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Abstract: When coloring a graph’s vertices, a particular technique known
as T -coloring is used to ensure that the absolute difference between the colors
allocated to the end vertices of any edge will not be an element of a predeter-
mined set T of non-negative integers that includes zero. A type of T -coloring
of a graph known as ST -coloring is one in which there is a noticeable absolute
difference between the assigned colors of each edge’s end vertices. Here, we
discuss these colorings on the Corona product and the edge corona network of
graphs. We obtain a few findings on the chromatic numbers associated with the
T and ST -colorings, as well as the span and edge span of these graph products.
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1. Introduction

Graph colouring is one of the most well-known, often utilized, and in-depth
studied research topics in the field of graph theory. Graph colouring is used
in diverge research areas such as computer science, electronics, construction
projects, and other engineering undertakings. The development of wireless
communication has led to the emergence of the channel assignment problems
[3]. Transmitters using particular frequencies interfere in a Channel assignment
problem, because of distance restrictions. Two interfering transmitters must be
assigned frequencies that do not belong to a prohibited set of non-negative inte-
gers in order to prevent this type of interference. In order to conserve spectrum,
effective channel assignments are necessary. This Channel assignment problem
was first developed in a graph theoretic way by Hale [6], which was named as T -
coloring problem. He denoted the transmitters as the vertices of the graph, with
an edge developing between two vertices if the matching transmitters clashed.
T -coloring of a graph is defined as a map that distributes non-negative numbers
to the vertices in such a way that the absolute values of the differences between
the non-negative integers allocated to the vertices of an edge must not belong
to a finite set T . The T -set can vary for every interfering transmitter. In such
case, Roselin et al. [17] defined a version of T -coloring called as ST -coloring of
graphs. This variant of T -coloring is defined with a strong requirement added
to T -coloring that for every distinct edge of the graph, the absolute values of
the differences between the non negative integers assigned to the vertices of an
edge must be distinct.

Graph products provide tractable investigation of many graph characteris-
tics. In recent years, the Cartesian product, [13] hierarchical product, Kronecker
product, [7], and others have been employed to emulate complex networks. The
Corona Product [5] and Edge Corona Product (or Edge Corona network) [8]
are also helpful for creating a big graph from smaller ones. They are new in
mathematics. Since they are still evolving, they require further work. Even if
many aspects of the concept are currently unclear, its potential to answer fu-
ture riddles cannot be disregarded. They are employed in arithmetic, biology,
social science, chemistry, and even astronomy. Researchers are fascinated by
graph operations and their products. Researchers are intrigued to the Corona
product and Edge Corona product of one graph on itself because they make
clones of the same graph, generating a vast structure comparable to a giant
star. Scholars are fascinated by graph operations like product. Corona product
and Edge Corona product or network architectures excite researchers more than
other graph operations. It is interesting to study this graph’s structure and ap-
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plications. Formal definitions of Corona product and Edge Corona product of
graphs are discussed in the next section.

Over two decades have been spent researching the T -coloring problem. Hale
[6] proposed it initially by expressing a number of frequency assignment issues
in terms of graph theory. The work of Cozzens and Roberts [4] was expanded
upon by Cozzens and Wang [3], and Tesman [21] by taking into account different
frequency interference limitations. The T -span and T -edge span of the swing
graph, theta mesh, and shadow graph of a cycle, as well as the crown graph,
series-parallel graph, generalised theta graph, and wrapped butterfly network
were estimated by Sivagami [19, 20] in 2016 and 2018. Recently, Roselin and Raj
[16] provided a variety of insights relating to the span, edge span, and chromatic
numbers relating to T -coloring of wheel graphs and by using these findings, they
obtained various results relating to these parameters of some non-perfect graphs
such as Petersen graphs, Double Wheel graphs, Helm graphs, Flower graphs,
and Sun Flower graphs in [15]. T-coloring on a number of graph operations,
including Union, Join, Cartesian product, and Tensor product, was studied by
Roselin et al. [14] in 2022. The ST -coloring of numerous graph operations,
including Union, Join, Cartesian product, Tensor product, and Corona product
of graphs, was studied by Moran et al. [12, 13].

The corona product of two graphs was first developed by Frucht and Harary
[5] in 1970. In [9], et al. investigated the star edge coloring of the Corona
product of Path and some other graphs and discovered the associated chromatic
numbers. Then in 2017 [11], total coloring of corona product of two graphs G
and H, was studied by Mohan, in which they assumed H as a cycle, a complete
graph or a bipartite graph. In 2020, Lu et al. [10] investigated the acyclic
chromatic numbers that correspond to the corona product of paths or cycles
and any simple graph. In the same year, Singh et al. [18] reviewed an article
on Corona product of graphs. After that the local edge antimagic colouring of
the path and cycle corona product, also known as the path corona cycle, cycle
corona path, path corona and cycle corona cycle, was presented by Aisyah et
al. [1] in 2021.

