LAPLACE TRANSFORM (PART 1) OF THE MULTI-INDEX
MITTAG-LEFFLER-PRABHAKAR FUNCTIONS
OF LE ROY TYPE

Abstract


Abstract. In this paper, the multi-index generalizations (with 3 and 4 indices, then with 3m and 4m indices) of the classical Le Roy function and its Mittag-Leffler analogues are considered on wider sets of the parameters. Thus, we extend our recent studies as continuation of the works on Le Roy type functions by Gerhold, Garra and Polito, Mainardi and Garrappa, Tomovski and Mehrez, Pogany, Gorska and Horzela, etc. The Laplace transforms of these multi-index Le Roy type functions are provided. In next Part 2, we will propose their images under the Erdélyi-Kober operators of fractional calculus. The results are specified for the particular cases of the considered functions. Finally, we discuss some open problems about relation of the Le Roy type functions with special functions more general than the Fox H-functions.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 36
Issue: 4
Year: 2023

DOI: 10.12732/ijam.v36i4.2

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] Buschman, R.G.; Srivastava, H.M. The ¯H functions associated with a certain class of Feynman integrals. J. Phys. A: Math. Gen. 23, 4707-4710, 1990.
  2. [2] Garra, R.; Polito, F. On some operators involving Hadamard derivatives. Integr. Trans. Spec. Func. 24, No 10, 773-782, 2013.
  3. [3] Garrappa, R.; Rogosin, S.; Mainardi, F. On a generalized three-parameter Wright function of Le Roy type. Fract. Calc. Appl. Anal. 20, No 5, 1196- 1215, 2017; https://doi.org/10.1515/fca-2017-0063.
  4. [4] Gerhold, S. Asymptotics for a variant of the Mittag-Leffler function. Integr. Trans. Spec. Func. 23, No 6, 397-403, 2012.
  5. [5] Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications, 2nd ed. Springer, 2020; https://doi.org/10.1007/978-3-662-61550-8.
  6. [6] Dzrbashjan, M. On the integral transformations generated by the generalized Mittag-Leffler function. Izv. Akad. Nauk Armen. SSR 13, 21-63 (1960) (in Russian).
  7. [7] Erd´elyi, A. et al. (Eds.), Higher Transcendental Functions, 1 - 3. McGraw- Hill, New York-Toronto-London, 1953-1955.
  8. [8] Inayat-Hussain, A.A. New properties of hypergeometric series derivable from Feynman integrals: II. A generalization of the H-function. J. Phys. A.: Math. Gen. 20, 4119-4128, 1987.
  9. [9] Kilbas A.A.; Koroleva, A.A.; Rogosin, S.V. Multi-parametric Mittag- Leffler functions and their extension. Fract. Calc. Appl. Anal. 16, No 2, 378-404, 2013; https://doi.org/10.2478/s13540-013-0024-9.
  10. [10] Kiryakova, V. Generalized Fractional Calculus and Applications. Longman & J. Wiley, Harlow-New York, 1994.
  11. [11] Kiryakova V. Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus. J. of Comput. and Appl. Math. 118, 241-259, 2000; https://doi.org/10.1016/S0377-0427(00)00292-2. 472 J. Paneva-Konovska, V. Kiryakova, S. Rogosin, M. Dubatovskaya
  12. [12] Kiryakova, V. The multi-index Mittag-Leffler functions as an important class of special functions of fractional calculus. Computers and Mathematics with Appl. 59, No 5, 1885-1895, 2010; https://doi.org/10.1016/j.camwa.2009.08.025.
  13. [13] Kiryakova, V. The special functions of fractional calculus as generalized fractional calculus operators of some basic functions. Computers and Mathematics with Appl. 59, No 3, 1128-1141, 2010; https://doi.org/10.1016/j.camwa.2009.05.014.
  14. [14] Kiryakova, V. A guide to special functions in fractional calculus. Mathematics 9, No 1, Art. 106, 1-40, 2021; https://doi.org/10.3390/math9010106.
  15. [15] Kiryakova, V.; Paneva-Konovska, J. Multi-index Le Roy functions of Mittag-Leffler-Prabhakar type, Intern. J. Appl. Math. 35, No 5, 743-766, 2022; http://dx.doi.org/10.12732/ijam.v35i5.8.
  16. [16] Le Roy, ´E. Val´eurs asymptotiques de certaines s´eries proc´edant suivant les puissances ent`eres et positives d’une variable r´eelle (In French). Darboux Bull.(2) 24, 245-268, 1900.
