International Journal of Applied Mathematics

Volume 36 No. 5 2023, 685-697

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v36i5.8

NEW SUBCLASS OF BI-UNIVALENT FUNCTIONS BASED ON QUASI-SUBORDINATION

Jae Ho Choi

Department of Mathematics Education Daegu National University of Education 219 Jungangdaero, Namgu, Daegu 42411, KOREA

Abstract: In this paper, we introduce a new subclass $\mathcal{M}_{\Sigma,q}^{\lambda,\mu,\nu}(\gamma,\delta,\varphi)$ of analytic and bi-univalent functions involving a certain fractional integral operator which is defined based on quasi-subordination. For this class, we estimate the second and third coefficients of the Taylor-Maclaurin series expansions and upper bounds for Feketo-Szegö inequality. Furthermore, some relevant connections of certain special cases of the main results with those in several earlier works are also pointed out.

AMS Subject Classification: 30C45, 30C50

Key Words: analytic functions, bi-univalent functions, coefficient estimates, Feketo-Szegö inequality, subordination, fractional integral operator

1. Introduction and definitions

Let \mathcal{A} denote the class of functions f(z) of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \tag{1}$$

which are analytic in the open unit disk $\mathbb{U} = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$. We also

Received: May 26, 2023 © 2023 Academic Publications

denote by S the class of all functions in A which are univalent in the unit disk \mathbb{U} . Let h(z) be an analytic function in \mathbb{U} and $|h(z)| \leq 1$, such that

$$h(z) = h_0 + h_1 z + h_2 z^2 + h_3 z^3 + \cdots,$$
 (2)

which all coefficients are real. Also let φ be an analytic and univalent function with positive real part in \mathbb{U} with $\varphi(0) = 1$, $\varphi'(0) > 0$ and φ maps the unit disk \mathbb{U} onto a region starlike with respect to 1 and symmetric with respect to the real axis. Taylor's series expansion of such function is of the form

$$\varphi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \cdots, \tag{3}$$

where all coefficients are real and $B_1 > 0$. Throughout this paper we assume that the function h and φ satisfy the above conditions one or otherwise stated.

For analytic functions f and g with f(0) = g(0), f is said to be subordinate to g if there exists an analytic function ω on \mathbb{U} such that $\omega(0) = 0$, $|\omega(z)| < 1$ and $f(z) = g(\omega(z))$ for $z \in \mathbb{U}$. The subordination will be denoted by

$$f \prec g$$
 or $f(z) \prec g(z)$ in \mathbb{U} .

Note that $f \prec g$ if and only if f(0) = g(0) and $f(\mathbb{U}) \subset g(\mathbb{U})$ when g is univalent in \mathbb{U} .

For analytic functions f and g, the function f is quasi-subordinate to g in $\mathbb U$ if there exist analytic functions h and ω , with $|h(z)| \leq 1$, $\omega(0) = 0$, and $|\omega(z)| < 1$, such that f(z)/h(z) is analytic in $\mathbb U$ and written as

$$\frac{f(z)}{h(z)} \prec g(z) \qquad (z \in \mathbb{U}). \tag{4}$$

We also denote the above expression by

$$f(z) \prec_q g(z) \qquad (z \in \mathbb{U})$$
 (5)

and this is equivalent to $f(z) = h(z)g(\omega(z))$ $(z \in \mathbb{U})$.

Observe that if $h(z) \equiv 1$, then $f(z) = g(\omega(z))$, so that $f(z) \prec g(z)$ in \mathbb{U} . Also notice that if $\omega(z) = z$, then f(z) = h(z)g(z) and it is said that f is majorized by g and written by $f(z) \ll g(z)$ in \mathbb{U} . Hence it is obvious that quasi-subordination is a generalization of subordination as well as majorization, see [20].