Edge corona product was first proposed by Haynes and Lawson [8]. In
2020, Wang et al. [22] studied Edge corona product as an approach to model-
ing complex simplical networks. In the study, they suggested a simple model
for complex networks termed simplical networks that may describe group inter-
actions in real networks, denoted by a parameter, by repeatedly applying the
edge corona product. Then, they gave a thorough examination of the model’s
topological features that were pertinent, the majority of which were parameter-
dependent. They demonstrated that the generated networks exhibit a number
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of striking features of actual networks, including non-trivial higher-order inter-
action, a power-law distribution of vertex degree, a small diameter, and a high
clustering coefficient. In 2020, Lu et al. [10], et al. investigated the acyclic
chromatic numbers that correspond to the Edge Corona product of paths or
cycles and any simple graph.

Organization of the paper: In Section 2, some basic definitions which will
be presented which will be used in the sections to follow. Section 3 contains
two theorem on Chromatic numbers of the Corona product and Edge Corona
product of two graphs and Section 4 contains a study on T -coloring of Corona
Product and Edge Corona product of graphs. Similarly, in Section 5 a study
on ST -coloring of Corona Product and Edge Corona product of graphs is pre-
sented, and finally in Section 6 a conclusion is provided on the whole work.

2. Preliminaries

The following definitions will be used in the sections to follow.

Definition 1. cT -span ([20]): cT -span, sp
c
T (G) is the maximum value

| c(u) − c(w) | over all the vertices and the minimum of spcT (G) is known as
spT (G), where the minimum is taken over all T−coloring c of G.

Definition 2. cT -edge span ([20]): The cT−edge span, espcT (G) is the
maximum value | c(u) − c(w) | over all the edges (u,w) and the minimum of
espcT (G) is known as espT (G), where the minimum is taken over all T -coloring
c of G.

Definition 3. Corona Product ([5]): Consider two graphs with m
vertices and p edges and, n vertices and q edges, respectively, as G1 = (V1, E1)
and G2 = (V2, E2). The graph produced by taking one copy of G1 and m copies
of G2 and attaching the ith vertex of G1 to each vertex in the ith copy of G2

is known as the corona product of graphs G1 and G2. Then | V (G1 ◦ G2) |=
m(n+ 1) and | E(G1 ◦G2) |= p+ nq +mn.

Definition 4. Edge Corona product ([8]): Let G1 and G2 be initial
graph with order m and size p, G2 be the graph with order n and size q respec-
tively. The edge corona G1 ⋄G2 of G1 and G2 is generated by making one copy
of G1 and p copies of G2, identifying each vertex of the ith copy of G2 to the
two end vertices of the ith edge of G1.
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3. Chromatic numbers of the Corona

product and Edge Corona product of two graphs

Let V (G1) = {v1, v2, v3, ...., vm} and V (G2) = {vm+1, vm+2, vm+3,
...., vm+n}. Now, let us rename the vertices of G1 after Corona product with G2

as {v0j : j = 1, 2, 3, ....,m} and the vertices of ith copy of G2 as {vij | j = m+1
to m+ n}, where i= 1 to m. Similarly, let us rename the vertices of G1 after
edge corona product with G2 as {v00k : k = 1, 2, 3, ....,m} and the vertices of
the copy of G2 corresponding to the edge (v00i, v00j) as {vijk | k = m + 1 to
m+ n}, in which vijk = vjik and i, j= 1 to m.

Now we shall discuss the chromatic numbers of the Corona product and
Edge Corona product of two graphs respectively.

Theorem 5. For any two graphs G1 and G2,

χ(G1 ◦G2) =

{

max{χ(G1), χ(G2)} if χ(G1) 6= χ(G2)

χ(G1) + 1 if χ(G1) = χ(G2)
.

Proof. Let G1 and G2 be two graphs with the chromatic numbers χ(G1)
and χ(G2) respectively, and c be the coloring function defined on the vertex set
of G1 ◦G2, which assigns colors to all the vertices of G1 ◦G2.

Case I: χ(G1) > χ(G2). Then all the vertices v0js can be colored with
χ(G1) colors. Now since the vertex v0j is adjacent to all the vertices of jth

copy of G2. Then all the vertices of jth copy of H can be colored by the same
set of colors, which were assigned to v0js excluding c(v0j) the color assigned
to v0j . Therefore with χ(G1)− 1 colors, all the vertices of any copy of G2 can
be colored. Thus χ(G1) colors are sufficient enough to color all the vertices of
G1 ◦G2. Hence, χ(G1 ◦G2) = χ(G1).

Case II: χ(G1) < χ(G2). Again, since χ(G2) colors are required to color
any copy of G2, let us assign χ(G2) colors to all the vertices of every copy of G2.
Then rest of the vertices v0js can be colored with same set of colors, provided
that c(v0j) 6= c(vjl) as v0j is adjacent to all the vertices of jth copy of G2. Thus
χ(G2) colors are sufficient enough to color all the vertices of G ◦ G2. Hence,
χ(G1 ◦G2) = χ(G2).

Case III: χ(G1) = χ(G2). Again, all the vertices v0js can be colored with
χ(G1) colors. Now since the vertex v0j is adjacent to all the vertices of jth copy
of G2, then no any vertex of jth copy of G2 can be colored by the color of v0j ,
and apart from this, the same set of χ(G1) − 1 colors, which were assigned to
the vertices of G1 can be assigned. But χ(G2) = χ(G1). Therefore one new
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color is to be assigned to color all the vertices of jth copy of G2. Thus all the
vertices of G1 ◦G2 can be colored with χ(G1) + 1 colors.

