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1. Introduction

In the works [1] – [3], some questions of the stability of oscillations of magne-
toelastic systems - elastic conducting thin objects such as plates or shells, were
studied.

Plane problems (models) are considered in [1], [3]: superconducting flat sur-
faces are separated by a vacuum gap filled with a constant uniform magnetic
field and move with a relative velocity V0 parallel to each other. The main
regularities of such a modified tangential discontinuity were studied using the
example of a model of two elastic half-spaces separated by a vacuum diamag-
netic gap [1] and two parallel thin plates [3]. In [1], the stability of a tangential
discontinuity with respect to small perturbations in the form of surface waves
was studied. The influence of the diamagnetic gap leads to the existence of
two types of waves with phase velocities V1Φ and V2Φ. It is shown that such
perturbations are unstable in the case when the value of the velocity of motion
of the half-spaces is in the interval (2V1Φ, 2V2Φ).

Received: April 8, 2023 © 2023 Academic Publications
§Correspondence author



294 A.M. Kholkin, T.A. Sanikidze

In [3] the authors studied stability of a dynamic system consisting of two
parallel thin plates with respect to small perturbations such as bending waves
propagating in the plates. It is shown that two types of waves are also possible
in plates: slow and fast with phase velocities V1Φ and V2Φ. And in this case,
the system turns out to be unstable if the value of the velocity of the relative
sliding of the plates V0 also falls into the interval between 2V1Φ and 2V2Φ.

In the same work, another model was considered, which made it possible to
investigate the effect of a diamagnetic gap on the occurrence of instability in a
plate flown by an incompressible fluid. Installed that in this case there are two
regions of instability: the first limited region of instability is associated with
the diamagnetic gap and is determined by the inequality 2V1Φ < V0 < 2V2Φ,
where V1Φ and V2Φ - phase velocities of waves propagating in such a system;
the second region of instability is determined by the inequality V0 > Vkp and
corresponds to the instability in a solitary plate, streamlined by a fluid flow in
the presence of a magnetic field.

In [2], the stability of oscillations of an ideally conducting shell with a con-
ducting current, containing a flow of an ideal incompressible fluid, was studied
with respect to radial perturbations of the shell shape. It is shown that per-
turbations of the form exp (i (ωt− nϕ)) are always stable, and the instability
conditions for perturbations of the form exp (i (ωt− kz)) are determined.

The studies showed that the presence of a vacuum diamagnetic gap leads to
instability of surface perturbations during the relative motion of surfaces. This
specific type of instability is analogous to the instability that occurs from a
tangential discontinuity. However, in contrast to the latter, here the instability
takes place in a finite interval of the velocities of motion of the boundaries.

The stability of coaxial current-carrying shells was considered in [4], [5] for
the case with an azimuthal magnetic field and disturbances traveling along the
generatrix of the shell. In this case, the vibrations of the shells turn out to be
independent and the presence of the outer shell does not lead to new effects.

In this paper, we consider a cylindrical model of a tangential discontinuity
formed by two rotating coaxial shells with an azimuthal magnetic field in the
gap.

2. Dispersion equation

The system of rotation of coaxial shells with an azimuthal magnetic field in the
gap leads to the model of a tangential discontinuity we need in the case of shell
perturbations of the form exp (i (nϕ− ωt)), see [6].
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Indeed, the solution of the Laplace equation for the magnetic potential Ψ
in the gap has in this case the form

Ψ =
(

arn + br−n
)

exp (inϕ) . (1)

Using the condition on the surface of superconducting shells, we obtain

a =
iH0ϕ

∆

(

ξ02R
−n
1 − ξ01R

−n
2

)

,

b =
iH0ϕ

∆
(ξ02R

n
1 − ξ01R

n
2 ) ,

whereH0ϕ is the magnetic field in the gap in the absence of shells perturbations,
R2 and R1 are the radii of the outer and inner shells and

∆ =

(

R2

R1

)n

−

(

R1

R2

)n

.

Substituting the found values a and b into solution (1), after simple trans-
formations, we obtain the following expressions for the magnetic pressure on
the surface of the shells

P1m = P0m

(

1 + 2nα
ξ1

R1
− 4nβ

ξ2

R2

)

, (2)

P2m = P0m

(

1− 2nα
ξ2

R2
+ 4nβ

ξ1

R1

)

, (3)

where

α =
R2n

2 +R2n
1

R2n
2 −R2n

1

, β =
Rn

2 ·Rn
1

R2n
2 −R2n

1

, P0m =
H2

0ϕ

8π
. (4)

The equations of radial vibrations of shells in the case under consideration
have the form

ρh

(

∂2

∂t2
+ ω0

∂2

∂t∂ϕ

)

ξ1 +
D

R4
1

·
∂4ξ1

∂ϕ4
= ρhω2

0ξ1 − P1m, (5)

ρh
∂2ξ2

∂t2
+

D

R4
2

·
∂4ξ2

∂ϕ4
= P2m. (6)

Substituting into the system of equations (5), (6) the expressions for the
magnetic pressure on the surface of the shells (2), (3) and taking into account
that

ξ1 = ξ01 exp (i (nϕ− ωt)) ,
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ξ2 = ξ02 exp (i (nϕ− ωt)) ,

we obtain a system of homogeneous equations that determine possible oscilla-
tions in the system

(

ω2 − nωω0 −Ω2
1 + ω2

0

)

ξ1 + 2βγ21nξ2 = 0,

2βγ22nξ1 +
(

ω2 − Ω2
2

)

ξ2 = 0.

