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Abstract: The aim of this work is to develop a detail analysis of a Timoshenko
type beam model taking into account a delay. We prove the well-posedness and
regularity of solution, explained using the theory of the Faedo-Galerkin scheme.
Namely, under a suitable choice of Lyapunov functional, exponential decay of
the whole energy holds.
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1. Introduction

Here we consider the following Shear beam model and new facts related to the
classical Timoshenko system with internal delay
plgl?tt(ﬂf, t) - K‘((pa:(xa t) + 1/)('1‘7 t))ﬂ: + MO%(% t)
+:u1()0t(xvt_7—) =0 in ]OaL[X(0>+OO)7 (1)
Additionally, we consider initial conditions given by
QD(I‘,O) :900(-1'), th(x‘,O) :<P1(33)> 1/)(.1‘,0) :1/)0($), x E]O,L[,

where g, 1,1 are given functions, and the boundary conditions of Dirichlet
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are given by
¥z(0,t) = (L, t) = 0(0,t) = p(L,t) =0, t>0.

Note that the functions ¢ and v describe the transverse displacement of the
beam and the rotation angle of a filament of the beam, respectively. p1, k, po, pt1,b
and 7 are positive constants.

It is well known that if gy = 0, that is in absence of delay, the corresponding
following system:

(prou(w,t) — k(o (,) + (2, 1) + ppy (2, 1) = 0
in ]0, L[x (0, +00),
0y (2,t) + K(pz(z,t) +(z,t)) =0 in |0, L[x (0, 400), (2)
¢(z,0) = @o(z), ¢i(2,0) =p1(z), ¥(x,0)=1th(z) in]0,L]
(¥2(0,1) = ¥ (L, 1) = ¢(0,8) = (L, 1) =0, ¢>0,

was analyzed in a recent paper by Almeida and al. [1], where it was shown that
the energy of the system decays exponentially to zero.

In the case of the wave equations, Nicaise and al. [8] investigated exponen-
tial stability results with delay concentrated at 7 for the system

ugt(x,t) — Au(z,t) =0 in Q x (0,+00),
u(z,t) =0 on I'p x (0,400),

0
a—Z(w,t) + prug(x,t) + poug(xz,t —7) =0 on 'y x (0, +00), (3)

u(z,0) = up, w(x,0)=wu; in Q,
u(z,t —7) = folx,t —7) on 'y x (0,7),

under the condition po < pp, by combining inequalities due to Carleman esti-
mates and compactness-uniqueness arguments.

Recently Bayili and al. [2] in the case of the wave equation with dynamical
control, studied a wave equation set in a bounded domain with a dynamical
control. For the strong stability result, they use the spectral decomposition
theory of Sz-Nagy-Foias Parrott [9], Claude, Chen and al [5],[3]. Then they
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prove that if the delay term is small enough, then the system with delay

u(z,t) — Au(z,t) =0 in Q x (0, +00),

u(z,t) =0 on I'p x (0,+00),

0

a—Z(m,t) +n(z,t) =0 on Ty x (0,+00),

nt(wvt) - Ut(l‘,t) + 5177(55‘>t) + 5277(55‘»15 - 7_) =0 (4)
on I'ny x (0, +00),

u(x,0) =ug, ui(r,0) =wuq in Q,

77(3370) =To on 'y,

n(x,t —7) = fo(z,t —7) on I'y x (0,7),

\

has the same (polynomial) decay rate than the one without delay. In this paper,
we assume that there exists a positive constant ¢ verifying

THo < ¢ < 7(210 — ). (5)

The remaining of the paper is organized as follows. In Section 2 the well-
posedness of the problem (1) is analyzed using the Faedo-Galerkin method.
And finally in Section 3 we prove the exponential decay of the energy when
time goes to infinity using a Lyapounov function.

2. Well-posedness of the problem

In this section we will give well-posedness results for problem (1) using Faedo-
Galerkin method. To this aim, we introducing the following auxiliary change
of variable

2(x,p,t) = @i(x,t —7p), x€|0,L], pec(0,1), t>0. (6)

The problem (1) is now equivalent to

p1eu (@, t) — Kk(pa(z,1) + ¥(2,1))z + powr(z,t) + prz(z, 1,t) =0
in 0, L[x(0,+00),

=)y (x,t) + Koz (z,t) + (2, t)) =0 in |0, L[x(0,+00),

T2(p,t) + z,(p,t) =0 in (0,1) x (0, +00);

¢(x,0) = @o(z), @t(x,0) = p1(z), P(x,0) =(z) in]0,L[,

z(2, p,0) = folz,—p7) V¥V pe(0,1),

2(2,0,t) = pi(x,t) Vte(0,+00)

Vo(0,8) = tho (L, t) = 9(0,t) = (L, t) =0, t>0.