The well known Koebe one-quarter theorem [9] ensures that the image of \mathbb{U} under every univalent function $f \in \mathcal{A}$ contains a disk of radius 1/4. Hence every function $f \in \mathcal{S}$ has an inverse f^{-1} satisfying $f^{-1}(f(z)) = z$ ($z \in U$) and

$$f(f^{-1}(w)) = w$$
 $(|w| < r_0(f); r_0(f) \ge 1/4),$

where

$$g(w) = f^{-1}(w)$$

= $w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots$ (6)

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U} . Let Σ denote the class of bi-uninalent functions in \mathbb{U} given by (1.1). For a brief history and interesting examples of the class Σ , see [25].

In 1967, Lewin [13] investigated the class Σ of bi-univalent functions and showed that $|a_2| < 1.51$. Subsequently, Netanyahu [18] showed that $\max_{f \in \Sigma} |a_2| = 4/3$ and Suffridge [27] has given an example of $f \in \Sigma$ for which $|a_2| = 4/3$. Later, Brannan and Clunie [4] conjectured that $|a_2| \leq \sqrt{2}$ for $f \in \Sigma$. A brief summery of functions in the family Σ can be found in the study of Srivastava et al. [25], which is a basic research on the bi-univalent function family Σ (also, see the references cited therein). In a number of sequels to [25], bounds for the first two coefficients $|a_2|$ and $|a_3|$ of different subclasses of bi-univalent functions were given, for example, see [1, 8, 16, 23, 27]. But the coefficient estimate problem for each of $|a_n|$ ($n \in \mathbb{N} \setminus \{1,2\}; \mathbb{N} = \{1,2,3,\cdots\}$) is still an open problem. In recent years, Srivastava et al.'s pioneering research on the subject [25] has successfully revitalized the study of bi-univalent functions to have produced numerous bi-univalent function papers. There are also several papers dealing with bi-univalent functions defined by subordination, for example, see [2, 3, 17].

Let a, b and c be complex numbers with $c \neq 0, -1, -2, \cdots$. Then the Gaussian hypergeometric function ${}_{2}F_{1}(a, b; c; z)$ is defined by

$$_{2}F_{1}(a,b;c;z) = \sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{z^{k}}{k!},$$
 (7)

where $(\eta)_k$ is the Pochhammer symbol defined, in terms of the Gamma function, by

$$(\eta)_k = \frac{\Gamma(\eta + k)}{\Gamma(\eta)} = \begin{cases} 1 & (k = 0) \\ \eta(\eta + 1) \cdots (\eta + k - 1) & (k \in \mathbb{N}). \end{cases}$$

The hypergeometric function ${}_2F_1(a,b;c;z)$ is analytic in $\mathbb U$ and if a or b is a negative integer, then it reduces to a polynomial.

Various definitions of operators of fractional calculus are available in the literature (cf., e.g. [10, 22, 24]). Let us mention the Saigo hypergeometric operators. Below is their definition due to Saigo [21] (see also [5, 11, 19]).

Definition 1. For $\lambda > 0$, μ , $\nu \in \mathbb{R}$, the fractional integral operator $\mathcal{I}_{0,z}^{\lambda,\mu,\nu}$ is defined by

$$\mathcal{I}_{0,z}^{\lambda,\mu,\nu}f(z) = \frac{z^{-\lambda-\mu}}{\Gamma(\lambda)} \int_0^z (z-\zeta)^{\lambda-1} {}_2F_1\left(\lambda+\mu,-\nu;\lambda;1-\frac{\zeta}{z}\right) f(\zeta) d\zeta, \tag{8}$$

where ${}_{2}F_{1}$ is the Gaussian hypergeometric function defined by (1.3) and f(z) is taken to be an analytic function in a simply-connected region of the z-plane containing the origin with the order

$$f(z) = \mathcal{O}(|z|^{\epsilon}) \quad (z \to 0)$$

for $\epsilon > \max\{0, \mu - \nu\} - 1$, and the multiplicity of $(z - \zeta)^{\lambda - 1}$ is removed by requiring that $\log(z - \zeta)$ to be real when $z - \zeta > 0$.

The definition (8) is an interesting extension of both Riemann-Liouville and Erdélyi-Kober fractional operators including the Gauss hypergeometric function in the kernel.

