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1. Introduction

In the works [1] — [3], some questions of the stability of oscillations of magne-
toelastic systems - elastic conducting thin objects such as plates or shells, were
studied.

Plane problems (models) are considered in [1], [3]: superconducting flat sur-
faces are separated by a vacuum gap filled with a constant uniform magnetic
field and move with a relative velocity Vp parallel to each other. The main
regularities of such a modified tangential discontinuity were studied using the
example of a model of two elastic half-spaces separated by a vacuum diamag-
netic gap [1] and two parallel thin plates [3]. In [1], the stability of a tangential
discontinuity with respect to small perturbations in the form of surface waves
was studied. The influence of the diamagnetic gap leads to the existence of
two types of waves with phase velocities Vig and Vag. It is shown that such
perturbations are unstable in the case when the value of the velocity of motion
of the half-spaces is in the interval (2Vig,2Vas).
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In [3] the authors studied stability of a dynamic system consisting of two
parallel thin plates with respect to small perturbations such as bending waves
propagating in the plates. It is shown that two types of waves are also possible
in plates: slow and fast with phase velocities Vi and Voe. And in this case,
the system turns out to be unstable if the value of the velocity of the relative
sliding of the plates Vj also falls into the interval between 2Vi4 and 2Vsg.

In the same work, another model was considered, which made it possible to
investigate the effect of a diamagnetic gap on the occurrence of instability in a
plate flown by an incompressible fluid. Installed that in this case there are two
regions of instability: the first limited region of instability is associated with
the diamagnetic gap and is determined by the inequality 2Vie < Vo < 2Vas,
where Vig and Vag - phase velocities of waves propagating in such a system;
the second region of instability is determined by the inequality Vo > Vj, and
corresponds to the instability in a solitary plate, streamlined by a fluid flow in
the presence of a magnetic field.

In [2], the stability of oscillations of an ideally conducting shell with a con-
ducting current, containing a flow of an ideal incompressible fluid, was studied
with respect to radial perturbations of the shell shape. It is shown that per-
turbations of the form exp (i (wt — ny)) are always stable, and the instability
conditions for perturbations of the form exp (i (wt — kz)) are determined.

The studies showed that the presence of a vacuum diamagnetic gap leads to
instability of surface perturbations during the relative motion of surfaces. This
specific type of instability is analogous to the instability that occurs from a
tangential discontinuity. However, in contrast to the latter, here the instability
takes place in a finite interval of the velocities of motion of the boundaries.

The stability of coaxial current-carrying shells was considered in [4], [5] for
the case with an azimuthal magnetic field and disturbances traveling along the
generatrix of the shell. In this case, the vibrations of the shells turn out to be
independent and the presence of the outer shell does not lead to new effects.

In this paper, we consider a cylindrical model of a tangential discontinuity
formed by two rotating coaxial shells with an azimuthal magnetic field in the

gap.
2. Dispersion equation
The system of rotation of coaxial shells with an azimuthal magnetic field in the

gap leads to the model of a tangential discontinuity we need in the case of shell
perturbations of the form exp (i (np — wt)), see [6].
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Indeed, the solution of the Laplace equation for the magnetic potential ¥
in the gap has in this case the form

U = (ar™ +br~") exp (inp) . (1)
Using the condition on the surface of superconducting shells, we obtain

’LH()LP

(Co2R1™ — EnR3"),

ZH()@

b= (Co2RT — 0 RY)

where Hy,, is the magnetic field in the gap in the absence of shells perturbations,
Ry and Ry are the radii of the outer and inner shells and

n
N By
Ry Ry
Substituting the found values a and b into solution (1), after simple trans-

formations, we obtain the following expressions for the magnetic pressure on
the surface of the shells

&1 &2
P, = B, 14 2na==— —4n 2
i = Fo (14 2005~ 10532 ). &)
P2m=P0m<1—2 02 4 an 551>, (3)
Ry
where )
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(4)

The equations of radial vibrations of shells in the case under consideration
have the form

“mp o PR g T = g
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Substituting into the system of equations (5), (6) the expressions for the
magnetic pressure on the surface of the shells (2), (3) and taking into account
that

&1 = Eorexp (i (np — wt)),
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§2 = oz exp (i (np — wt)),

we obtain a system of homogeneous equations that determine possible oscilla-
tions in the system

(w2 — nwwy — N2 + w(Q)) &1+ 2677, =0,

Qﬁrygné.l + (W2 - Qg) 62 = 0.

