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Abstract: The paper considers the process of two-phase filtration in a porous
medium, taking into account the compressibility of the medium. The process
mathematically modeled and solved by the large particle method. The effect of
changing the distance between oil wells on the filtration process has been inves-
tigated. According to the results obtained, the correct choice of the distance
between oil wells has a positive effect on the oil production process.
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1. Introduction

The movement of a fluid through a porous material can be influenced by the
pressure gradient, which has the potential to alter the shape of the porous
medium. Conversely, if the medium is compressed, it can induce the movement
of the internal fluid. This compression modifies the characteristics of the ma-
terial, including its ability to conduct fluids. The compression also leads to a
reduction in porosity and an increase in resistance to fluid flow. Consequently,
there exists a intricate relationship between the deformation of a solid body
[21].

The study of how porous media deform and fluid flows within them is the
fundamental concept behind poroelasticity theory. This theory holds great sig-
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nificance in various geophysical, engineering, and industrial applications [8].
For instance, it helps understand phenomena like soil liquefaction during earth-
quakes, gravitydriven events such as rapid landslides and mudflows [4, 12], ero-
sion of land due to heavy rainfall and floods, damage to man-made structures
caused by flooding [4], oil and gas extraction [11, 20], oil refining [4, 13], and
carbon dioxide storage in geological formations [4, 12] within the energy field.

Different models have been developed to address the deformation of the
porous medium, each employing distinct approaches. In the explicit coupled
approach [3, 15], the simulation involves conducting multiphase fluid flow calcu-
lations for each time step and subsequently performing geomechanical deforma-
tion calculations at selected intervals. The frequency of geomechanical updates
depends on the magnitude of pore volume changes. On the other hand, the
iteratively coupled approach [15] involves coupling multiphase flow and defor-
mation at each time step through a nonlinear iterative process. By adhering
to the constraints of iteration, this approach can yield fully convergent out-
comes [19]. In the fully integrated approach [16], fluid flow and deformation
are simultaneously solved using a set of unified equations [18].

When a medium undergoes deformation, its properties undergo changes,
especially through compaction, which results in a decrease in porosity. Conse-
quently, the reduction in fluid pathways causes a decline in permeability [9, 21].
Therefore, it becomes essential to incorporate the correlation between conduc-
tivity and tissue tension into the primary equations [17]. The relationship be-
tween the pressure field and conductivity is represented by linear and exponen-
tial dependencies in [1], while the dependencies that describe the relationship
with porosity are presented in [7].

The paper [10] proposed the Multiphase Darcy-Brinkman-Biot (DBB) ap-
proach, which is a comprehensive and interconnected model for simulating two-
phase flow in deformable porous media. This model is based on the micro-
continuum approach, which is derived using the method of volume averaging
and fundamental physical principles. The study demonstrates that a unified
set of partial differential equations can be employed to represent multiphase
flow in porous media, regardless of whether the pore-scale, continuumscale, or
hybrid-scale representation is used.

In [7], the mathematical model describing the movement and interaction
of particles in a multicomponent plasma is numerically solved, focusing on the
electric arc synthesis of carbon nanostructures. The large particle method is uti-
lized to carry out the computations. By employing this method, the computa-
tional workload and hardware requirements are reduced without compromising
the accuracy of the numerical calculations. In [10], the stability of numeri-
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cal schemes based on the modified ”large particles” method is investigated for
non-stationary, non-isothermal multi-phase filtration processes. The stability
criteria are considered as a whole for the modified “large particles” method
scheme.

This article investigates the effect of changing the distance between two
wells in an oil reservoir on a two-phase filtration process in a deformable porous
medium. A mathematical model suitable for the process was created and nu-
merically solved.

2. Statement of the problem

Let us consider a reservoir where two oil wells have been opened. We assume
that oil and water phases are involved in the filtration process in a deformable
porous medium.

To describe the process, we will use a one-dimensional mathematical model
of two-phase filtration in a deformable porous medium. Here we consider that
oil phase as first phase, and water phase as second phase.

First phase mass conservation equation

∂

∂t
(mρ1s1) +

∂

∂x
(ρ1u1) = 0, (1)

where s1 is the saturation of the first phase, ρ1 is the density of the first phase,
m is the porosity, uo is the velocity of the first phase.

Second phase mass conservation equation

∂

∂t
(mρ2s2) +

∂

∂x
(ρ2u2) = 0, (2)

where s2 is the saturation of the second phase, ρ2 is the density of the second
phase, u2 is the velocity of the second phase.

Assuming ρ1 = const, ρ2 = const, we rewrite equation (1) - (2) in the
following form.