Therefore, for any two graphs G1 and G2,

χ(G1 ◦G2) =

{

max{χ(G1), χ(G2)} if χ(G1) 6= χ(G2)

χ(G1) + 1 if χ(G1) = χ(G2)
.

Theorem 6. For any two graphs G1 and G2,

χ(G1 ⋄G2) =











χ(G1) + 2, if χ(G1) = χ(G2)

max{χ(G1), χ(G2)}+ 1 if | χ(G1)− χ(G2) |= 1

max{χ(G1), χ(G2)} if | χ(G1)− χ(G2) |≥ 2

.

Proof. Let G1 and G2 be two graphs with the chromatic numbers χ(G1)
and χ(G2) respectively, and c be the coloring function defined on the vertex set
of G1 ⋄G2, which assigns colors to all the vertices of G1 ⋄G2.

Case I: χ(G1) = χ(G2). Then with χ(G1) colors every vertex of G1 can
be colored. Since, all the vertices of the copy of G2 corresponding to the edge
(v00i, v00j) are adjacent to v00i and v00j . Hence, any vertex of this copy of G2

cannot be assigned the colors which are assigned to the end vertices v00i and
v00j . Since, χ(G1) = χ(G2), Therefore two more colors is to be introduced apart
from the colors assigned to the vertices of G1 to color all the vertices of this
copy of G2. In the same way all the vertices of any copy of G2 corresponding to
any edge can be colored. Thus with χ(G1)+2 colors, all the vertices of G1 ⋄G2

can be colored. Hence, χ(G1 ⋄G2) = χ(G1). Thus, for χ(G1) = χ(G2),

χ(G1 ⋄G2) = χ(G1) + 2.

Case II: | χ(G1)− χ(G2) |= 1. Let, χ(G1)− χ(G2) = 1. Then with χ(G1)
colors every vertex of G1 can be colored. Since, all the vertices of the copy of G2

corresponding to the edge (v00i, v00j) are adjacent to v00i and v00j . Therefore
any vertex of this copy of H can’t be assigned the colors of the end vertices v00i
and v00j . Since, χ(G)− 1 = χ(H). Hence, with the set of remaining χ(G1)− 2
colors assigned to vertices of G1, all the vertices of the corresponding copy of
G2 can not be colored, which will require a new color as χ(G1) − 1 = χ(G2).
In the same way all the vertices of any copy of G2 corresponding to any edge
can be colored. Thus with χ(G1) + 1 colors, all the vertices of G1 ⋄ G2 can be
colored. Hence, χ(G1 ⋄G2) = χ(G1) + 1.
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The proof is similar for the case χ(G2) − χ(G1) ≥ 2. Thus, for | χ(G1) −
χ(G2) |≥ 1,

χ(G1 ⋄G2) = max{χ(G1), χ(G2)}+ 1.

Case III: | χ(G1)−χ(G2) |≥ 2. Let χ(G1)−χ(G2) ≥ 2. Then with χ(G1)
colors every vertex of G1 can be colored. Since all the vertices of the copy of
G2 corresponding to the edge (v00i, v00j) are adjacent to v00i and v00j , therefore
any vertex of this copy of G2 can’t be assigned the colors of the end vertices
v00i and v00j . So, with the set of remaining χ(G1)−2 colors assigned to vertices
of G1, all the vertices of the corresponding copy of G2 can be colored. In the
same way all the vertices of any copy of G2 corresponding to any edge can be
colored. Thus with χ(G1) colors, all the vertices of G1 ⋄ G2 can be colored.
Hence, χ(G1 ⋄G2) = χ(G1).

The proof is similar for the case, χ(G2) − χ(G1) ≥ 2. Thus, for | χ(G1) −
χ(G2) |≥ 2

χ(G1 ⋄G2) = max{χ(G1), χ(G2)}.

Hence for any two graphs G1 and G2,

χ(G1 ⋄G2) =











χ(G1) + 2, if χ(G1) = χ(G2)

max{χ(G1), χ(G2)}+ 1 if | χ(G1)− χ(G2) |= 1

max{χ(G1), χ(G2)} if | χ(G1)− χ(G2) |≥ 2

.

4. T -coloring of Corona Product and Edge Corona Network

4.1. T -coloring of Corona Product of graphs

In this section we discuss some of the results of T -coloring of Corona product
of two arbitrary graphs G and H.

