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Abstract: Proceeding from the general theory of steady-state vibrations of
inhomogeneous prestressed bodies, in the present work the problem of bending
vibrations of circular and annular inhomogeneous plates is considered within
the framework of Timoshenko’s hypotheses, taking into account the viscoelas-
tic (rheological) properties of the material. The material rheology is described
by the three-parameter viscoelastic Zener type model (also known as the Stan-
dard Linear Solid model) employing instantaneous and long-term constitutive
moduli, as well as the relaxation time. For the formulation of the governing
equations the Volterra correspondence principle and the concept of complex
modules were used. For the both types of plates, a method is proposed for
solving the corresponding direct (forward) problems for determining the vibra-
tions using a weak formulation, based on the Galerkin method, and taking into
account that the functions involved are complex-valued.

The proposed method is verified by a comparison of the results of calculating
the plate deflection with the analytical solution in the case of homogeneous pre-
stressed plates. The influence of the prestress level on the amplitude-frequency
characteristics is analyzed in order to identify the most effective modes of acous-
tic sounding.
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Furthermore, a new formulation of the inverse problem is proposed to iden-
tify the prestress in inhomogeneous viscoelastic plates using the information
on the acoustic response of the plate. To solve the formulated inverse prob-
lem, a modification of the previously developed special projection approach is
used, whose applicability is illustrated by a set of numerical experiments. The
influence of input data noise on the prestress identification accuracy is also
analyzed.

AMS Subject Classification: 74D99
Key Words: prestressed state, inhomogeneous plates, Timoshenko’s model,
viscoelasticity, acoustic methods, inverse analysis

1. Introduction

New functionally graded and composite materials, including polymer compos-
ites, with a complex inhomogeneous structure are nowadays used in many areas
of modern technology and production (see, for example, review paper [1], in
particular, in aircraft engineering [2], space technologies, for development of
“smart” systems as well as for prosthetics in medicine. The properties of such
materials can vary significantly in the sample volume, while due to inhomogene-
ity and complex rheology, the direct experimental evaluation of these properties
requires significant material costs and time resources. At the same time, when
modeling the behavior of such materials, one must take into account the pres-
ence in a large part of structural elements made of modern functionally graded
materials of a prestress field (PSF) [3]-[4], which has a significant impact on
the functionality and serviceability of the final product. The presence of pre-
stress is related to the specificity of the production technological process [5],
including various types of heat treatments, polymerization, crystallization and
cooling of the products, as well as creep and relaxation, which are associated
with viscoelastic materials [6]. Prestress is quite common in polymer compos-
ites [7], which are produced by autoclave technology followed by solidification
of the resulting material. This technology, on the one hand, allows to avoid
the appearance of microdefects, cracks and delamination in the composite; on
the other hand, residual stresses and strains occur during the manufacturing
process, which significantly affect the mechanical characteristics of the compos-
ite [8], [9]. In this regard, the design of adequate models that describe the
behavior of the material, taking into account the existing heterogeneity and
the possible presence of prestress, as well as the development of easy-to-apply
effective non-destructive methods for identifying the level of prestress and its
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distribution, are of particular importance. Currently, there is an intensive de-
velopment of experimental methods for measuring prestress, which is reflected
in a large number of recent publications (see, for example, reviews [3], [10]).
Widespread among them are the methods that are designed for objects made
of composite materials, in particular plate structures, which structures are also
the subject of the present study. In [11], a method was proposed for measur-
ing tensile stresses that occur at the interfaces between materials in composite
three-layer plates during gas tungsten arc welding. The article [12] reports re-
sults from a simulation of the residual stresses that occur during the production
by the layer-by-layer photopolymerization method using 3D printing. It has
been shown there that exceeding the prestress level leads to a significant devia-
tion of products’ shape from the set one. Therefore, it is necessary to optimize
the technological process, and in the given article, staged photopolymerization
with stress control at each stage is proposed. In [13] it is presented an analyti-
cal solution to the two-dimensional problem of fabricating a heavy semicircular
arch from prestressed viscoelastic aging material. In addition, the presence
of residual stresses has been shown to reduce the contact stresses at the base
of the structure, which provides greater stability compared to non-prestressed
structural elements. The article [14] presents a specific methodology for deter-
mining prestresses and residual strains in composite automotive parts, which is
based on a combination of finite element modeling and the method of thermal
analysis and drilling holes. This methodology allows for long-term prediction of
the behavior of the manufactured parts during their operation. Drilling holes
to determine the prestresses was also used in [15] for polycarbonate samples,
where it was concluded that the resistance of polycarbonate to cracking in-
creases when certain compressive stress fields are created in it. The article [16]
presents a method for estimating the distribution of thermal stresses occurring
during a laminated ceramic disc manufacturing. The study was carried out
using finite element modeling, further investigating the effect of porosity on
the residual stresses in the ceramic laminate, which revealed a decrease in the
level of residual stresses with increasing porosity. Regarding the modeling of
polymer composites, it should be noted the finite ABAQUS, used for example
in [17] to simulate the residual stress that occurs during curing of viscoelas-
tic composites employing the generalized Maxwell viscoelasticity model with n
elements. A similar study to determine the effect of compressive prestresses
on the behavior of viscoelastic polymer matrix composites was conducted in
[18]. Another practical application of models for prestressed composite mate-
rials is in the study of polymer pipes, for which stresses arising during their
operation affect their service life. An example of such a study can be found in
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[19], where the results of finite element modeling were compared with exper-
imental studies of polyethylene samples of different brands, which allowed to
develop criteria for evaluating the residual life of pipes. Thus, we can conclude
that the modeling of composite materials in which there are residual stresses
as well as the identification of the presence of such are very important tasks
that have a focus on various practical applications. It is also worth noting
that a number of inverse problems similar to those considered in this paper
for identifying inhomogeneous prestress fields in plates and other bodies have
also been investigated previously [20], [21], [22]. In [21], inverse problems for
the identification of prestress fields occurring in bending vibrations of plates
were studied. The analysis is done within the framework of Timoshenko’s hy-
potheses, using several techniques based on the acoustic approach. Models of
circular elastic inhomogeneous prestressed Timoshenko plates were developed
in [22] and the problem of identifying the prestresses was solved using the pro-
jection approach allowing to determine the desired characteristics in the given
classes of functions.