(7)
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Let us consider the Hilbert spaces

H = H'(0,L) x L*(0,L) x H}0,L) x L2<(0, L) % (0, 1)),

and
My = (H2(0,L) N HL(0,L))? x H2(0,L) x H1<(O,L) % (0, 1)),
where .
L2(0,L) = {u c L*(0, L),/ u(z)dr = o} ,
0
HY0,L) = HY(0,L) N L(0, L),
and

HZ?(0,L) = H*(0,L) " HL(0, L).
We equipped ‘H with the norm

_ P b [*
H(u v, W, 2) H / [v|?dx + = / |w, |2d
2 2 /s
+E/ |ux+w\2daz+£/ / z|?dpdz, .
2 Jo 2Jo Jo

where ( is a positive constant verifying

Tro < ¢ < 17(2p0 — p1).

Let (¢,, z) be a solution of (7), the corresponding energy is given by

b L
b0 =2 [lala ) [wPars 5 [Cesvra

+§/ / |z|?dpdz.
2 0 0

Theorem 1. Under the assumption (5) we have

d

72 <0

Proof. Multiplying (7); by ¢: and integrating on [0; L], we have

L L
o / ouz Vo, )dz — & / (02, 1) + (z, D), o, t)de



STABILITY OF A TIMOSHENKO SYSTEM... 257

L L
b [l tioneOdn g [ 21w, 0z =0,
0 0
Integrating by parts, we obtain

p1 d

L
o dt . |90t(33,t)‘2dx — k[(pr + ¢)¢t($7t)]0L

L L
4 [ fpalent) 4 00w gl 0o+ o [l do
0 0
L
—I—,ul/ z(x, 1,t) ¢ (x, t)dx = 0.
0
Since ¢ is zero at 0 and L, we have

pd
2 dt J,

L L
-l—uo/ \got(a:,t)|2dac + ,ul/ z(x,1,t)¢(x, t)dz = 0. 9)
0 0

L L
op(z,£)2dz + 1 / lon(,8) + (1)) pua ()
0

Multiply (7), by v and integrate on [0; L] we have

L L
b /O Vaals D0n (2, ) + 1 /O (pu (@, 8) + (1) () = 0,

Integrating by parts, we obtain

L
b i )] + /0 o (1 D)oo, )

L
" / (o ( ) + (@, )] v (a, t)dar = 0.
0

Since 1, is zero at 0 and L, we have

L L
b/o Uy (2, ) (2, t)dx + ﬁ/o [z (2, t) + U(x,t)] Yy (x, t)dz = 0,

which is written as

bd [F

L
S2dt ; ‘¢x($7t)|2d$ + H/O [0z (2, 1) + Y(x,t)] Yy (x, t)dx = 0. (10)
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Multiply (7)5 by gz and integrate on [0; L] x [0;1] we have
T

L 1 C L 1
[ttt tidpds + & [ [ sy step e =0,
0o Jo T Jo Jo

written as

th//\ “(a,pt |dpdx+—/ (2 p, )] d = 0.

.]: {)7 d})dﬂ:

—i—i L Uz(x 1 t)|2 _ |22(:L‘ 0 t)‘g] d — 0.

2T
By adding (9) — (11) we obtain

d L
nl |got(x,t)\2da:+fi/0 () + (5, 8)] 91 (2, 1)

L L
o / or(a, £)2da + / 2o 1, t)ge () da
0 0

L L
404 [ty P+ /-@/O lou (@, ) + (@, £)] tr(, t)da

2dt
ca 2
+2dt//|zxp,)\dpdx

b [ D0 ~ 260,00 e =0

27’

This means that
prd
2 dt
L
tk /0 (a2, 1) + (@, )] [a (1) + ()], da

L

|¢x<x,t)\2dx

L L
(ou(,0)2d + 1o / or(, 1) 2da
0

+ /L (x,1,t) (a:t)da:—i—bd
251 y L, 0)Pt 2 dt

+§£//\ 2(z, p, t)|*dpdz

(11)
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/ z(z,1,t)] |z(1:,0,t)\2} dxr = 0.

d L
dt{p; [ ora+ 5 [lone.n + vnPa

b L g1
‘1'5/0 |¢x($>t)|2d$+%/0 /0 \z(x,p,t)|2dpdx}

L L
+ o / e, t)Pde + / 2, 1, o, t)de
0 0
¢ [F 2 2 _
+ 2_ UZ(.I‘, 17t)| - |Z($,0,t)‘ ] dx = 0.
.