Theorem 7. Any T−sets of positive integers that includes zero, as well

as any two graphs G1 and G2,

i. espT (G1 ◦G2) = min{espT (G1), espT (G2)},

ii. spT (G1 ◦G2) = min{spT (G1), spT (G2)}.
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Proof. (i) Considering G1 ◦ G2 contains subgraphs that are isomorphic to
both G1 and G2. Hence, by sub graph property of T−coloring, espT (G1) ≤
espT (G1 ◦G2) and espT (G2) ≤ espT (G1 ◦G2). Hence,

espT (G1 ◦G2) ≥ min{espT (G1), espT (G2)}. (1)

Let f and g be two T -colorings of G1 and G2, respectively such that espfT (G1) =
spT (G1) and espgT (G2) = espT (G2). Let c be a coloring on (G1 ◦ G2) defined
as:

c(vij) =











f(vj), if i = 0 and j ∈ {1, 2, 3, ...,m}

f(vi)− g(vj)− g(vk+m), if i ∈ {1, . . . ,m} and j ∈

{m+ 1, . . . ,m+ n}

,

where k ∈ {1, . . . , n}. Now, in G1 ◦ G2, the edges can be distributed in three
disjoint and distinct sets as {(v0j , v0l) : j, l ∈ {1, . . . ,m}}, {(v0j , vjl) : j ∈
{1, . . . ,m} and l ∈ {m+1, . . . ,m+n}} and {(vij , vil) : i ∈ {1, . . . ,m} and j, l ∈
{m + 1, . . . ,m + n}}. Now for the edges, {(v0j , v0l) : j, l ∈ {1, . . . ,m}},
(vij , vlm), (va,b, vc,d)ǫE(G1 ◦G2). Then,

| c(v0j)− c(v0l) |=| f(vj)− f(vl) |/∈ T.

Thus c is a T−coloring of G1 ◦G2. Hence,

| c(v0j)− c(v0l) |=| f(vj)− f(vl) |≤ espT (G1). (2)

Again for the edges {(v0j , vjl) : j ∈ {1, . . . ,m} and l ∈ {m+ 1, . . . ,m+ n}}

| c(v0j)− c(vjl) | =| f(vj)− f(vj)− g(vl) + g(vk+m) |

=| g(vk+m)− g(vl) |/∈ T.

Thus c is a T−coloring of G1 ◦G2. Hence,

| c(v0j)− c(vjl) |=| g(vk+m)− g(vl) |≤ espT (G2). (3)

Similarly for the edges {(vij , vil) : i ∈ {1, . . . ,m} and j, l ∈ {m+1, . . . ,m+n}}:

| c(vij)− c(vil) | =| f(vi)− g(vj)− g(vk+m)− f(vi)− g(vl)

+ g(vk+m) |=| g(vj)− g(vl) |/∈ T.

Thus c is a T−coloring of G1 ◦G2. Hence,

| c(vij)− c(vil) |=| g(vj)− g(vl) |≤ espT (G2). (4)
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Now from equations (2), (3) and (4) for any edge (vij , vab) ∈ E(G1 ◦G2)

| c(vij)− c(vab) |≤ min{espT (G1), espT (G2)} (5)

⇒ espT (G1 ◦G2) ≤ espcT (G1 ◦G2) ≤ min{espT (G1), espT (G2)}. (6)

Therefore from equations (1) and (6),

⇒ espT (G1 ◦G2) = min{espT (G1), espT (G2)}. (7)

(ii) Considering G1 ◦ G2 contains sub graphs that are isomorphic to both G1

and G2. Hence, by sub graph property of T−coloring, spT (G1) ≤ spT (G1 ◦G2)
and spT (G2) ≤ spT (G1 ◦G2). Hence,

spT (G1 ◦G2) ≥ min{spT (G1), spT (G2)}. (8)

Again, from equation (5), for any edge (vij , vab) ∈ E(G1 ◦G2)

| c(vij)− c(vab) |≤ min{espT (G1), espT (G2)}.

Since, for all graphs G and all T−sets, espT (G) ≤ spT (G). Which implies

c(vij)− c(vab) |≤ min{spT (G1), spT (G2)}.

Therefore,
⇒ spT (G1 ◦G2) ≤ min{spT (G1), spT (G2)}. (9)

Therefore from equations (8) and (9),

⇒ spT (G1 ◦G2) = min{espT (G1), espT (G2)}. (10)

Corollary 8. Let G1 be a subgraph of a graph G2, then for any T -set,
espT (G1 ◦G2) = espT (G1) and spT (G1 ◦G2) = spT (G1).

Proof. Since G1 is a subgraph of G2, then by the subgraph property of
T -coloring, espT (G1) ≤ espT (G2) and spT (G1) ≤ spT (G2). From Theorem 7,
espT (G1 ◦G2) = min{espT (G1), espT (G2)}. Hence, espT (G1 ◦G2) = espT (G1).
Similarly, spT (G1 ◦G2) = spT (G1).

Figures 1 and 2 represent T -coloring of Corona product and Edge Corona
product of cycle graph C4 with a path graph P3 respectively for a T set, T =
{0, 1, 3}.
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Figure 1: χ(C4 ◦ P3) = χ(C4) + 1 = 3 in which χ(C4) = χ(P3) = 2
and spT (C4 ◦ P3) = espT (C4 ◦ P3) = 4.

Figure 2: χ(C4 ⋄ P3) = χ(C4) + 2 = 4 in which χ(C4) = χ(P3) = 2
and spT (C4 ⋄ P3) = espT (C4 ⋄ P3) = 7.
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4.2. T -coloring of Edge Corona Network

Theorem 9. For any T−sets of positive integers that includes zero, as

well as any two graphs G1 and G2,

i. espT (G1 ⋄G2) = max{espT (G1), espT (G2)},

ii. spT (G1 ⋄G2) = max{spT (G1), spT (G2)}.