This paper presents an extension of the models within Timoshenko’s hy-
potheses for stationary bending vibrations of circular and annular inhomoge-
neous plates with consideration of residual stresses, as well as of the methods for
solving the problem of identifying residual stresses based on acoustic sounding
data proposed in [22], to the case of plates made of composite materials that
possess viscoelastic (rheological) properties.

2. Problem formulation

The problem of a Timoshenko viscoelastic plate vibrations is formulated here
adopting the linearized formulation of the problem of stationary vibrations of a
prestressed anisotropic viscoelastic body [20]. It is considered a plate composed
of a material of density ρ(x, y, z) enclosed by a surface S = Su ∪ Sσ. At the
boundary Su, the plate is fixed, and at the boundary Sσ it is loaded with a
periodic load with angular velocity ω and components of the loading vector
Pie

−iωt. The corresponding equations of motion and boundary conditions read:

Tij,j + ρω2ui = 0,

Tij = σij + ui,nσ
0
nj,

Tijnj|Sσ
= Pi, ui|Su

= 0,

(1)

where ui are the components of the displacement vector, σij are the components
of the symmetric Kirchhoff stress tensor, σ0ij are the components of the prestress
tensor, Tij are the components of the Piola unsymmetrical stress.
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According to the elastic–viscoelastic correspondence principle, the consti-
tutive relations are given as:

σij = Gijkl(ω)uk,l , (2)

where the components of the complex module Gijkl describe the viscoelastic
behavior of the material according to the standard Zener model [7], and are
expressed as:

Gijkl(ω) =
−Eijklniω +Hijkl

−niω + 1
. (3)

The model is a 3–parameter model with Hijkl – long-term modules, Eijkl –
instantaneous modules (Eijkl > Hijkl > 0) and n > 0 – relaxation time.

