ERDELYI-KOBER FRACTIONAL INTEGRALS (PART 2)
OF THE MULTI-INDEX MITTAG-LEFFLER-PRABHAKAR
FUNCTIONS OF LE ROY TYPE

Abstract

This is a continuation (Part 2) of our previous paper (Part 1), [28]. We study the multi-index generalizations (with 3m and 4m indices) of the classical Le Roy function and its Mittag-Leffler analogues, initiated recently by Gerhold, Garra and Polito and then studied by several other authors. In Part 1, along with the basic analytical properties, we provided the Laplace transform of the multi-index Le Roy type functions. Here, for these new special functions we consider the Erdelyi-Kober fractional order integral as one of the basic operators of Fractional Calculus (FC). The results are also specified for the particular cases of the Le Roy type functions as well as for the Riemann-Liouville and other specific cases of this operator. Finally, we propose another more general definition for the multi-index Le Roy functions and alternative interpretations, and mention about the possibilities to relate them with special functions more general than Fox H-function.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 36
Issue: 5
Year: 2023

DOI: 10.12732/ijam.v36i5.2

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] Buschman, R.G.; Srivastava, H.M. The H̄ functions associated with a certain class of Feynman integrals. J. Phys. A: Math. Gen. 23, 4707–4710, 1990.
  2. [2] Garra, R.; Polito, F. On some operators involving Hadamard derivatives. Integr. Trans. Spec. Func. 24, No 10, 773–782, 2013.
  3. [3] Garrappa, R.; Rogosin, S.; Mainardi, F. On a generalized three-parameter Wright function of Le Roy type. Fract. Calc. Appl. Anal. 20, No 5, 1196– 1215, 2017; doi:10.1515/fca-2017-0063.
  4. [4] Gerhold, S. Asymptotics for a variant of the Mittag-Leffler function. Integr. Trans. Spec. Func. 23, No 6, 397–403, 2012.
  5. [5] Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications, 2nd ed.. Springer, 2014; doi:10.1007/978-3-662-61550-8
  6. [6] Gorska, K.; Horzela, A.; Garrappa, R. Some results on the complete monotonicity of Mittag-Leffler functions of Le Roy type. Fract. Calc. Appl. Anal. 22, No 5, 1284–1306, 2010; doi:10.1515/fca-2019-0068.
  7. [7] Dzrbashjan, M. On the integral transformations generated by the generalized Mittag-Leffler function. Izv. Akad. Nauk Armen. SSR 13, 21–63, 1960 (in Russian).
  8. [8] Erdelyi, A. (Ed.), Higher Transcendental Functions, 1 – 3. McGraw-Hill, New York-Toronto-London, 1953–1955.
  9. [9] Inayat-Hussain, A.A. New properties of hypergeometric series derivable from Feynman integrals: II. A generalization of the H-function. J. Phys. A.: Math. Gen. 20, 4119–4128, 1987.
  10. [10] Kilbas A.A.; Koroleva, A.A.; Rogosin, S.V. Multi-parametric MittagLeffler functions and their extension. Fract. Calc. Appl. Anal. 16, No 2, 378–404, 2013; doi:10.2478/s13540-013-0024-9.
  11. [11] Kiryakova, V. Generalized Fractional Calculus and Applications. Longman & J. Wiley, Harlow-N. York, 1994.
  12. [12] Kiryakova V. Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus. J. of Comput. and Appl. Math. 118, 241–259, 2000; doi:10.1016/S0377-0427(00)00292-2.
  13. [13] Kiryakova, V. The multi-index Mittag-Leffler functions as an important class of special functions of fractional calculus. Computers and Mathematics with Appl. 59, No 5, 1885–1895, 2010; doi:10.1016/j.camwa.2009.08.025.
  14. [14] Kiryakova, V. The special functions of fractional calculus as generalized fractional calculus operators of some basic functions. Computers and Mathematics with Appl. 59, No 3, 1128–1141, 2010; doi:10.1016/j.camwa.2009.05.014.
  15. [15] Kiryakova, V. Generalized fractional calculus operators with special functions. In: Handbook of Fractional Calculus with Applications, Vol. 1: Basic Theory, 87–110, De Gruyter, 2019; doi:10.1515/9783110571622-004.
  16. [16] Kiryakova, V. Unified approach to fractional calculus images of special functions – A survey. Mathematics 8, No 12, Art. 2260, 1–35, 2020; doi:10.3390/math8122260.
  17. [17] Kiryakova, V. A guide to special functions in fractional calculus. Mathematics 9, No 1, Art. 106, 1–40, 2021; doi:10.3390/math9010106.