Proof. (i) Considering G1 ⋄ G2 contains subgraphs that are isomorphic to
both G1 and G2. Hence, by sub graph property of T−coloring, espT (G1) ≤
espT (G1 ⋄G2) and espT (G2) ≤ espT (G1 ⋄G2). Hence,

espT (G1 ⋄G2) ≥ max{espT (G1), espT (G2)}. (11)

Let g and g′ be two T -colorings of G1 and G2 respectively such that espgT (G1) =

spT (G1) and espg
′

T (G2) = espT (G2). Let, c be a coloring on (G1 ⋄ G2) defined
as:

c(vijk)=











g(vj), if i = j = 0 and k ∈ {1, . . . ,m}

g(vi)−g′(vk)−g′(vr+m), if i, j ∈ {1, . . . ,m} and k ∈

{m+ 1, . . . ,m+ n}

,

where r ∈ {1, 2, 3, ..., n}. Now, in G1 ⋄ G2, the edges can be distributed in
three disjoint and distinct sets as {(v00i, v00j) : i, j ∈ {1, . . . ,m}}, {(vijk, vijl) :
i, j ∈ {1, . . . ,m} and k, l ∈ {m + 1, . . . ,m + n}} and {(v00i, vijk) : i, j ∈
{1, . . . ,m} and k ∈ {m+1, . . . ,m+n}}

⋃

{(v00j , vijk) : i, j ∈ {1, . . . ,m} and k ∈
{m + 1, . . . ,m + n}}. Now for the edges, {(v00i, v00j) : i, j ∈ {1, . . . ,m}} for
(v00i, v00j) ǫE(G1 ⋄G2). Then,

| c(v00i)− c(v00j) |=| g(vi)− g(vj) |/∈ T.

Thus c is a T−coloring of G1 ⋄G2. Hence,

| c(v00i)− c(v00j) |=| g(vi)− g(vj) |≤ espT (G1). (12)

Again for the edges {(vijk, vijl) : i, j ∈ {1, . . . ,m} and k, l ∈ {m+1, . . . ,m+n}}

| c(vijk)− c(vijl) | =| g(vi)− g′(vk)− g′(vr+m)− g(vi)− g′(vl)

+ g′(vr+m) |=| g′(vk)− g′(vl) |/∈ T.
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Thus c is a T−coloring of G1 ⋄G2. Hence,

| c(vijk)− c(vijl) |=| g′(vk)− g′(vl) |≤ espT (G2). (13)

Similarly for the edges {(v00i, vijk) : i, j ∈ {1, . . . ,m} and k ∈ {m+ 1, . . . ,m+
n}}

⋃

{(v00j , vijk) : i, j ∈ {1, . . . ,m} and k ∈ {m + 1, . . . ,m + n}}, for
(v00i, vijk)ǫE(G1 ⋄G2)

| c(v00i)− c(vijk) | =| g(vi)− g(vi)− g′(vk) + g(vr+m) |

=| g′(vr+m)− g′(vk) |/∈ T.

Or for the edge (v00j , vijk)ǫE(G1 ⋄G2),

| c(v00j)− c(vijk) |=| c(v00j)− c(vjik) | =| g(vj)− g(vj)− g′(vk)

+ g(vr+m) |, (Since vijk = vjik)

=| g′(vr+m)− g′(vk) |/∈ T.

Thus c is a T−coloring of G1 ⋄G2. Hence,

| c(v00j)− c(vijk) |=| g′(vr+m)− g′(vl) |≤ espT (G2). (14)

Now from equations (12), (13) and (14), for any edge (vijk, vabc) ∈ E(G1 ⋄G2)

| c(vijk)− c(vabc) |≤ max{espT (G1), espT (G2)} (15)

⇒ espT (G1 ⋄G2) ≤ espcT (G1 ⋄G2) ≤ max{espT (G1), espT (G2)}. (16)

Therefore from equations (11) and (16),

⇒ espT (G1 ⋄G2) = max{espT (G1), espT (G2)}. (17)

(ii) Considering G1 ⋄ G2 contains sub graphs that are isomorphic to both G1

and G2. Hence, by sub graph property of T−coloring, spT (G1) ≤ spT (G1 ⋄G2)
and spT (G2) ≤ spT (G1 ⋄G2). Hence,

spT (G1 ⋄G2) ≥ max{spT (G1), spT (G2)}. (18)

Again, from equation (15), for any edge (vijk, vabc) ∈ E(G1 ⋄G2)

| c(vijk)− c(vabc) |≤ max{espT (G1), espT (G2)}.

Since, for all graphs G and all T−sets, espT (G) ≤ spT (G), this implies

c(vijk)− c(vabc) |≤ max{spT (G1), spT (G2)}.
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Therefore,
⇒ spT (G1 ⋄G2) ≤ max{spT (G1), spT (G2)}. (19)

Therefore from equation 18 and 19,

⇒ spT (G1 ⋄G2) = max{espT (G1), espT (G2)}. (20)

Corollary 10. Let G1 be a subgraph of a graph G2, then for any T -set,
espT (G1 ⋄G2) = espT (G2) and spT (G1 ⋄G2) = spT (G2).