Furthermore, based on (1)–(2), we formulate the problem of steady-state
axisymmetric bending vibrations of circular and annular (with inner radius R0)
viscoelastic inhomogeneous prestressed plates with radius R and thickness h
in a cylindrical coordinate system (r, ϕ, z). According to Timoshenko’s theory,
the corresponding assumptions for the components of the displacement vector
have the form:

ur = zθ, uϕ = 0, uz = w, (4)

where w is the plate deflection, θ is the angle of rotation of the normal along the
axis of the radial coordinate. The vibrations are caused by an applied normal
load q(r) (Pi = q, i = 1, 2, 3).

For convenience and brevity, the following notations are used r = Rξ, w =
Rw̃, G = G0G̃, R0 = Rξ0, G0 = G(R, 0), , σ0rr = 12G0

h3 s0rr, ρ = ρ0(R)ρ̃,

κ2 = h3ρ0
12G0

R2ω2, q = 12G0

h2R
q̃(ξ), γ = 12R2

h2 . The case of a plane prestress state is

considered [23], in which the only nonzero stress components σ0rr(r) 6= 0 and

σ0ϕϕ(r) 6= 0 are satisfying the Cauchy equilibrium equation σ0rr
′
+

σ0
rr
−σ0

ϕϕ

ξ
= 0,

hence σ0ϕϕ = ξσ0rr
′
+ σ0rr. In the modeling hereafter, we proceed from the

situation that is quite common in practice, when it is required to determine
the prestresses in viscoelastic bodies after a considerable time has passed since
the removal of the impact that caused them, see e.g. [19]. In this case, the
current prestress state can be considered independent of time and the ongoing
relaxation is very slow compared to the speed of the processes occurring during
the excitation of vibrations. Consequently, the prestress practically do not
change with time and are considered functions of spatial coordinates only. The
correctness of this assumption is illustrated in [24], where prestresses occurring
in a viscoelastic material during stress relaxation is considered. It is shown there
that for a considerable time after the application of the initial load or strain,
the prestresses are real functions of the coordinates.
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According to the correspondence principle, we write the equations of vi-
brations of the considered prestressed plates under conditions (4), using the
equations obtained in [22] for the elastic case, written in terms of dimensionless
parameters and variables:

(

ξ
[

G
(1−ν)

2 (θ + w′) + s0rrw
′
])′

− κ2ρξw + qξ = 0,

γξ
[

G
(1−ν)

2 (θ + w′) + s0rrw
′
]

−
(

ξ
[

G
(

θ′ + νθ
ξ

)

+ s0rrθ
′
])′

+G
(

νθ′ + θ
ξ

)

+
(ξs0rr

′

+s0
rr)θ

ξ
− κ2ρξθ = 0.

(5)

In equations (5), instead of the function of the cylindrical stiffness of the

plate D(r) = E(r)h3

12(1−ν2)
used in the elastic case [22] (where E(r) is the Young’s

modulus and ν is the Poisson’s ratio), the complex modulus function of the

form (3) is used, i.e. G(ξ, iκ) = iτκg2(ξ)+g1(ξ)
1+iτκ

. In addition, in formulas (5), the
tilde character is omitted, and the derivative with respect to the dimensionless
coordinate ξ is indicated by apostrophe. The plate deflection function w(ξ, κ)
and the angle θ(ξ, κ) of rotation of the normal in the considered case are complex
and the density ρ is a function solely of the dimensionless radius ξ.

We assume that the plates are tightly fasten along the outer contour, which
is expressed by the following boundary conditions:

w(1, κ) = 0, θ(1, κ) = 0. (6)

The additional boundary conditions are as follows. For the circular plate due
to symmetry we have:

w′(0, κ) = 0, θ(0, κ) = 0. (7)

The annular plate is considered to be also fixed along the inner boundary:

w(ξ0, κ) = 0, θ(ξ0, κ) = 0. (8)

For the boundary value problems (5)-(6),(7) and (5)-(6),(8) we formulate
the inverse problems to identify the prestress distribution based on periodic
acoustic load. The inverse problem consists in determining the dimensionless
prestress real function s0rr(ξ) from additional information about the deflection
of the plates measured at the acoustic sounding location ξ = ξz in a given
frequency range:

w(ξz , κ) = f(κ), κ ∈ [κ1, κ2]. (9)

The other mechanical characteristics of the plates are known. The formu-
lated inverse problems for determining the prestress fields are nonlinear and
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ill-posed problems [25] , which requires a specific approach to finding the so-
lution.