Based on this definition, Owa et al. [19] (see also in [11], [12]) defined a modification (normalized version) of the fractional integral operator \mathcal{I} as follows:

$$\mathcal{J}_{0,z}^{\lambda,\mu,\nu}f(z) = \frac{\Gamma(2-\mu)\Gamma(2+\lambda+\nu)}{\Gamma(2-\mu+\nu)} z^{\mu} \mathcal{I}_{0,z}^{\lambda,\mu,\nu}f(z)$$

for $f(z) \in \mathcal{A}$ and $\mu - \nu < 2$. Then in the above mentioned works it is observed that $\mathcal{J}_{0,z}^{\lambda,\mu,\nu}$ maps \mathcal{A} into itself, and the image of a power series (1) has the form:

$$\mathcal{J}_{0,z}^{\lambda,\mu,\nu}f(z) = z + \sum_{n=2}^{\infty} \phi_n a_n z^n,$$

where

$$\phi_n = \frac{(2 - \mu + \nu)_{n-1}(2)_{n-1}}{(2 - \mu)_{n-1}(\lambda + \nu + 2)_{n-1}} \quad (f \in \mathcal{A}; \lambda > 0; \mu - \nu < 2). \tag{9}$$

We note that

$$\mathcal{J}_{0,z}^{0,0,\nu}f(z) = f(z)$$

$$\mathcal{J}_{0,z}^{\gamma-\delta+1,0,\delta-2}f(z) = \mathcal{I}_{\gamma,\delta}f(z) \quad (f \in \mathcal{A}; \gamma+1 > \delta > 0)$$

$$\mathcal{J}_{0,z}^{\gamma,0,\delta-1}f(z) = \mathcal{Q}_{\delta}^{\gamma}(f)(z) \quad (f \in \mathcal{A}; \gamma \geq 0; \delta > -1),$$

where $\mathcal{I}_{\gamma,\delta}$ and $\mathcal{Q}_{\delta}^{\gamma}(f)$ are the integral operators introduced by Choi et al. [6] and Liu [14]. Also, Kiryakova [11] considered the properties of this modification in the class of analytic functions (see also [12]).

Now we define the following subclass of function class Σ .

Definition 2. Let $0 \le \delta \le 1$, $\lambda > 0$, $\gamma \in \mathbb{C} \setminus \{0\}$ and $\mu - \nu < 2$. A function $f \in \Sigma$ is said to be in the subclass $\mathcal{M}_{\Sigma,q}^{\lambda,\mu,\nu}(\gamma,\delta,\varphi)$, if the following conditions are satisfied:

$$\frac{1}{\gamma} \left(\frac{z(\mathcal{J}_{0,z}^{\lambda,\mu,\nu} f(z))'}{(1-\delta)z + \delta \mathcal{J}_{0,z}^{\lambda,\mu,\nu} f(z)} - 1 \right) \prec_q \varphi(z) - 1 \quad (z \in \mathbb{U})$$

and

$$\frac{1}{\gamma} \left(\frac{w(\mathcal{J}_{0,w}^{\lambda,\mu,\nu} g(w))'}{(1-\delta)w + \delta \mathcal{J}_{0,w}^{\lambda,\mu,\nu} g(w)} - 1 \right) \prec_q \varphi(w) - 1 \quad (w \in \mathbb{U}),$$

where $g = f^{-1}$ is given by (6).

Remark 1. Taking $\lambda = \mu = 0$ and $\delta = 1$ in $\mathcal{M}_{\Sigma,g}^{\lambda,\mu,\nu}(\gamma,\delta,\varphi)$, we have

$$\mathcal{M}^{0,0,\nu}_{\Sigma,q}(\gamma,1,\varphi) = \mathcal{S}^*_{\Sigma,q}(\gamma,\varphi)$$

which was introduced and studied by Magesh *et al.* [15]. Also, we note that for $h(z) \equiv 1$ the class $\mathcal{S}_{\Sigma,q}^*(\gamma,\varphi) = \mathcal{S}_{\Sigma}^*(\gamma,\varphi)$ was introduced and studied by Deniz [7].