  18. [18] Kiryakova, V.; Paneva-Konovska, J. Multi-index Le Roy functions of Mittag-Leffler-Prabhakar type, International Journal of Applied Mathematics 35, No 5, 743–766, 2022; doi:10.12732/ijam.v35i5.8.
  19. [19] Le Roy, É. Valéurs asymptotiques de certaines séries procédant suivant les puissances entères et positives d’une variable réelle (In French). Darboux Bull. (2) 24, 245–268, 1900.
  20. [20] Mittag-Leffler, M. G.: Sur la nouvelle fonction Eα (x). Comp. Rend. Acad. Sci. Paris (Ser.5) 137, 554–558 (1903).
  21. [21] Paneva-Konovska, J. From Bessel to Multi-Index Mittag Leffler Functions: Enumerable Families, Series in them and Convergence, 1st ed.; World Scientific Publ.: London, UK, 2016; doi:10.1142/q0026.
  22. [22] Paneva-Konovska, J. Series in Le Roy type functions: Inequalities and convergence theorems. Intern. J. Appl. Math. 33, No 6, 995–1007, 2020; doi:10.12732/ijam.v33i6.3.
  23. [23] Paneva-Konovska, J. Series in Le Roy type functions: Theorems in the complex plane. C. R. Acad. Bulg. Sci. 74, No 3, 315–323, 2021; doi:10.7546/CRABS.2021.03.02.
  24. [24] Paneva-Konovska, J. Series in Le Roy type functions: A set of results in the complex plane — A survey. Mathematics 9, No 12, Art. 1361, 1–15, 2021; doi:10.3390/math9121361.
  25. [25] Paneva-Konovska, J. Prabhakar function of Le Roy type: A set of results in the complex plane. Fract. Calc. Appl. Anal. 26, No 1, 32–53, 2023; doi:10.1007/s13540-022-00116-1.
  26. [26] Paneva-Konovska, J. Prabhakar functions of Le Roy type: Inequalities and asymptotic formulae. Mathematics, 2023, 11, Art. 3768, 1–13, 2023; doi:10.3390/math11173768.
  27. [27] Paneva-Konovska, J.; Kiryakova V. On the multi-index Mittag-Leffler functions and their Mellin transforms. Intern. J. Appl. Math. 33, No 4, 549–571, 2020; doi:10.12732/ijam.v33i4.1.
  28. [28] Paneva-Konovska, J.; Kiryakova V.; Rogosin, S.; Dubatovskaya, M. Laplace transform (Part 1) of the multi-index Mittag-Leffler-Prabhakar functions of Le Roy type. Intern. J. Appl. Math. 36, No 4, 455–474, 2023; doi:10.12732/ijam.v36i4.2
  29. [29] Pogany, T. Integral form of Le Roy-type hypergeometric function. Integr. Trans. Spec. Func. 29, No 7, 580–584, 2018; doi:10.1080/10652469.2018.1472592
  30. [30] Prabhakar, T.R. A singular integral equation with a generalized MittagLeffler function in the kernel. Yokohama Math. J. 19, 7–15, 1971.
  31. [31] Rathie, A. A new generalization of the generalized hypergeometric functions. Le Matematiche LII, No II, 297–310, 1997.
  32. [32] Rogosin, S.; Dubatovskaya, M. Multi-parametric Le Roy function. Fract. Calc. Appl. Anal. 26, No 1, 54–69, 2023; doi:10.1007/s13540-022-00119-y.
  33. [33] Rogosin, S.; Dubatovskaya, M. Multi-parametric Le Roy function revisited. Fract. Calc. Appl. Anal.; Publ. Online First 2013, doi:10.1007/s13540-02300221-9.
  34. [34] Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Switzerland etc., 1993.
  35. [35] Sandev, T.; Iomin, A. Special Functions of Fractional Calculus: Applications to Diffusion and Random Search Processes, 1st ed.; World Scientific, Singapore, 2022; doi:10.1142/12743.
  36. [36] Sneddon, I.N. The use in mathematical analysis of Erdelyi-Kober operators and of some of their applications. In: Fractional Calculus and Its Applications (Lecture Notes in Mathematics, Vol. 457), Springer-Verlag, New York, 37–79, 1975.
  37. [37] Stivastava, H.M.; Lyn, S-D.; Wang, P-Y. Some fractional-calculus results for the H̄-function associated with a class of Feynman integrals. Russian J. of Math. Phys. 13, No 1, 94–100, 2006.
  38. [38] Tomovski, Ž.; Mehrez, K. Some families of generalized Mathieu–type power series, associated probability distributions and related inequalities involving complete monotonicity and log–convexity. Mathematical Inequalities & Applications 20, No 4, 973–986, 2017; doi:10.7153/mia-20-61.
  39. [39] Wright, EM. On the coefficients of power series having exponential singularities. J. London Math. Soc. 8, 71–79, 1933.
  40. [40] Yakubovich, S.; Luchko, Y. The Hypergeometric Approach to Integral Transforms and Convolutions, Kluwer, 1994.