First phase mass conservation equation

∂

∂t
(ms1) +

∂

∂x
(u1) = 0. (3)

Second phase mass conservation equation

∂

∂t
(ms2) +

∂

∂x
(u2) = 0. (4)
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The phase filtration rates will be determined according to the Darcy’s law

u1 = −
Kk1

µ1

∂p

∂x
, u2 = −

Kk2

µ2

∂p

∂x
, (5)

where K, k1, k2 are the absolute and relative phase permeability, µ1 is the oil
viscosity, µ2 is the water viscosity, p is the pressure.

We will take into account the change in porosity in the same way as in
[14, 19]

m = m0 + βm (p− p0) , (6)

where p0 is a fixed pressure, m0 is the porosity coefficient at p = p0, βm is the
reservoir elasticity coefficient.

It has been experimentally shown that not only porosity, but also perme-
ability change significantly with changes in reservoir pressure [1]

K = K0 (1− aK (p0 − p)) . (7)

Let us add to the system of equations the obvious equality

s1 + s2 = 1, (8)

dependencies for viscosities

µ1 = const, µ2 = const, (9)

and relative phase permeabilities [1]

k1 =

{

(

0.85−s2
0.8

)2,8
· (1 + 2.4 · s2) 0 ≤ s2 ≤ 0.85,

0 0.85 ≤ s2 ≤ 1,
(10)

k2 =

{

0 0 ≤ s2 ≤ 0.85,
(

s2−0.2
0.8

)3.5
, 0.85 ≤ s2 ≤ 1.

(11)

To derive an equation for pressure, we sum equations (3)-(4). As a result,
we get

∂

∂t
[m (s1 + s2)] +

∂

∂x
(u1 + u2) = 0.

Using expressions (6) and (8), we get the following

∂m

∂t
=

∂

∂t
(m0 + βm (p+ p0)) = βm

∂p

∂t
.
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Finally, the pressure equation will take the form

βm
∂p

∂t
=

∂

∂x

[(

Kk1

µ1
+

Kk2

µ2

)

∂p

∂x

]

. (12)

By setting the initial

p(x, 0) = p0, s1(x, 0) = s01, s2(x, 0) = s02, (13)

and boundary conditions

∂p

∂x

∣

∣

∣

∣

x=0

= 0, p (x1, t) = p∗1, p (x2, t) = p∗2,
∂p

∂x

∣

∣

∣

∣

x=L

= 0, (14)

where p0 is initial pressure, s01, s
0
2 are initial saturations of the first and second

phases, x1 is the coordinate of the first well, x2 is the second well coordinate,
L is the length of filtration area, p∗1 is the bottomhole pressure of the first well,
p∗2 is the bottomhole pressure of the second well. System (3)-(14) is a closed
system of equations that describes two-phase filtration in a deformable porous
medium.

3. Solution method

To solve the problem (3)-(14), we use the large particle method [2, 5].
We introduce the Euler grid for solving the system of nonstationary equa-

tions (3)-(14),

Ωth =
{

tj+1 = tj + τ, j = 1, T ; xi+1 = xi + h, i = 1, N
}

.

The medium is modeled by a system of fluid particles corresponding to a
given moment of time with an Euler grid cell. Let us divide the calculation of
each time step into two stages [2, 6].

Step 1. We ignore the effects associated with the shift of the elementary
cell. We approximate equations (3) - (14) in a discrete space:

βm
p∼
i
−pk

i

τ = 1
h2

{

[

K
(

k1
µ1

+ k2
µ2

)]k

i+ 1

2

· p∼i+1

−

{

[

K
(

k1
µ1

+ k2
µ2

)]

i+ 1

2

+
[

K
(

k1
µ1

+ k2
µ2

)]

i− 1

2

}

pki

+
[

K
(

k1
µ1

+ k2
µ2

)]k

i− 1

2

· p∼i−1

}

,

(15)
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Ai · p
∼

i−1 −Bi · p
∼

i + Ci · p
∼

i+1 = −Fi, (16)

where

Ai =
τ

βmh2

[

K

(

k1

µ1
+

k2

µ2

)]k

i− 1

2

,

Bi = 1 +
τ

βmh2

{

[

K

(

k1

µ1
+

k2

µ2

)]k

i− 1

2

+

[

K

(

k1

µ1
+

k2

µ2

)]k

i+ 1

2

}

,

Ci =
τ

βmh2

[

K

(

k1

µ1
+

k2

µ2

)]k

i+ 1

2

,

Fi = pki ,

we solve the system of linear equations (19) by the Thomas’ algorithm [6].
The Thomas algorithm coefficients are determined by the following formulas

{

αi+1 =
Ci

Bi−Aiαi
, i = 1, N,

βi+1 =
Fi+Ai·βi

Bi−Aiαi
, i = 1, N.