The object of the present paper is to investigate the coefficient estimates for the Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$ for functions belonging to the subclass $\mathcal{M}_{\Sigma,q}^{\lambda,\mu,\nu}(\gamma,\delta,\varphi)$. Also, we determine the Feketo-Szegö inequality for the class $\mathcal{M}_{\Sigma,q}^{\lambda,\mu,\nu}(\gamma,\delta,\varphi)$.

2. Main results

In order to establish our results, we need the following lemma.

Lemma 1 ([9]). Let \mathcal{P} be the class of all functions h analytic in \mathbb{U} of the form

$$h(z) = 1 + \sum_{n=1}^{\infty} c_n z^n$$

which satisfy $\operatorname{Re}(h(z)) > 0$ for all $z \in \mathbb{U}$. Then if $h \in \mathcal{P}$, then $|c_n| \leq 2$ $(n \in \mathbb{N})$.

We begin by proving the following result.

Theorem 1. Let $0 \le \delta \le 1$, $\lambda > 0$, $\gamma \in \mathbb{C} \setminus \{0\}$ and $\max\{\mu, \mu - \nu, -\lambda - \nu\} < 2$. If the function f(z) given by (1) belongs to $\mathcal{M}_{\Sigma,q}^{\lambda,\mu,\nu}(\gamma,\delta,\varphi)$, then

$$|a_2| \le \frac{|\gamma||h_0|B_1\sqrt{B_1}}{\sqrt{|\gamma[(3-\delta)\phi_3 + (\delta^2 - 2\delta)\phi_2^2]h_0B_1^2 - (2-\delta)^2\phi_2^2(B_2 - B_1)|}}$$
(10)

and

$$|a_{3}| \leq \frac{|\gamma||h_{1}|B_{1}}{(3-\delta)\phi_{3}} + \frac{|\gamma||h_{0}||B_{2} - B_{1}|}{|(3-\delta)\phi_{3} + (\delta^{2} - 2\delta)\phi_{2}^{2}|} + \frac{|\gamma||h_{0}|B_{1}[(2\delta - \delta^{2})\phi_{2}^{2} + |2(3-\delta)\phi_{3} + (\delta^{2} - 2\delta)\phi_{2}^{2}|]}{2(3-\delta)\phi_{3}|(3-\delta)\phi_{3} + (\delta^{2} - 2\delta)\phi_{2}^{2}|},$$

$$(11)$$

where ϕ_2 and ϕ_3 are given by (9).

Proof. Let $f \in \mathcal{M}_{\Sigma,q}^{\lambda,\mu,\nu}(\gamma,\delta,\varphi)$ and g be the analytic function of f^{-1} to \mathbb{U} . Then there exist two functions r and s, analytic in \mathbb{U} with r(0) = s(0) = 0, |r(z)| < 1 and |s(w)| < 1 $(z, w \in \mathbb{U})$ such that

$$\frac{1}{\gamma} \left(\frac{z(\mathcal{J}_{0,z}^{\lambda,\mu,\nu} f(z))'}{(1-\delta)z + \delta \mathcal{J}_{0,z}^{\lambda,\mu,\nu} f(z)} - 1 \right) = h(z) \left(\varphi(r(z)) - 1 \right) \tag{12}$$

and

$$\frac{1}{\gamma} \left(\frac{w(\mathcal{J}_{0,w}^{\lambda,\mu,\nu} g(w))'}{(1-\delta)w + \delta \mathcal{J}_{0,w}^{\lambda,\mu,\nu} g(w)} - 1 \right) = h(w) \left(\varphi(s(w)) - 1 \right). \tag{13}$$

Next, we define the function $p, q \in \mathcal{P}$ by

$$p(z) = \frac{1 + r(z)}{1 - r(z)} = 1 + p_1 z + p_2 z^2 + \cdots$$

and

$$q(w) = \frac{1 + s(w)}{1 - s(w)} = 1 + q_1 w + q_2 w^2 + \cdots$$

or equivalently,

$$r(z) = \frac{p(z) - 1}{p(z) + 1} = \frac{1}{2}p_1z + \frac{1}{2}\left(p_2 - \frac{1}{2}p_1^2\right)z^2 + \cdots$$
 (14)

and

$$s(w) = \frac{q(w) - 1}{q(w) + 1} = \frac{1}{2}q_1w + \frac{1}{2}\left(q_2 - \frac{1}{2}q_1^2\right)w^2 + \cdots$$
 (15)