And this leads to

d L L
GEO = —uo [ leeOPde - [ (w1000 0ds
0 0
¢ [ : ;
- E 0 [‘Z(l‘,l,t” —|Z($,0,t)‘ ]dﬂ)

Since ¢¢(x,t) = z(x,0,t), we have

d L L
GEO = —uo [ e 0.0Pde - [ s 1020,
0 0
¢ [ : :
- E 0 “Z(l‘,l,t)‘ —‘Z(.I‘,O,t” ]dl‘ (12)

We also know that
1 o 1 2
z2(x,1,t)2(x,0,t) = 5\,2(33, 1,t) + 2(x,0,t)|” — 5\,2(33, 0,t)]

- %\z(az, L), (13)

Using (13) in (12), we have

th() _ [C_T(QHO_M)]/0L|z(x,0,t)\2dx

2T

H1 E
> |z(2,1,t) + 2(z,0,t)|*dx
0
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. [%T_C] /OL |2, 1, 1) de. (14)

We have —% < 0 and by hypothesis (5), we get that

— (200 — _
(=70 =) _ g TLZC o,
2T 2T
d e
Therefore @E (t) <0, hence the system (7) is dissipative. O

3. Existence and uniqueness

In order to state our main result in this section, we start by defining that we
mean by a weak solution of the problem (7) as follows:

Definition 2. Given an initial data Uy = (o, ¢1,%0,20) € H, a function
U= (p,01,,2) € C([0,T]; H) is said to be weak solution of (7) if for almost
everywhere t € (0,77,

d
pl%(gotv u) + R(QOI($7 t) + ¢(x7 t)a ux) + NO(SOt; U)

+p1(z(-,1,t),u) =0, (15)
b(Ve, ve) + K(pz + 1, v) =0,
T(ztvw) + (vaw) = 07

for all w € HE(0,L),w € H%(0,L),w € L*((0, L) x (0,1) and
((0), ¢¢(0),%(0), 2(0)) = (g0, #1, %0, 20)-

The main result of this section is the following:
Theorem 3.

Assume that (5) holds. Then for any data Uy = (o, ¢1, %0, fo) belongs to H,
the problem (7) has one and only one weak solution U = (¢, ¢y, ), z) verifying:

(16)
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Moreover, if Uy = (¢o, p1, %0, fo) belongs to Hi, then problem (7) has one and
only one strong weak solution U = (p, ¢y, 1, z) which satisfies

@€ L>(0,T,H*(0,L) N Hy(0,L)) ,
pr € L* (0, HL(0, 1)),

¢ e L™ (0,T,HZ(0,L)),

z € L (0,T,H'((0,L) x (0,1))) .

(17)

Proof. The Faedo-Galerkin method will be the key to prove the existence
of a global solution.

Step 1. Let us consider initial data (¢o, @1, %0, fo) € H.

Let {u*},k € N* and {v*}, k € N* basics formed by eigenfunctions of —0,.
This bases can be considered orthogonal in H%(Q) N H}(2) and H2(0, L) re-
spectively, and both orthogonormal in L?(0; L).

As Yazid, Chen et al. in [10],[4], we also define the sequence {w"}, k € N*
in the following way

w*(x,0) = uF(z) then we extend w*(z,0) by wF(z,p)

on L2<(0, L) % (0, 1)).

Approximation spaces H,, V,, and W,, of finite dimensions are given by
H,, = span {u u? , U } V, = span {vl,UZ,...,v"}

and Wn—span{w w? ”} n € N*.
We will find an approxunate solution of the form:

=Y a" () ()
j=1

n

z) = bt (z)
j=1

n

"z, t,p) = Zcm (t)w (z, p),
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to the following approximate problem

L L
" / (e tyudz — r / (2, 1) + 0™, )], ude

L L
+M0/ o (z, t)udx + 1y / 2" (x,1,t)udx =0,
L 0 L 0 (18)
Ve (@, t)vds +n/ [ (2, 1) + " (2, )] vdx = 0,

C/ /zt x,p,t wdpda:—i—c// (z, p, t)wdpdx = 0,

for all w € H,,,v € V,,,w € W,,, with initial conditions such that

("(0), ¢4 (0), ¥™(0),2"(0)) = (&6, 1> %0, 20) = (0,1, %0, fo),  (19)

strongly in H.