  17. [17] Mainardi, F. Fractional Calculus and Waves in Linear Viscolelasticity. 2nd ed., World Scientific, 2022; https://doi.org/10.1142/p926.
  18. [18] Mittag-Leffler, M. G.: Sur la nouvelle fonction E (x). Comp. Rend. Acad. Sci. Paris (Ser.5) 137, 554-558, 1903.
  19. [19] Le Roy, ´E. Val´eurs asymptotiques de certaines s´eries proc´edant suivant les puissances ent`eres et positives d’une variable r´eelle (In French). Darboux Bull.(2) 24, 245-268, 1900.
  20. [20] Olver, F.W.J., Lozier, D.W., Boisvert, R.F., and Clark, C.W. (Eds), NIST Handbook of Mathematical Functions. National Institute of Standards and Technology, Gaithersburg-Maryland-New York, Cambridge University Press, 2010.
  21. [21] Paneva-Konovska, J. Multi-index (3m-parametric) Mittag-Leffler functions and fractional calculus. C. R. Acad. Bulg. Sci. 64, No 8, 1089-1098, 2011.
  22. [22] Paneva-Konovska, J. From Bessel to Multi-Index Mittag Leffler Functions: Enumerable Families, Series in them and Convergence. World Scientific Publ., London, 2016; http://dx.doi.org/10.1142/q0026. LAPLACE TRANSFORM (PART 1) OF THE MULTI-INDEX... 473
  23. [23] Paneva-Konovska, J. Series in Le Roy type functions: Inequalities and convergence theorems. Intern. J. Appl. Math. 33, No 6, 995-1007, 2020; http://dx.doi.org/10.12732/ijam.v33i6.3.
  24. [24] Paneva-Konovska, J. Series in Le Roy type functions: Theorems in the complex plane. C. R. Acad. Bulg. Sci. 74, No 3, 315-323, 2021; http://dx.doi.org/10.7546/CRABS.2021.03.02.
  25. [25] Paneva-Konovska, J. Series in Le Roy type functions: A set of results in the complex plane-A survey. Mathematics 9, No 12, Art. 1361, 1-15, 2021; https://doi.org/10.3390/math9121361.
  26. [26] Paneva-Konovska, J. Prabhakar function of Le Roy type: A set of results in the complex plane. Fract. Calc. Appl. Anal. 26, No 1, 32-53, 2023; https://doi.org/10.1007/s13540-022-00116-1.
  27. [27] Paneva-Konovska, J. Prabhakar functions of Le Roy type: Inequalities and asymptotic formulae. Mathematics, 2023, 11, Art. 3768, 1-13, 2023; https://doi.org/10.3390/math11173768.
  28. [28] Paneva-Konovska, J.; Kiryakova V. On the multi-index Mittag-Leffler functions and their Mellin transforms. Intern. J. Appl. Math. 33, No 4, 549-571, 2020; http://dx.doi.org/10.12732/ijam.v33i4.1.
  29. [29] Prabhakar, T.R. A singular integral equation with a generalized Mittag- Leffler function in the kernel. Yokohama Math. J. 19, 7-15, 1971.
  30. [30] Prudnikov, A.P.; Brychkov, Yu.; Marichev, O.I. Integrals and Series, Vol. 3: More Special Functions; Gordon and Breach Sci. Publ., N. York- London-Paris-Tokyo, etc., 1992.
  31. [31] Rathie, A. A new generalization of the generalized hypergeometric functions. Le Matematiche LII, No II, 297-310, 1997.
  32. [32] Rogosin, S. The role of the Mittag-Leffler function in fractional modeling. Mathematics 3, No 2, 368-391, 2015; https://doi.org/10.3390/math3020368.
  33. [33] Rogosin, S.; Dubatovskaya, M. Multi-parametric Le Roy function. Fract. Calc. Appl. Anal. 26, No 1, 54-69, 2023; https://doi.org/10.1007/s13540- 022-00119-y. 474 J. Paneva-Konovska, V. Kiryakova, S. Rogosin, M. Dubatovskaya
  34. [34] Rogosin, S.; Dubatovskaya, M. Multi-parametric Le Roy function revisited. Fract. Calc. Appl. Anal., 2023, Submitted.
  35. [35] Sandev, T.; Iomin, A. Special Functions of Fractional Calculus: Applications to Diffusion and Random Search Processes; World Scientific, Singapore, 2022; https://doi.org/10.1142/12743.
  36. [36] Tomovski, ˇZ.; Mehrez, K. Some families of generalized Mathieu-type power series, associated probability distributions and related inequalities involving complete monotonicity and log-convexity. Mathematical Inequalities & Applications 20, No 4, 973-986, 2017; https://doi.org/10.7153/mia-20-61.
  37. [37] Wright, EM. On the coefficients of power series having exponential singularities. J. London Math. Soc. 8, 71-79, 1933.