Using (14) and (15) along with (3), it follows that

$$h(z)\left[\varphi\left(\frac{p(z)-1}{p(z)+1}\right)-1\right] = \frac{1}{2}h_0B_1p_1z + \left(\frac{1}{2}h_1B_1p_1 + \frac{1}{2}h_0B_1\left(p_2 - \frac{1}{2}p_1^2\right) + \frac{1}{4}h_0B_2p_1^2\right)z^2 + \cdots$$
 (16)

and

$$h(w)\left[\varphi\left(\frac{q(w)-1}{q(w)+1}\right)-1\right] = \frac{1}{2}h_0B_1q_1w + \left(\frac{1}{2}h_1B_1q_1 + \frac{1}{2}h_0B_1\left(q_2 - \frac{1}{2}q_1^2\right) + \frac{1}{4}h_0B_2q_1^2\right)w^2 + \cdots$$
 (17)

By equating the coefficients from (12), (13), (16) and (17), we have

$$\frac{(2-\delta)\phi_2}{\gamma}a_2 = \frac{1}{2}h_0 B_1 p_1,\tag{18}$$

$$\frac{(\delta^2 - 2\delta)\phi_2^2}{\gamma}a_2^2 + \frac{(3 - \delta)\phi_3}{\gamma}a_3$$

$$= \frac{1}{2}h_1B_1p_1 + \frac{1}{2}h_0B_1\left(p_2 - \frac{1}{2}p_1^2\right) + \frac{1}{4}h_0B_2p_1^2, \tag{19}$$

$$-\frac{(2-\delta)\phi_2}{\gamma}a_2 = \frac{1}{2}h_0B_1q_1,\tag{20}$$

and

$$\frac{(\delta^2 - 2\delta)\phi_2^2}{\gamma} a_2^2 + \frac{(3 - \delta)\phi_3}{\gamma} (2a_2^2 - a_3)$$

$$= \frac{1}{2} h_1 B_1 q_1 + \frac{1}{2} h_0 B_1 \left(q_2 - \frac{1}{2} q_1^2 \right) + \frac{1}{4} h_0 B_2 q_1^2. \tag{21}$$

From (18) and (20), we find that

$$p_1 = -q_1 \tag{22}$$

$$8(2-\delta)^2\phi_2^2a_2^2 = \gamma^2h_0^2B_1^2(p_1^2+q_1^2). \tag{23}$$

If we add (19) to (21) and substitute (22), we obtain

$$\frac{2}{\gamma} \left[(3-\delta)\phi_3 + (\delta^2 - 2\delta)\phi_2^2 \right] a_2^2$$

$$= \frac{1}{2}h_0B_1(p_2+q_2) + \frac{1}{4}h_0(B_2-B_1)(p_1^2+q_1^2). \tag{24}$$

Substituting (23) into (24), we observe that

$$a_2^2 = \frac{\gamma^2 h_0^2 B_1^3 (p_2 + q_2)}{4\gamma [(3 - \delta)\phi_3 + (\delta^2 - 2\delta)\phi_2^2] h_0 B_1^2 - 4(2 - \delta)^2 \phi_2^2 (B_2 - B_1)}.$$
 (25)

By applying Lemma 1 in (25), we get the desired estimate of $|a_2|$ as asserted in (10).

Next, if we subtract (21) from (19) and a computation using (22) finally lead to

$$a_3 = a_2^2 + \frac{\gamma h_1 B_1 p_1}{2(3-\delta)\phi_3} + \frac{\gamma h_0 B_1}{4(3-\delta)\phi_3} (p_2 - q_2). \tag{26}$$

Hence, from (24) and Lemma 1, we obtain the desired estimate of $|a_3|$ as asserted in (11). This completes the proof of Theorem 1.