(17)

We find the pressure by the found coefficients as follows

p∼i = αi+1 · p
∼

i+1 + βi+1. (18)

From the boundary conditions, we calculate the initial values of the con-
ductivity coefficients and the pressure values in the wells and at the end of the
field at each time step in the following form.

α1 = 1, β1 = 0,

pkN =
βN

1− αN
,

pkN1
= p∗1, pkN2

= p∗2.

We determine the filtration rate in points according to the values of the
found pressure at the nodes

(u1)
∼

i+ 1

2

= −

(

Kk1

µ1

)

∼

i

p∼i − p∼i+1

h
, (u2)

∼

i+ 1

2

= −

(

Kk2

µ2

)

∼

i

p∼i − p∼i+1

h
.

Step 2. Find the values of porosity, saturation and permeability at each
time step:

• porosity
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mk+1
i = m0 + βm (p∼i − p0) ,

• saturation of the first and second phases

(s1)
k+1
i =

1

mk+1
i

[

mk+1
i (s1)

k
i +

(u1)
∼

i−1/2 − (u1)
∼

i+1/2

h
τ

]

,

(s2)
k+1
i = 1− (s1)

k+1
i ,

• relative phase permeabilities

(k1)
k+1
i =











(

0.85−(s2)
k+1

i

0.8

)2.8

·

(

1 + 2.4 · (s2)
k+1
i

)

, 0 ≤ (s2)
k+1
i ≤ 0.85,

0 0.85 ≤ (s2)
k+1
i ≤ 1,

(k2)
k+1
i =











0 0 ≤ (s2)
k+1
i ≤ 0.85,

(

(s2)
k+1

i
−0.2

0.8

)3.5

, 0.85 ≤ (s2)
k+1
i ≤ 1,

• absolute permeability

Kk+1
i = K0 (1− aK (p∼i + p0)) .

4. Results and discussion

In computational experiments to study the stress-strain state of a saturated
porous medium, the following parameter values were used: m0 = 0.3, K0 =
4.8·10−15 m2, (s1)0 = 0.6, (s2)0 = 0.4, p0 = 106 Pa, p0 = 106 Pa, p∗ = 5·105 Pa,
µ1 = 1.3 · 10−3 Pa · s, µ2 = 1.768 · 10−3 Pa · s, βm = 5 · 10−9 Pa−1.

The calculation results are presented graphically in Figures 1-4.
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Fig 1. Dynamics of the influence of the distance between wells on the
pressure field.

Figure 1 shows the dynamics of reservoir pressure changes at selected points
20 meters from the left and right sides of the first oil well at different dis-
tances between two oil wells. It can be seen from the graph that at close
distances between wells (x1 = 120m,x2 = 240 m) reservoir pressure decreases
more in the inter-well zone, than symmetrical distances between wells (x1 =
90m,x2 = 270m) on both sides of the oil well, it can be seen that the reser-
voir pressure decreased uniformly, and with increasing distance between wells
(x1 = 60m,x2 = 300m), on the contrary, reservoir pressure decreased less in
the inter-well zone.
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Fig 2. Dynamics of the influence of the distance between wells on porosity.

Figure 2 shows the dynamics of changes in the porosity of the medium at
points selected 20 meters from the left and right sides of the first oil well at
different distances between two oil wells. According to the graphs, at a distance
between wells of 120 m, it can be seen that the porosity of the medium decreases
faster than with symmetrical distances between wells, and at a distance of
240 m, the porosity of the medium decreases more slowly in the interwell zone.
K, 10−3Da.
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Fig 3. Dynamics of the influence of the distance between wells on perme-
ability.

Figure 3 shows the dynamics of changes in the absolute permeability of the
medium at points selected at a distance of 20 m from the left and right sides of
the oil well at different distances between two oil wells (120 m, 180 m, 240 m ).
The graphs show that the absolute permeability of the medium in the interwell
zone decreases faster at a close distance between the wells, and decreases more
slowly at a far one.
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Fig 4. Dynamics of the influence of distance between wells on saturation.

Figure 4 shows the dynamics of changes in oil saturation at different dis-
tances between two oil wells. We see that oil saturation increased faster as
the interwell zone narrowed and increased more slowly as the interwell zone
expanded.

Conclusions. This study considers a two-phase filtration process in a de-
formable porous medium at various distances between two oil wells. A suitable
mathematical model for the process was created and solved by the large particle
method. According to the obtained results, decreasing in the distance between
the oilwells, brings to the faster decrease in the reservoir pressure, porosity and
permeability than the symmetrical distance between the oil-wells, when the
distance between the oil-wells increases, the decreasing in the values of these
hydrodynamic indicators slows down. Conversely, it has been observed that oil
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saturation increases faster in the interwell zone as the distance between wells
decreases and increases slowly as the distance between the oil-wells increases.
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