U and written as

flgi <g(z) (2€U). (4)
We also denote the above expression by
f(z) =q9(z)  (z€0) (5)

and this is equivalent to f(z) = h(2)g(w(2)) (z € U).

Observe that if h(z) = 1, then f(z) = g(w(z)), so that f(z) < g(z) in
U. Also notice that if w(z) = z, then f(z) = h(z)g(z) and it is said that f
is majorized by g and written by f(z) < ¢(z) in U. Hence it is obvious that
quasi-subordination is a generalization of subordination as well as majorization,
see [20].

The well known Koebe one-quarter theorem [9] ensures that the image of
U under every univalent function f € A contains a disk of radius 1/4. Hence
every function f € S has an inverse f~! satisfying f~(f(2)) = z ( € U) and

FEw) =w  (Jwl <ro(f);mo(f) > 1/4),
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where

g(w) = f~H(w)

= w — apw® + (243 — a3)w® — (5a3 — 5asaz + ag)w' + - . (6)

A function f € A is said to be bi-univalent in U if both f and f~! are
univalent in U. Let 3 denote the class of bi-uninalent functions in U given by
(1.1). For a brief history and interesting examples of the class X, see [25].

In 1967, Lewin [13] investigated the class ¥ of bi-univalent functions and
showed that |as| < 1.51. Subsequently, Netanyahu [18] showed that max ey, [as| =
4/3 and Suffridge [27] has given an example of f € X for which |ag| = 4/3.
Later, Brannan and Clunie [4] conjectured that |as| < /2 for f € X. A brief
summery of functions in the family ¥ can be found in the study of Srivastava
et al. [25], which is a basic research on the bi-univalent function family ¥ (also,
see the references cited therein). In a number of sequels to [25], bounds for the
first two coefficients |az| and |ag| of different subclasses of bi-univalent functions
were given, for example, see [1, 8, 16, 23, 27]. But the coefficient estimate prob-
lem for each of |a,| (n € N\ {1,2};N = {1,2,3,---}) is still an open problem.
In recent years, Srivastava et al.’s pioneering research on the subject [25] has
successfully revitalized the study of bi-univalent functions to have produced
numerous bi-univalent function papers. There are also several papers dealing
with bi-univalent functions defined by subordination, for example, see [2, 3, 17].

Let a, b and ¢ be complex numbers with ¢ # 0,—1,—2,---. Then the
Gaussian hypergeometric function 9 Fy(a, b; ¢; z) is defined by

o0 k
211 (a, b;c; 2) :ZMZ— (7)

= (o kU

where (1) is the Pochhammer symbol defined, in terms of the Gamma function,
by

CTi+k) 1 (k=0)
(n)k_TT])_{n(n+l)...(n+k—l) (k e N).

The hypergeometric function oF}(a,b;c; z) is analytic in U and if a or b is a
negative integer, then it reduces to a polynomial.
Various definitions of operators of fractional calculus are available in the

literature (cf., e.g. [10, 22, 24]). Let us mention the Saigo hypergeometric
operators. Below is their definition due to Saigo [21] (see also [5, 11, 19]).
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Definition 1. For A > 0, u, v € R, the fractional integral operator Ig" o
is defined by

Ty f ()

ATk ¢

oy [ oA (- o @

where o F is the Gaussian hypergeometric function defined by (1.3) and f(2)
is taken to be an analytic function in a simply-connected region of the z-plane
containing the origin with the order

f(z) =0([) (2 —0)

for € > max{0,u — v} — 1, and the multiplicity of (z — ¢)*~!

requiring that log(z — {) to be real when z — { > 0.

is removed by

The definition (8) is an interesting extension of both Riemann-Liouville and
Erdélyi-Kober fractional operators including the Gauss hypergeometric function
in the kernel.

Based on this definition, Owa et al. [19] (see also in [11], [12]) defined
a modification (normalized version) of the fractional integral operator Z as

follows: I (@ 4 A )
PWINYZ - — [ +A+V m I)\,}L,l/
jO,z f(Z) - 1’1(2 o H + I/) < 0,z f(Z)

for f(z) € Aand p—v < 2. Then in the above mentioned works it is observed

that «—70):2# " maps A into itself, and the image of a power series (1) has the form:

o0
>\’ b
jO,zu Vf(z) =z + § Gnanz",
n=2

where

(2 —p+ V)n—1(2)n—1
(2 - :u)n—l()\ +v+ 2)71—1

Op = (feAAN>0u—v<2). (9)

We note that

T f(2) = f(2)
T () = Thsf(2) (fE€Ay+1>6>0)
T () = Q) (f € Ay 2056 > —1),
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where Z, 5 and QJ(f) are the integral operators introduced by Choi et al. [6]
and Liu [14]. Also, Kiryakova [11] considered the properties of this modification
in the class of analytic functions (see also [12]).