Theorem 2. Let $0 \le \delta \le 1$, $\lambda > 0$, $\gamma \in \mathbb{C} \setminus \{0\}$ and $\max\{\mu, \mu - \nu, -\lambda - \nu\} < 2$, and let $\eta \in \mathbb{R}$. If the function f(z) given by (1) belongs to $\mathcal{M}_{\Sigma,q}^{\lambda,\mu,\nu}(\gamma,\delta,\varphi)$, then

$$|a_{3} - \eta a_{2}^{2}| \leq \begin{cases} \frac{|\gamma|(|h_{0}| + |h_{1}|)B_{1}}{(3 - \delta)\phi_{3}}, \\ |\eta - 1| \leq \frac{|\psi(\gamma, \delta)|}{(3 - \delta)|\gamma||h_{0}|\phi_{3}B_{1}^{2}}, \\ \frac{|\gamma||h_{1}|B_{1}}{(3 - \delta)\phi_{3}} + \frac{|\gamma|^{2}|h_{0}|^{2}|1 - \eta|B_{1}^{3}}{|\psi(\gamma, \delta)|}, \\ |\eta - 1| \geq \frac{|\psi(\gamma, \delta)|}{(3 - \delta)|\gamma||h_{0}|\phi_{3}B_{1}^{2}}, \end{cases}$$

$$(27)$$

where ϕ_2 and ϕ_3 are given by (9), and

$$\psi(\gamma, \delta) = \gamma h_0 B_1^2 [(3 - \delta)\phi_3 + (\delta^2 - 2\delta)\phi_2^2] - (2 - \delta)^2 \phi_2^2 (B_2 - B_1).$$

Proof. From (25) and (26), it follows that

$$a_3 - \eta a_2^2 = (1 - \eta)a_2^2 + \frac{\gamma h_1 B_1 p_1}{2(3 - \delta)\phi_3} + \frac{\gamma h_0 B_1 (p_2 - q_2)}{4(3 - \delta)\phi_3}$$

$$= \frac{\gamma h_1 B_1 p_1}{2(3-\delta)\phi_3} + \gamma h_0 B_1 \left[\left(u(\eta) + \frac{1}{4(3-\delta)\phi_3} \right) p_2 + \left(u(\eta) - \frac{1}{4(3-\delta)\phi_3} \right) q_2 \right],$$

where

$$u(\eta) = \frac{(1 - \eta)\gamma h_0 B_1^2}{4[\gamma h_0 B_1^2 \{ (3 - \delta)\phi_3 + (\delta^2 - 2\delta)\phi_2^2 \} - (2 - \delta)^2 \phi_2^2 (B_2 - B_1)]}.$$

Then, by using Lemma 1, we conclude that

$$|a_{3} - \eta a_{2}^{2}| \leq \begin{cases} \frac{|\gamma|B_{1}(|h_{0}| + |h_{1}|)}{(3 - \delta)\phi_{3}}, \\ 0 \leq |u(\eta)| \leq \frac{1}{4(3 - \delta)\phi_{3}}, \\ \frac{|\gamma||h_{1}|B_{1}}{(3 - \delta)\phi_{3}} + 4|\gamma||h_{0}|B_{1}|u(\eta)|, \\ |u(\eta)| \geq \frac{1}{4(3 - \delta)\phi_{3}}. \end{cases}$$
(28)

So (27) can be easily obtained from (28). This evidently completes the proof of Theorem 2.

By taking $\delta = 0$ in Theorem 1 and 2, we have the following corollary.

Corollary 1. Let $\lambda > 0$, $\gamma \in \mathbb{C} \setminus \{0\}$ and $\max\{\mu, \mu - \nu, -\lambda - \nu\} < 2$, and let $\eta \in \mathbb{R}$. If the function f(z) given by (1) belongs to $\mathcal{M}_{\Sigma,q}^{\lambda,\mu,\nu}(\gamma,0,\varphi)$, then

$$|a_2| \le \frac{|\gamma||h_0|B_1\sqrt{B_1}}{\sqrt{|3\gamma h_0\phi_3 B_1^2 - 4\phi_2^2(B_2 - B_1)|}},$$