Here wy is the angular velocity of shells rotation,
O = wi, +arfy, QF = w3, + a3, (7)

, Dn* 1 s Dn* 1
wl = —F " —, w2 _ - . —
"Rt pht " Ry ph
are eigenfrequencies of shell vibrations in the absence of a magnetic field, and

2 _ 2Pm 1 5 _ 2w 1
Tin ph Rlu Yon ph RQ

are parameters that determine the influence of the magnetic field of the gap.
The consistence condition of the obtained system gives the dispersion equa-
tion of the problem

(w® — nwow — QF + wj) - (w? = Q3) = 48°77,73,.- (8)

3. Vibration of shells in the absence of their rotation

First, consider a special case when there is no rotation of the shells (wp = 0).
In this case, dispersion equation (8) takes the form

(w* = 0F) - (w* = 93) = 481,75,

or
= (68 )+ 008 — 480705, = 0.

This equation determines the eigenfrequencies of the coupled oscillations of
the system under consideration, which are equal to

1 2
o =5 (9 08 V(@1 - )+ 1052953, ) )
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It is easy to see that the eigenfrequencies (9) are real if the inequality holds
Q103 > 46%97,73,.

Substituting into this inequality the values Q3 and Q3 from (7) and taking
into account that

o —4p%* =1

(this can be easily verified using (4)), we obtain the condition for the realness
of frequencies

2 2 2 2 2 2 2 2
1nWon + QW1pYVon + QWapV1n + Y1nV2n > 0.

w

Obviously, this inequality holds identically. This means that in the absence
of shell rotation, the oscillations of shells of the considered type are always
stable.

4. Oscillation of rotating shells

Next, we consider the general case when the shells rotate. An analysis of the
dispersion equation (8) in this case shows that with an increase in angular
velocity wq, instability occurs. In this case, there are two different critical
velocities w 1, and wop,, the values of which depend on the magnitude of the
magnetic field of the gap, the ratio of the shell radii and the harmonic number
n. Instability occurs when the rotation speed w g is in the interval between w 1z,
and wopy, SO Wik < Wo < Wokr-

The values w1 and wop, in the general case can be found numerically.
However, in the particular case when n = 2, for a small gap, the instability
conditions can be obtained in an analytical form. At n = 2 the perturbed
shape of the shell has the form of an ellipse with a variable eccentricity.

Let g—f =1+4¢, e < 1. Then, if the field in the gap is not too small and
satisfies the inequality [7], [§]

8t FE h\? w?
s ST B (1 Yin o
i Fertplw) (7<)

then, in the zeroth-order approximation in e, can be written

2 2 2 2
M =93 Yip =n-
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Under these conditions, dispersion equation (8) takes the form
(@ = wo)? = 03) - (w? = 03) = 48%1,. (10)
Assuming no rotation (wy = 0) equation (10) takes the form
(&2 - 08)7 = 451,

and its roots are equal
w? = OF £ 2877,

Consequently, the eigenfrequencies of the system oscillations have the form
2 2 2
w] = Wi, + (@ = 26) 1,

wh = wh, + (@ +26) 7,

In general, when the shells rotate (wg # 0), the roots of the equation have

the form
1 2 1 ’ 2 2 242
Wi = §w0j: Q7 + 50«)0 £/ Qwp + 4841,

We are interested in the case when the second root of equation (10) is
complex. Obviously, this takes place when for the angular velocity of shells
rotation, the following inequality holds:

1 2
02 —26~% < <§w0> <03 42673,

or, given the expression for Q% from (7), we finally have the boundaries for this
velocity of shells rotation

2\/w21n + (o —2p) ﬁn <wp < 2\/w21n + (a+208) 'y%n.

5. Conclusion

The stability of the tangential discontinuity with respect to small radial pertur-
bations of the shell shape proportional to exp (iny) is studied. It is shown that
the diamagnetic gap leads to the splitting of the eigenfrequency of oscillations
into two frequencies w1, and w9, and the values of the critical velocities of shell
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rotation turn out to be equal to these eigenfrequencies of the system oscilla-
tions. The instability condition for such a tangential discontinuity is obtained,
which has the form similar to the instability condition for plane problems, i.e.
20 1, < wo < 2W 9y,

Thus, the stability conditions for the cylindrical model turned out to be

identical to the stability conditions obtained for the plane models.
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