3. Plate vibrations and dynamic characteristics analysis

In the present work, due to the nonlinearity of equations (5), a technique based
on the Galerkin numerical method was used to solve the forward problem of
calculating the bending vibrations of the considered prestressed viscoelastic
plates. For this, we use the weak formulation of both problems by projecting
equations (5) onto the fields of possible deflections w1 and rotation angles θ1.
Performing simple transformations and using the boundary conditions (6) as
well as (7) for the solid circular plate and (8) for the annular plate, we end
with:

∫ 1
ξ0

(

γξθ1

(

G
(1−ν)

2 + s0rr

)

w′

+
((

γξG
(1−ν)

2 + G+ξσ0
rr

′

+σ0
rr

ξ
− κ2ρξ

)

θ1 −Gνθ′1

)

θ

−
(

ξ
(

G+ s0rr
)

θ′1 −Gνθ1
)

θ′
)

ξdξ = 0,
∫ 1
ξ0

(

ξ
(

G
(1−ν)

2 + s0rr

)

w′
1w

′ +G
(1−ν)

2 ξw′
1θ − κ2ρξw1w

)

ξdξ

= −
∫ 1
ξ0
qξ2w1dξ.

(10)

In (10) for the case of solid circular plate, ξ0 = 0.

Then we express the complex-valued functions of the deflection and the
angle of rotation of the normal in the form of the following expansions in terms
of basis functions ϕ1m(ξ), ϕ2m(ξ) that satisfy the main boundary conditions:

w(ξ, κ) =

N
∑

m=1

am(κ)ϕ1m(ξ), θ(ξ, κ) =

N
∑

m=1

bm(κ)ϕ2m(ξ). (11)

The basis functions for the solid circular plate are chosen as:

ϕ1m(ξ) = (1− ξ2)2ξ2(m−1), ϕ2m(ξ) = sin(mπξ). (12)

The basis functions for the angular plate are:

ϕ1m(ξ) = (1− ξ2)2(ξ − ξ0)
2ξ2(m−1), ϕ2m(ξ) = sin

(

mπ
ξ − ξ0

1− ξ0

)

. (13)

The coefficients am(κ) and bm(κ) are complex function of frequency.
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Afterwards, expressions (11) are put into (10) and the basis functions
w1 = ϕ1m(ξ), θ1 = ϕ2m(ξ), m = 1, ..., N , of the form (12) or (13), respectively,
are chosen as possible functions. As a result, the forward problems are reduced
to solving the system of linear equations of dimension 2N with respect to the
coefficients am(κ) and bm(κ) for the chosen values of the dimensionless vibration
frequency κ.

The above technique is verified by applying it to the vibration analysis of
homogeneous plates and comparing the obtained solutions with the analytical
ones expressed with Bessel functions. Below are the results of the comparison of
the analytical and numerical solutions. For a solid circular plate, Figure 1 shows
the results of calculating the deflection function (a) and the normal rotation
angle function (b); while for the annular plate, the results are shown in Figure 2.
In both figures, the solid line indicates the analytical solution, the dots indicate
the numerical solution. The deviation when choosing 7 basis functions was
less than 2%, when choosing 10 - less than 1%, which indicates a fairly high
accuracy of the proposed here solution technique.

Figure 1: Comparison of the analytical (solid line) and numerical (dots)
solutions to the problem of calculating the deflection functions (a) and the
normal rotation angle (b) of a solid circular plate.

For both cases – solid circular and annular plates – a set of numerical ex-
periments was carried out to calculate the amplitude–frequency characteristics
in the vicinity of the first dimensionless frequency of viscoelastic resonance
(extremum) for different prestress levels, predetermined by the level of dimen-
sionless initial load p0 (p0 = 10−3, ..., 10−2 ) and the zero value in the absence
of prestress. In the problem for the solid circular plate, a uniform prestress field
was chosen corresponding to the solution of the problem of planar vibrations of
a plate [23], while for the annular plate (with ξ0 = 0.2), the solution of the cor-
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Figure 2: Comparison of the analytical (solid line) and numerical (dots)
solutions to the problem of calculating the deflection functions (a) and the
normal rotation angle (b) of an annular plate.

responding Lame problem for a ring [26] loaded by a latent internal pressure,
the form of which is given below with Eq. (17). The results of experiments
on calculating the modulus of the complex–valued frequency response at the
probing point for the solid circular and annular plates are shown in Figure 3(a,
b), respectively. In all figures, the solid line marks the solutions of the problem
at p0 = 0 (no prestress), the dotted lines are for the values of the dimensionless
prestress values p0 = 10−3, 5 · 10−3, 10−2.