$$|a_3| \le \frac{|\gamma|}{3\phi_3} [|h_0|(B_1 + |B_2 - B_1|) + |h_1|B_1],$$

and

$$|a_{3} - \eta a_{2}^{2}| \leq \begin{cases} \frac{|\gamma|(|h_{0}| + |h_{1}|)B_{1}}{3\phi_{3}}, \\ |\eta - 1| \leq \frac{|3\gamma h_{0}\phi_{3}B_{1}^{2} - 4\phi_{2}^{2}(B_{2} - B_{1})|}{3|\gamma||h_{0}|\phi_{3}B_{1}^{2}}, \\ \frac{|\gamma||h_{1}|B_{1}}{3\phi_{3}} + \frac{|\gamma|^{2}|h_{0}|^{2}|1 - \eta|B_{1}^{3}}{|3\gamma h_{0}\phi_{3}B_{1}^{2} - 4\phi_{2}^{2}(B_{2} - B_{1})|}, \\ |\eta - 1| \geq \frac{|3\gamma h_{0}\phi_{3}B_{1}^{2} - 4\phi_{2}^{2}(B_{2} - B_{1})|}{3|\gamma||h_{0}|\phi_{3}B_{1}^{2}}, \end{cases}$$

where ϕ_2 and ϕ_3 are given by (9).

By putting $\delta = 1$ in Theorem 1 and 2, we get the following result.

Corollary 2. Let $\lambda > 0$, $\gamma \in \mathbb{C} \setminus \{0\}$ and $\max\{\mu, \mu - \nu, -\lambda - \nu\} < 2$, and let $\eta \in \mathbb{R}$. If the function f(z) given by (1) belongs to $\mathcal{M}_{\Sigma,q}^{\lambda,\mu,\nu}(\gamma,1,\varphi)$, then

$$\begin{split} |a_2| & \leq \frac{|\gamma||h_0|B_1\sqrt{B_1}}{\sqrt{|\gamma(2\phi_3-\phi_2^2)h_0B_1^2-\phi_2^2(B_2-B_1)|}}, \\ |a_3| & \leq \frac{|\gamma||h_1|B_1}{2\phi_3} + \frac{|\gamma||h_0|}{|2\phi_3-\phi_2^2|} \left[|B_2-B_1| + \frac{(\phi_2^2+|4\phi_3-\phi_2^2|)B_1}{4\phi_3}\right], \end{split}$$

and

$$|a_3 - \eta a_2^2| \le \begin{cases} \frac{|\gamma|(|h_0| + |h_1|)B_1}{2\phi_3}, \\ |\eta - 1| \le \frac{|\gamma h_0(2\phi_3 - \phi_2^2)B_1^2 - \phi_2^2(B_2 - B_1)|}{2|\gamma||h_0|\phi_3 B_1}, \\ \frac{|\gamma||h_1|B_1}{2\phi_3} + \frac{|\gamma|^2|h_0|^2|1 - \eta|B_1^3}{|\gamma h_0(2\phi_3 - \phi_2^2)B_1^2 - \phi_2^2(B_2 - B_1)|}, \\ |\eta - 1| \ge \frac{|\gamma h_0(2\phi_3 - \phi_2^2)B_1^2 - \phi_2^2(B_2 - B_1)|}{2|\gamma||h_0|\phi_3 B_1}, \end{cases}$$

where ϕ_2 and ϕ_3 are given by (9).

Remark 2. Taking $\lambda = \mu = 0$ in Corollary 2, we obtain a recent result due to Magesh *et al.* [15, Corollary 9]. Also, putting $\lambda = \mu = 0$ and $h(z) \equiv 1$ in Corollary 2, we get the result of Deniz [7, Corollary 2.3].

Acknowledgements

This work was supported by Daegu National University of Education Research grant in 2022.