Proof. As, G1 is a subgraph of G2, hence by subgraph property of T -
coloring, espT (G1) ≤ espT (G2) and spT (G1) ≤ spT (G2). From Theorem 9,
espT (G1 ⋄G2) = max{espT (G1), espT (G2)}. Hence, espT (G1 ⋄G2) = espT (G2).
Similarly, spT (G1 ⋄G2) = spT (G2).

Now, following are the generalized results of T -coloring of Corona Product
and Edge Corona product of n graphs, G1, G2, G3, ...., Gn, which are derived
from Theorem 7 and Theorem 9.

Theorem 11. For any T−sets of positive integers that includes zero, as

well as any two graphs G1, G2, G3,....., and Gn,

i. espT (G1 ◦G2 ◦G3 ◦ ..... ◦Gn) = min{espT (G1), espT (G2), espT (G3),
..., espT (Gn)},

ii. spT (G1 ◦G2 ◦G3 ◦ ..... ◦Gn) = min{spT (G1), spT (G2), spT (G3), ...,
spT (Gn)},

iii. espT (G1 ⋄G2 ⋄G3..... ⋄Gn) = max{espT (G1), espT (G2), espT (G3),
..., espT (Gn)},

iv. spT (G1 ⋄G2 ⋄G3..... ⋄Gn) = max{spT (G1), spT (G2), spT (G3), ...,
spT (Gn)}.

The proofs of these results are immediate from Theorem 7 and Theorem 9.

5. ST -coloring of Corona Product and Edge Corona Network

In this section we consider ST -coloring of Corona Product and Edge Corona
Network of two graphs G1 and G2.
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5.1. ST -coloring of Corona Product of Graphs

Theorem 12. For any T−sets of positive integers that includes zero, as

well as any two graphs G1 and G2,

i. espST (G1 ◦G2) = min{espST (G1), espST (G2)},

ii. spST (G1 ◦G2) = min{spST (G1), spST (G2)}.

Proof. (i) Considering G1 ◦ G2 contains subgraphs that are isomorphic to
both G1 and G2. Hence, by sub graph property of ST−coloring, espST (G1) ≤
espST (G1 ◦G2) and espST (G2) ≤ espST (G1 ◦G2). Hence,

espST (G1 ◦G2) ≥ min{espST (G1), espST (G2)}. (21)

Let f and g be two ST -colorings ofG1 andG2 respectively such that espfST (G1) =
spST (G1) and espgST (G2) = espST (G2). Let c be a coloring on (G1 ◦G2) defined
as:

c(vij) =











f(vj), if i = 0 and j ∈ {1, 2, 3, ...,m}

f(vi)− g(vj)− g(vk+m), if i ∈ {1, . . . ,m} and

j ∈ {m+ 1, . . . ,m+ n}

,

where k ∈ {1, 2, 3, ..., n}. Now, in G1 ◦G2, the edges can be distributed in three
disjoint and distinct sets as {(v0j , v0l) : j, l ∈ {1, 2, 3, ....,m}}, {(v0j , vjl) : j ∈
{1, 2, 3, ....,m} and l ∈ {m + 1,m + 2,m + 3, ....,m + n}} and {(vij , vil) : i ∈
{1, 2, 3, ....,m} and j, l ∈ {m+1,m+2,m+3, ....,m+n}}. Now, it is seen that
for any two distinct edges (vij , vlm) and (vab, vcd)

| c(vij)− c(vlm) |6=| c(vab)− c(vcd) | . (22)

Now for the edges, {(v0j , v0l) : j, l ∈ {1, . . . ,m}},

| c(v0j)− c(v0l) |=| f(vj)− f(vl) |/∈ T. (23)

Hence, from equation (22) and (23), c is a ST−coloring of G1 ◦G2. Hence,

| c(v0j)− c(v0l) |=| f(vj)− f(vl) |≤ espST (G1). (24)

Again for the edges {(v0j , vjl) : j ∈ {1, . . . ,m} and l ∈ {m+ 1, . . . ,m+ n}}

| c(v0j)− c(vjl) |=| f(vj)− f(vj)− g(vl) + g(vk+m) |=| g(vk+m)− g(vl) |
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⇒| c(v0j)− c(vjl) |/∈ T. (25)

Hence, from equations (22) and (25), c is a ST−coloring of G1 ◦G2. Hence,

| c(v0j)− c(vjl) |=| g(vk+m)− g(vl) |≤ espST (G2). (26)

Similarly for the edges {(vij , vil) : i ∈ {1, . . . ,m} and j, l ∈ {m+1, . . . ,m+n}}

| c(vij)− c(vil) |=| f(vi)− g(vj)− g(vk+m)− f(vi)− g(vl) + g(vk+m) |

⇒| c(vij)− c(vil) |=| g(vj)− g(vl) |/∈ T. (27)