Now we define the following subclass of function class .

Definition 2. Let 0 <§ <1, A >0,y € C\ {0} and p— v < 2. A function
f € ¥ is said to be in the subclass Mg’f;’y(’y,d, ¢), if the following conditions
are satisfied:

1 AT f(2))
(1-

5 8)7 + 0T f()_1> AR

and

1 w(Tgh” g(w))’
(1-9¢

v )w—i—éj)‘“’

o )—1) <qp(w)—1 (wel),
where g = f~! is given by (6).

Remark 1. Taking A\=pu=0and § =1 in Mg’fé’y(’y, 0, ), we have

MOE()qV(’Y7 y 90) SE q(77 90)

which was introduced and studied by Magesh et al. [15]. Also, we note that for
h(z) =1 the class S5 (v, ¢) = S5(7, ) was introduced and studied by Deniz

[7].

The object of the present paper is to investigate the coefficient estimates
for the Taylor-Maclaurin coefficients |as| and |as| for functions belonging to the
subclass Mg";’”(% J,¢). Also, we determine the Feketo-Szego inequality for the

class Mg’f;’”(’y, 3,0).

2. Main results

In order to establish our results, we need the following lemma.

Lemma 1 ([9]). Let P be the class of all functions h analytic in U of the

form
o
z) =1+ Z 2"
n=1

which satisfy Re(h(z)) > 0 for all z € U. Then if h € P, then |c,| <2 (n € N).
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We begin by proving the following result.

Theorem 1. Let0 <6 <1, A >0, v € C\{0} and max{p, p—v,-A—v} <
2. If the function f(z) given by (1) belongs to /\/l)“”'(y7 3, ¢), then

las| < 17]|ho| Biv/Bi (10)
V(B = 6)és + (02 — 20)¢3]ho BY — (2 — 6)?¢3(By — By)|
and
lag| < [v[|h1|B1 [7[[hol| B2 — Bi
(B3=20)ps (3 —9)p3 + (6% — 20)¢3]
[Ylhol B1[(26 = 6%)¢3 + |2(3 = §) @3 + (6% — 26) ¢35 ]] (11)

2(3 = 0)¢3|(3 — 0)¢s + (62 — 20)¢3] ’
where ¢o and ¢z are given by (9).

Proof. Let f € MZ’“’ (7,6,¢) and g be the analytic function of f~! to U.
Then there exist two functlons r and s, analytic in U with 7(0) = s(0) = 0,
Ir(2)] <1 and |s(w)] <1 (2,w € U) such that

1_< AT 1(2)’
(1—0)z + 6T

— 1) =h(z r(z)) —1 12
) ) (2) ((r(2)) = 1) (12)

and

1 w(Tgw)
Y (1—5)w+5j0’“’ g(w)
Next, we define the function p,q € P by

- 1> = h(w) (p(s(w)) —1). (13)

1+
p(z) = r(z) =1+piz+pez®+---
1—7r(2)
and ) (w)
+ s(w 9
_— = 1 LY
g(w) = 7= Sw) — L tawtaus
or equivalently,
p(z) -1 _ 1 1 L o) 2
= =— = - = 14
r(2) EFEER LIRS U1l K (14)

and
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Using (14) and (15) along with (3), it follows that

oo (2 - s

2

1 1 1 1
+ <§h1B1p1 + §h031 <p2 - —p%> + ZhoBﬂ?%) 2

and

1 1 1 1
+ <§h131Q1 + §h031 <Q2 - §Q%> + ZhoBM%) w? -

By equating the coefficients from (12), (13), (16) and (17), we have

2—0 1
ﬂ@ = ~hoBip1,
ol 2

(5~ 20063 5 | (3= 0)e

as
1 1 1 1
=_mB —hoB — —p? | + =hoBap?,
5 1p1+2 0 1<p2 2p1>+4 0b2p7

2—-9§ 1
_ﬂ@ = §h031(I17

v
and

(52 — 25)¢% ag 4 (3 _75)¢3 (2@% _ a3)

1 1 1 1
=_mB —hoB ——¢ —hoBag?.
5 1Q1+2 0 1(612 2(11)-1-4 05247

From (18) and (20), we find that
1= —q1
8(2 — 0)*¢3a3 = v*hi BE (pF + af).