Figure 3: Influence of the prestress level on the frequency response of solid
circular (a) and annular (b) plates in the vicinity of the first viscoelastic
resonance.

As in previous studies for elastic plates and other objects, the results of
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numerical experiments show that the differences in frequency response are most
pronounced near the frequencies of the viscoelastic resonance.

4. Inverse problem’s solution strategy

To solve the corresponding inverse problems, we used an adapted projection
method, described earlier in [27], based on the representation of all unknown
functions as expansions of linearly independent functions and using the weak
formulation (10). For the plate deflection functions w(ξ, κ) and the angle of
rotation of the normal θ(ξ, κ) , we use expansions of the form Eq. (11), with basis
functions (12) and (13), respectively. Within the framework of this method, the
prestress s0rr(ξ) is also expanded in terms of a system of linearly independent
functions:

s0rr(ξ) =

M
∑

j=1

Cjψj(ξ). (14)

Further, as in the approach for solving the forward problems, we form a system
of linear equations with respect to the coefficients in expansions (11), then,
choosing M frequencies κm, from the conditions (9) we obtain systems of M
nonlinear equations of order 2M with respect to the set of real coefficients Cj

of the expansions (14):

w(ξz , κm, Cj) = f(κm), j = 1, ...,M, m = 1, ...,M. (15)

The Newton method was used to solve these systems of nonlinear equations.
As a result of calculating the coefficients Cj, the function s0rr(ξ) is determined
in the form (14).

It has to be noted that for solving the system (15) in the considered here
viscoelastic case, when the deflection and the angle of rotation of the normal
are complex-valued functions, it is required rather large computing power com-
pared to the elastic case, when these functions are real-valued. The use of the
developed here approach is illustrated in detail by numerical experiments in the
next section.

5. Verification via numerical experiments

Next, we present the results of numerical experiments on the use of the projec-
tion technique described in the previous section to solve the formulated inverse
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Table 1: Identification of the prestress for a solid circular viscoelastic
plate for exact and noisy input data

No p0 Back-calculated val-
ues/ exact input
(error)

Back-calculated values/
noisy input (error)

1 0.01 0.0010039 (0.03%) 0.0009928 (1.11%)

2 0.005 0.0050067 (0.13%) 0.0050701 (1.40%)

3 0.001 0.0009933 (0.66%) 0.0009627 (3.72%)

problems for identifying the plane prestress distribution s0rr(ξ) in viscoelastic
plates. In the first two experiments, the back-calculation of the prestresss that
arose during the initial radial loading of the plates with a normal load p0 applied
on the outer boundary in the case of a solid circular plate, and on the inner
boundary in the case of the annular plate, is presented. In this particular case,
the distribution of the radial stresses in the solid circular plate is constant [23]:

s0rr(ξ) = p0. (16)

In the case of annular plate, the radial stresses can be defined as a solution to
the corresponding Lame problem for a disk [26]:

s0rr(ξ) =
p0

ξ−2
0 − 1

(

1−
1

ξ2

)

. (17)

Note that in both cases the prestress is predetermined by the initial load pa-
rameter p0 to which the developed here technique is applied. Moreover, in the
expansion (14) it is used one basis function of of type (16) or (17), respectively,
and a single value of the sensing frequency.

Experiment 1. Determination of different prestress values in the solid
circular plate, caused by a normal load p0 (homogeneous prestress field) with
sensing sound frequencies near the first resonance κ = 8.45. Table 1 shows the
results from the numerical experiment both for exact and for noisy input data.
The introduced noise of 0.5% significantly exceeds the error of modern devices
used in the implementation of the acoustic methods. For the back-calculated
values of the prestress, the identification error is indicated in parentheses.