Thus, from equations (22) and (27), c is a ST−coloring of G1 ◦G2. Hence,

| c(vij)− c(vil) |=| g(vj)− g(vl) |≤ espST (G2). (28)

Now from equations (24), (26) and (28), for any edge (vij , vab) ∈ E(G1 ◦G2)

| c(vij)− c(vab) |≤ min{espST (G1), espST (G2)} (29)

⇒ espST (G1 ◦G2) ≤ espcST (G1 ◦G2) ≤ min{espST (G1), espST (G2)}. (30)

Therefore from equations (21) and (30), we have

⇒ espST (G1 ◦G2) = min{espST (G1), espST (G2)}. (31)

(ii) Considering G1◦G2 contains sub graphs that are isomorphic to both G1 and
G2. Hence, by sub graph property of ST−coloring, spST (G1) ≤ spST (G1 ◦G2)
and spST (G2) ≤ spST (G1 ◦G2). Hence,

spST (G1 ◦G2) ≥ min{spST (G1), spST (G2)}. (32)

Again, from equation (30), for any edge (vij , vab) ∈ E(G1 ◦G2)

| c(vij)− c(vab) |≤ min{espST (G1), espST (G2)}.

Since, for all graphs G and all T−sets, espST (G) ≤ spST (G), this implies

| c(vij)− c(vab) |≤ min{spST (G1), spST (G2)}

⇒ spST (G1 ◦G2) ≤ min{spST (G1), spST (G2)}. (33)

Hence from equations (32) and (33),

⇒ spST (G1 ◦G2) = min{espST (G1), espST (G2)}. (34)
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Corollary 13. Let G1 be a subgraph of a graph G2, then for any T -set,
espT (G1 ◦G2) = espT (G1) and spT (G1 ◦G2) = spT (G1).

Proof. As, G1 is a subgraph of G2, hence by subgraph property of ST -
coloring, espST (G1) ≤ espST (G2) and spST (G1) ≤ spST (G2). From Theorem
12, espST (G1 ◦G2) = min{espST (G1), espST (G2

)}. Hence, espST (G1 ◦G2) = espST (G1). Similarly, spST (G1 ◦G2) = spST (G1).

5.2. ST -coloring of Edge Corona Network

Theorem 14. For any T−sets of positive integers that includes zero, as

well as for any two graphs G1 and G2,

i. espST (G1 ⋄G2) = max{espST (G1), espST (G2)},

ii. spST (G1 ⋄G2) = max{spST (G1), spST (G2)}.

Proof. (i) Considering G1 ⋄ G2 contains subgraphs that are isomorphic to
both G1 and G2. Hence, by sub graph property of T−coloring, espST (G1) ≤
espST (G1 ⋄G2) and espST (G2) ≤ espST (G1 ⋄G2). Hence,

espST (G1 ⋄G2) ≥ max{espST (G1), espST (G2)}. (35)

Let g and g′ be two T -colorings ofG1 andG2 respectively such that espgST (G1) =

spST (G1) and espg
′

ST (G2) = espST (G2). Let, c be a coloring on (G1⋄G2) defined
as:

c(vijk) =























g(vj), if i = j = 0 and

k ∈ {1, 2, 3, ...,m}

g(vi)− g′(vk)− g′(vr+m), if i, j ∈ {1, . . . ,m} and

k ∈ {m+ 1, . . . ,m+ n}

,

where r ∈ {1, 2, 3, ..., n}. Now, in G1 ⋄G2, the edges can be distributed in three
disjoint and distinct sets as {(v00i, v00j) : i, j ∈ {1, 2, 3, ....,m}}, {(vijk, vijl) :
i, j ∈ {1, 2, 3, ....,m} and k, l ∈ {m+1,m+2,m+3, ....,m+n}} and {(v00i, vijk) :
i, j ∈ {1, 2, 3, ....,m} and k ∈ {m+ 1,m+ 2,m+ 3, ....,m+ n}}

⋃

{(v00j , vijk) :
i, j ∈ {1, 2, 3, ....,m} k ∈ {m + 1,m + 2,m + 3, ....,m + n}}. Now, it is seen
that for any two distinct edges (vijk, vlmn) and (vabc, vdeh)

| c(vijk)− c(vlmn) |6=| c(vabc)− c(vdeh) | . (36)
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Now for the edges, {(v00i, v00j) : i, j ∈ {1, 2, 3, ....,m}}, for
(v00i, v00j) ∈ E(G1 ⋄G2), we have

| c(v00i)− c(v00j) |=| g(vi)− g′(vj) |/∈ T. (37)

Thus, from equations (36) and (37), c is a ST−coloring of G1 ⋄G2. Hence,

| c(v00i)− c(v00j) |=| g(vi)− g(vj) |≤ espST (G1). (38)

Again for the edges {(vijk, vijl) : i, j ∈ {1, . . . ,m} and k, l ∈ {m+1, . . . ,m+n}}

| c(vijk)− c(vijl) |=| g(vi)− g′(vk)− g′(vr+m)− g(vi)− g′(vl) + g′(vr+m) |

⇒| c(vijk)− c(vijl) |/∈ T. (39)