If we add (19) to (21) and substitute (22), we obtain

=N~

[(3 = 8)¢s + (82 — 20)¢3] a3

691

(16)

(17)

(18)
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1 1
= §h031(p2 +q2) + ZhO(BQ — B1)(pf + i) (24)
Substituting (23) into (24), we observe that

(12 — 72h‘(2]B§(p2 + q2) (25)
2 4[(3 — 0) 3 + (02 — 20)p2)ho B2 — 4(2 — 0)2¢2(By — By)’

By applying Lemma 1 in (25), we get the desired estimate of |as| as asserted in
(10).

Next, if we subtract (21) from (19) and a computation using (22) finally

lead to
9 . YhiBip: vho B

as =a

TR 0)ds 4B 0)ds
Hence, from (24) and Lemma 1, we obtain the desired estimate of |ag| as asserted
n (11). This completes the proof of Theorem 1.

(P2 — q2)- (26)

Theorem 2. Let0 <6 <1, A >0, v € C\{0} and max{u, p—v,-A—v} <
2, and let n € R. If the function f(z) given by (1) belongs to Mg’f;’y(’y,é, ®),
then

(- (Rol + [hi]) By
(3—0)ps

S = B 0)hllholésB7 o
as —nay| < 27
Allial By hlPlhol?1 = nlB3

(3 —0)¢s [Wwy0l

19 (,9)]
3 —0)yllho|psBT

n—1] =
(
where ¢o and ¢z are given by (9), and

P(7,0) = vhoBI[(3 — 6)ps + (6% — 20)¢5] — (2 — 0)*¢5(Ba — By).

Proof. From (25) and (26), it follows that

oo, YmBipi | yhoBi(p2 — q2)
=0 NG T oG g T 4B - 04
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_ YhBipy 1
‘2@—6w3+7%31K?m*+a3—®¢)p2

(1w - =57 ) ]

where

(1= n)vhoB}
Yho BH(3 — 6) 3 + (02 — 20)¢3} — (2 — 6)¢3(B2 — B1)]’

MWZM

Then, by using Lemma 1, we conclude that

(7| B1(lho| + [h1])
(3—10)p3

1
0<lun)| < 7=
o 4(3 - 0)¢s (28)
hi|B
% + 4ly] ho| B lu(n)].
1
| ) > =5

So (27) can be easily obtained from (28). This evidently completes the proof
of Theorem 2.

By taking 0 = 0 in Theorem 1 and 2, we have the following corollary.

Corollary 1. Let A > 0, v € C\ {0} and max{p,p —v,—A—v} <2, and
let n € R. If the function f(z) given by (1) belongs to Mg’“’y(’y, 0,¢), then

’q
|v||ho|B1v By

lag| < > > ,
V[3vhod3BE — 4¢%(Bs — By)|

oa] < 2L (1] (B -+ 182 — Ba]) + ] 1),
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and
( [Y[([hol + [h1]) By
33 ’
-1 < 3703 B — 45(B2 — B1)|
- 31| |ho|ps B? ’
las — na3| < - ,
|v[|h1| By 17%1hol”|1 — 1| By
33 |3vhops B — 4¢3(B2 — By)|’
y—1| > 3vho¢3 BY — 4¢5(B2 — By
- 3| ho |3 B? ’

where ¢o and ¢z are given by (9).
By putting 6 = 1 in Theorem 1 and 2, we get the following result.
Corollary 2. Let A > 0, v € C\ {0} and max{pu,p—v,—A—v} <2, and

let n € R. If the function f(z) given by (1) belongs to Mg’f;’y('}/, 1,¢), then

|a2‘ < |7Hh0|BlvBl
~ V(263 — ¢3)hoBf — ¢3(B2 — B

(63 + [4¢3 — ¢3)) B

|7[|h1| By 17[| o]

as| < + By — By| + ,
and
( |[7|(Iho| + [h1]) By
2¢3 ’
n—1| < [vho(2¢3 — ¢3) BY — ¢3(Ba — B1)
N 2|v|ho |3 By ’
|lag — na3| < e ,
|v[|h1| By n 7] [hol*|1 — 1| By
2¢3 [vho (263 — ¢3) BY — ¢3(B2 — B1)|’
Iy —1| > [vho(2¢3 — ¢3) BY — ¢3(Ba — B1)
N 2|v|ho |3 By ’

where ¢o and ¢z are given by (9).
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Remark 2. Taking A = p = 0 in Corollary 2, we obtain a recent result

due to Magesh et al. [15, Corollary 9]. Also, putting A = u = 0 and h(z) =1
in Corollary 2, we get the result of Deniz [7, Corollary 2.3].
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