Experiment 2. Determination of the initial loading parameter p0 , which
caused in the anular plate a prestress of the type (17). The results are presented
in Table 2 for both exact and 0.5% noisy input data.
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Table 2: Identification of the prestress level in an annular viscoelastic
plate based on exact and noisy input data

No p0 Back-calculated val-
ues/ exact input
(error)

Back-calculated values/
noisy input (error)

1 0.01 0.0099734 (0.26%) 0.0009750 (2.5%)

2 0.005 0.0049842 (0.31%) 0.0049473 (3.13%)

3 0.001 0.0009961 (0.38%) 0.0011214 (12.15%)

Note that, as for elastic plates, with a decrease in the prestress level, its
effect on the frequency response decreases, and therefore the accuracy of its de-
termination worsen. Below are the results of using the developed here method-
ology in numerical experiments to determine arbitrary prestress values, whose
origin is generally unknown (it can be initial elastic/ plastic deformation, tem-
perature or other effects, and their combinations). On the graphs illustrating
the results of the back-calculations, the solid line indicates the desired function,
the dots indicate the back-calculated function.

Experiment 3. It is considered a case of initial elastic deformation of
an annular plate of radius ξ0 = 0.2 , due to a pressure p0 = 10−3 at the inner

boundary. In this case, the prestress distribution reads s0rr(ξ) =
p0

ξ−2

0
−1

(

1− 1
ξ2

)

.

The frequency range [9.2, 9.3] is chosen for the identification procedure. The
back-calculation was carried out in the class of linear functions (M = 2,ψj(ξ) =

ξj−1) and in Figure 4(a) are shown the results. When trying to back-calculate
the presress in of type (17), the function can be restored almost exactly. The
result is shown in Figure 4(b).

Experiment 4. The numerical experiment is a model case. The task is
to reconstruct the increasing quadratic function s0rr(ξ) = 10−3(1 + ξ2) in case
of solid circular plate in the frequency range [7.8, 8.1] and within the class on
the linear function (M = 2,ψj(ξ) = ξj−1). Figure 5 shows the result from the
back-calculation procedure.

Experiment 5. This numerical experiment is a model case. It is an appli-
cation of the proposed here identification technique to back-calculate of sign-
alternating functions describing the prestress field (e.g., compressive prestress
within one part of the plate, and tension prestress within the other). For the
solid circular plate, the decreasing prestress function s0rr(ξ) = 10−3 ·

(

0.5− ξ2
)

was considered, while for the annular plate, the increasing one s0rr(ξ) = 10−3 ·
(

0.5− ξ2
)

. The identification procedure was carried out in the class of linear
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Figure 4: Reconstruction of the prestress distribution function for an an-
nular plate in the case of elastic deformation. Inverse modelling within the
class of linear functions – (a), in the form (17) – (b).

Figure 5: Reconstruction of the prestress distribution function for a solid
circular plate (Experiment 4).
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functions (M = 2,ψj(ξ) = ξj−1). Figure 6 depicts the results of the back-
calculation carried out (the back-calculation is almost exactly recovering the
forward problem input data).

Figure 6: Reconstruction of alternating prestress distribution functions
for (Experiment 5). For a solid circular plate – (a), for annular plate– (b).

It has to be noted that from a practical point of view, the prestress identifi-
cation within the class of linear functions can be considered the most promising,
since real prestress distribution functions in plates are most often monotonic
and the actual task is to determine the prestress level and the nature of its
monotonicity. Also, this approach is the most efficient in terms of speed, tak-
ing into account the need to solve cumbersome systems of linear and nonlinear
equations with complex coefficients.

6. Conclusion

To solve the inverse problems of identifying the prestress in solid circular and
annular inhomogeneous round viscoelastic Timoshenko plates when considering
bending vibrations, a special projection technique was adapted to implement
the acoustic approach. Additional studies have been carried out to provide
practical recommendations for achieving the best quality of reconstruction; the
results of numerical experiments on solving the corresponding inverse problems,
carried out using these recommendations, are presented. The technique has
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shown its applicability for the prestress identification, both in the case when
the prestress nature of occurrence is known, and for arbitrary cases. It is also
applicable for noisy input data.
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