References

- [1] E. A. Adegani, N. E. Cho, A. Motamednezhad and M. Jafari, Bi-univalent functions associated with Wright hypergeometric functions, *J. Comput. Anal. Appl.* **28** (2020), 261-271.
- [2] R. M. Ali, S. K. Lee, V. Ravichandran and S. Subramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), 344-351.
- [3] Ş. Altinkaya and S. Yalçin, Estimates on coefficients of a general subclass of bi-univalent functions associated with symmetric q-derivative operator by means of the Chebyshev polynomials, Asia Pacific J. Math. 4 (2017), 90-99.
- [4] D. A. Brannan and J. Clunie, Aspects of Contemporary Complex Analysis, Academic Press, London, UK, 1980.
- [5] J. H. Choi, Note on differential subordination associated with fractional integral operator, Far East J. Math. Sci. 26 (2007), 499-511.
- [6] J. H. Choi, M. Saigo and H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432-445.
- [7] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, *J. Classical Anal.* **2** (2013), 49-60.
- [8] K. Dhanalakshmi, D. Kavitha and A. Anbukkarasi, Certain subclass of bi-univalent functions associated with Horadam polynomials, *Int. J. Appl. Math.* 34 (2021), 77-90.

[9] P. L. Duren, *Univalent Functions*, Grundlehren der Mathematischen Wissenschaften 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.

- [10] P.N. Kamble, M.G. Shrigan and H.M. Srivastava, A novel subclass of univalent functions involving operators of fractional calculus, *Int. J. Appl. Math.* 30, No 6 (2017), 501-514; DOI: 10.12732/ijam.v30i6.4.
- [11] V. Kiryakova, On two Saigo's fractional integral operators in the class of univalent functions, *Fract. Calc. Appl. Anal.* **9**, No 2 (2006), 159-176.
- [12] V. Kiryakova, M. Saigo and H. M. Srivastava, Some criteria for univalence of analytic functions involving generalized fractional calculus operators, Fract. Calc. Appl. Anal. 1, No 1 (1998), 79-104.
- [13] M. Lewin, On a coefficient problem for bi-univalent functions, *Proc. Amer. Math. Soc.* **18** (1967), 63-68.
- [14] J. L. Liu, Notes on Jung-Kim-Srivastava integral operator, J. Math. Anal. Appl. 294 (2004), 96-103.
- [15] N. Magesh, V. K. Balaji and J. Yamini, Certain subclass of bistarlike and biconvex functions based on quasi-subordination, Abstr. Appl. Anal. 2016 (2016), Article ID 3102960, 1-6.
- [16] N. Magesh, T. Rosy and S. Varma, Coefficient estimate problem for a new subclass of biunivalent functions, J. Complex Anal. 2013 (2013), Article ID 474231, 1-3.
- [17] E. Muthaiyan, $(\mathcal{P}, \mathcal{Q})$ -Lucas polynomial coefficient estimates for new subclasses of m-fold symmetric bi-univalent functions, *Int. J. Appl. Math.* **36** (2023), 63-73; DOI: 10.12732/ijam.v36i1.5.
- [18] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Arch. Rational Mech. Anal. **32** (1969), 100-112.
- [19] S. Owa, M. Saigo and H.M. Srivastava, Some characterization theorems for starlike and convex functions involving a certain fractional integral operator, J. Math. Anal. Appl. 140 (1989), 419-426.
- [20] M. S. Robertson, Quasi-subordination and coefficient conjectures, Bull. Amer. Math. Soc. 76 (1970), 1-9.

- [21] M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. College General Ed. Kyushu Univ. 11 (1978), 135-143.
- [22] H.M. Srivastava and R.G. Buschman, Theory and Applications of Convolution Integral Equations, Kluwer Academic Publishers, dordrecht, Boston and London, 1992.
- [23] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma-Minda type, Rev. R. Acad. Cienc. Exacts Fis. Nat. Ser. A Mat. 112 (2018), 1157-1168.
- [24] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integral and Derivatives, Theory and Applications, Gordon and Breach, New York, Philadelphia, London, Paris, Montreux, Toronto and Melbourne, 1993.
- [25] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192.
- [26] H. M. Srivastava and A. K. Wanas, Initial Maclayrin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination, Kyungpook Math. J. 59 (2019), 493-503.
- [27] T. J. Suffridge, A coefficient problem for a class of univalent functions, *Michigan Math. J.* **16** (1969), 33-42.