Thus, from equation (36) and (38), c is a ST−coloring of G1 ⋄G2. Hence,

| c(vijk)− c(vijl) |=| g′(vk)− g′(vl) |≤ espST (G2). (40)

Similarly for the edges {(v00i, vijk) : i, j ∈ {1, 2, 3, ....,m} and k ∈ {m +
1,m + 2,m + 3, ....,m + n}}

⋃

{(v00j , vijk) : i, j ∈ {1, 2, 3, ....,m} and k ∈
{m+ 1,m+ 2,m+ 3, ....,m + n}}, for (v00i, vijk)ǫE(G1 ⋄G2)

| c(v00i)− c(vijk) |=| g(vi)− g(vi)− g′(vk) + g(vr+m) |

⇒| c(v00i)− c(vijk) |=| g′(vr+m)− g′(vk) |/∈ T. (41)

Since vijk = vjik, therefore the edge (v00j , vijk) ∈ E(G1 ⋄G2),

| c(v00j)− c(vijk) |=| c(v00j)− c(vjik) | =| g(vj)− g(vj)− g′(vk)

+ g(vr+m) | .

So,

| c(v00j)− c(vijk) |=| g′(vr+m)− g′(vk) |/∈ T.

Thus, from equation 36 and 41, c is a ST−coloring of G1 ⋄G2. Hence,

| c(v00j)− c(vijk) |=| g′(vr+m)− g′(vl) |≤ espST (G2). (42)

Now from equations 38, 40 and 42, for any edge (vijk, vabc) ∈ E(G1 ⋄G2),

| c(vijk)− c(vabc) |≤ max{espST (G1), espST (G2)} (43)

⇒ espST (G1 ⋄G2) ≤ espcST (G1 ⋄G2) ≤ max{espST (G1), espST (G2)}. (44)
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Therefore from equations (35) and (44),

⇒ espST (G1 ⋄G2) = max{espST (G1), espST (G2)}. (45)

(ii) Considering G1⋄G2 contains sub graphs that are isomorphic to both G1 and
G2. Hence, by sub graph property of ST−coloring, spST (G1) ≤ spST (G1 ⋄G2)
and spST (G2) ≤ spST (G1 ⋄G2). Hence,

spST (G1 ⋄G2) ≥ max{spST (G1), spST (G2)}. (46)

Again, from equation 43, for any edge (vijk, vabc) ∈ E(G1 ⋄G2)

| c(vijk)− c(vabc) |≤ max{espST (G1), espST (G2)}.

Since, for all graphs G and all T−sets, espST (G) ≤ spST (G), this implies

c(vijk)− c(vabc) |≤ max{spST (G1), spST (G2)}.

Therefore,

⇒ spST (G1 ⋄G2) ≤ max{spST (G1), spST (G2)}. (47)

Therefore from equations (46) and (47),

⇒ spST (G1 ⋄G2) = max{espST (G1), espST (G2)}. (48)

Corollary 15. Let G1 be a subgraph of a graph G2, then for any T -set,
espST (G1 ⋄G2) = espST (G2) and spST (G1 ⋄G2) = spST (G2).

Proof. As, G1 is a subgraph of G2, hence by subgraph property of T -
coloring, espST (G1) ≤ espST (G2) and spST (G1) ≤ spST (G2). From Theorem
14, espST (G1 ⋄ G2) = max{espST (G1), espST (G2)}. Hence, espST (G1 ⋄ G2) =
espST (G2). Similarly, spST (G1 ⋄G2) = spST (G2).

Now, they follow the generalized results of ST -coloring of Corona Product
and Edge Corona product of n graphs, G1, G2, G3, ..., Gn, which are derived
from Theorem 12 and Theorem 14.

Theorem 16. For any T−sets of positive integers that includes zero, as

well as for any two graphs G1, G2, G3,....., and Gn,
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i. espST (G1 ◦G2 ◦G3 ◦ ..... ◦Gn) = min{espST (G1), espST (G2),
espST (G3), ..., espST (Gn)},

ii. spST (G1 ◦G2 ◦G3 ◦ ..... ◦Gn) = min{spST (G1), spST (G2), spST
(G3), ..., spST (Gn)},

iii. espST (G1 ⋄G2 ⋄G3..... ⋄Gn) = max{espST (G1), espST (G2),
espST (G3), ..., espST (Gn)},

iv. spST (G1 ⋄G2 ⋄G3..... ⋄Gn) = max{spST (G1), spST (G2), spST
(G3), ..., spST (Gn)}.

The proofs of these results are immediate from (12) and (14).

6. Conclusions

In this paper, we took into account the Corona product and Edge Corona
product and explored T and ST -coloring for each of the product. With regard
to T and ST -coloring, we arrived at some conclusions on the parameters span
and edge span. We proved that for both T and ST -coloring, span and edge
span of Corona product of two graphs or more are equals to the minimum of
the corresponding spans and edge spans of the Graphs respectively, whereas,
the span and edge span of Edge Corona product of two Graphs or more are
equals to the minimum of the corresponding spans and edge spans of the graphs
respectively. Here, we took a look at a few generalised Graphs. It is worth
mentioning that the study of T and ST -colorings on these products of certain
particular Graphs might be a challenging task.
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