Here ω 0 is the angular velocity of shells rotation,

Ω2
1 = ω2

1n + αγ21n, Ω2
2 = ω2

2n + αγ22n, (7)

ω2
1n =

Dn4

R4
1

·
1

ρh
, ω2

2n =
Dn4

R4
2

·
1

ρh

are eigenfrequencies of shell vibrations in the absence of a magnetic field, and

γ21n = n
2P0m

ρh
·
1

R1
, γ22n = n

2P0m

ρh
·
1

R2

are parameters that determine the influence of the magnetic field of the gap.

The consistence condition of the obtained system gives the dispersion equa-
tion of the problem

(

ω2 − nω0ω − Ω2
1 + ω2

0

)

·
(

ω2 − Ω2
2

)

= 4β2γ21nγ
2
2n. (8)

3. Vibration of shells in the absence of their rotation

First, consider a special case when there is no rotation of the shells (ω0 = 0) .
In this case, dispersion equation (8) takes the form

(

ω2 − Ω2
1

)

·
(

ω2 − Ω2
2

)

= 4β2γ21nγ
2
2n,

or

ω4 −
(

Ω2
1 +Ω2

2

)

ω2 +Ω2
1Ω

2
2 − 4β2γ21nγ

2
2n = 0.

This equation determines the eigenfrequencies of the coupled oscillations of
the system under consideration, which are equal to

ω2 =
1

2

(

Ω2
1 +Ω2

2 ±

√

(

Ω2
1 − Ω2

2

)2
+ 16β2γ21nγ

2
2n

)

. (9)
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It is easy to see that the eigenfrequencies (9) are real if the inequality holds

Ω2
1Ω

2
2 > 4β2γ21nγ

2
2n.

Substituting into this inequality the values Ω2
1 and Ω2

2 from (7) and taking
into account that

α2 − 4β2 = 1

(this can be easily verified using (4)), we obtain the condition for the realness
of frequencies

ω2
1nω

2
2n + αω2

1nγ
2
2n + αω2

2nγ
2
1n + γ21nγ

2
2n > 0.

Obviously, this inequality holds identically. This means that in the absence
of shell rotation, the oscillations of shells of the considered type are always
stable.

4. Oscillation of rotating shells

Next, we consider the general case when the shells rotate. An analysis of the
dispersion equation (8) in this case shows that with an increase in angular
velocity ω 0, instability occurs. In this case, there are two different critical
velocities ω 1kr and ω 2kr, the values of which depend on the magnitude of the
magnetic field of the gap, the ratio of the shell radii and the harmonic number
n. Instability occurs when the rotation speed ω 0 is in the interval between ω 1kr

and ω 2kr, so ω 1kr < ω 0 < ω 2kr.

The values ω 1kr and ω 2kr in the general case can be found numerically.
However, in the particular case when n = 2, for a small gap, the instability
conditions can be obtained in an analytical form. At n = 2 the perturbed
shape of the shell has the form of an ellipse with a variable eccentricity.

Let R2

R1
= 1 + ε, ε ≪ 1. Then, if the field in the gap is not too small and

satisfies the inequality [7], [8]

H2
0 ≫

8π

3
ε

E

1− y2

(

h

R1

)3

,

(

ε
ω2
1n

γ21n
≪ 1

)

,

then, in the zeroth-order approximation in ε, can be written

Ω2
1 = Ω2

2, γ21n = γ22n.
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Under these conditions, dispersion equation (8) takes the form

(

(ω − ω0)
2 − Ω2

1

)

·
(

ω2 − Ω2
1

)

= 4β2γ41n. (10)

Assuming no rotation (ω0 = 0) equation (10) takes the form

(

ω2 − Ω2
1

)2
= 4β2γ41n,

and its roots are equal

ω2 = Ω2
1 ± 2βγ21n.

Consequently, the eigenfrequencies of the system oscillations have the form

ω2
1 = ω2

1n + (α− 2β) γ21n,

ω2
2 = ω2

2n + (α+ 2β) γ21n.

In general, when the shells rotate (ω 0 6= 0), the roots of the equation have
the form

ω 1,2 =
1

2
ω 0 ±

√

Ω2
1 +

(

1

2
ω 0

)2

±

√

Ω2
1ω

2
0 + 4β2γ21n.

We are interested in the case when the second root of equation (10) is
complex. Obviously, this takes place when for the angular velocity of shells
rotation, the following inequality holds:

Ω2
1 − 2βγ21n <

(

1

2
ω 0

)2

< Ω2
1 + 2βγ21n,

or, given the expression for Ω2
1 from (7), we finally have the boundaries for this

velocity of shells rotation

2
√

ω2
1n + (α− 2β) γ21n < ω 0 < 2

√

ω2
1n + (α+ 2β) γ21n.

5. Conclusion

The stability of the tangential discontinuity with respect to small radial pertur-
bations of the shell shape proportional to exp (inϕ) is studied. It is shown that
the diamagnetic gap leads to the splitting of the eigenfrequency of oscillations
into two frequencies ω 1n and ω 2n, and the values of the critical velocities of shell
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rotation turn out to be equal to these eigenfrequencies of the system oscilla-
tions. The instability condition for such a tangential discontinuity is obtained,
which has the form similar to the instability condition for plane problems, i.e.
2ω 1n < ω0 < 2ω 2n.

Thus, the stability conditions for the cylindrical model turned out to be
identical to the stability conditions obtained for the plane models.
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