Note that a/™, b™ and ¢/, 1 < j < n form the temporal weighting coeffi-
cients.

According to the standard theory of ordinary differential equations, the
finite dimensional problem (18) — (19) has a solution (a/",»",c¢'™),1 < j < n
defined on [0, t,) for every n € N*.

Then the a priori estimates that follow imply that in fact ¢, = T, VT > 0.

Step 2. A Priori Estimate I
Replacing u by ¢} in (18),, v by ¢ in (18), and w by 2" in (18),, we obtain

5@/0 o ()] d$+f€/0 [ (x, 1) + ™ (z, )] P (¢, t)da
L L

o / 0 (2, 0)Pd + / e, 1, )} () = 0,
0 0

L
- / 2Pl -+ [t + 0@ 0] w0 =0, (20)

d
d—//|z (z,p,t)|>dpdx

[|z (z,1,t)]> = |2"(2,0,t)[*] dz = 0.

Ny DN o

\ 27’

By making the same transformations as in the session of the dissipative char-
acter, we obtain

%E”() _ {C—T(Z;io—ul)]/OL|Zn($7O’t)‘2d$
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M1 L
|2 (@, 1,t) + 2"(x,0,t)|?dx

N [“‘1‘4] /OL\z”(x,1,t)\2dx, (21)

where
b [T k[T
o) = 2 [ira ) [ete s [l orpe

+ C/ / |2"2dpda.

Thus integrating (21) from 0 to t < t,,, we obtain from our choice of initial
data that for all ¢ € [0;¢,] and for every n € N*,

EMt) — EM0) = [C 2“0_’“ }/ / (2,0, 5)[2dads

+ [TMI ]// "(x,1,5)|*dxds

— / / @, 1,t) + 2"(x,0, s)|*dxds
which means

) — {4_72“0_“1]// "(2,0,5)2dxds
// "(x,1,5) + 2"(x,0,s)|*dxds
[T‘“ ]/ / "(z,1, )% dwds = E™(0),

where

L
g0 = 2 [ lwore ) [ e ore

L
+ 8 / 8 (2, 0) + 4" (z,0) P

+ C//\z (z, p,0)|*dpdz.
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As (¢"(0), ¢ (0),9"(0), 2"(0)) = (5,1, %0, 20) = (%0, 1, %0, fo) strongly in
H, then there exists a positive constant C such that E"(0) < C;. Hence

— 7(2p0 —
E"(t) — [C ( MO il ]/ / (z,0, s)|*dzds
/ / "x,1,8) + 2"(x,0, s)|*dzds
[T'ul } / / "(x,1,5)*deds < C,

which means that

p1 b L n n|2

2
C/ / |2"|2dpdax
_[ _7—2”0_”1}// "(x,0,5)|*drds
H1 n n 9
+7/ / |2"(z,1, s) + 2" (2,0, s)|*dzds
- [T'UI } / / (z,1,s)|>dzds < C. (22)

As the constant C7 does not depend on n, we can therefore take ¢, = T,
for all T > 0.

Step 3. A Priori Estimate II
Let us derive the equation (18); with respect to t and then replacing u by ¢J;.
We obtain

L L
o / ()l (@, ) — 5 / (1) + 00 (. D), (a, t)de

L L
—l—,u,o/ oz, t)ph(z, t)de + / 2 (x, 1, t)ph (x, t)dx = 0.
0 0

By integrating by parts, we obtain

p1 d L|

5 | e P de — K[ + 0]l 0l
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L
e /0 (o0 (@, 1) + 0P (2 £)] ol (2, )

L L
+ uo/ \goﬁ(:z:,t)|2dx + 1y / 2 (x, 1, t)ph (x, t)dx = 0.
0 0

As ¢ is null at 0 and at L, we have

L L
p1 d n n
0 [ et 0P+ [ ) + 00 @ 0] e o

L L
o / el )2da + / (e L gl (e )de = 0. (23)
0 0

Let us derive the equation (18), with respect to ¢, and then replacing v by j},
we obtain

_b/ Q/)xxt xz, t wtt x t)d
L
e [ lelnt) + 0] Ui s =
Integrating by parts, we obtain
. L
bl O+ [ e 0. e
L
o [ lelant) + 0 @, 0] (o, o =0,
Since 1, is zero at the edge we have
L
b [ e v
L
"'H/O (o (x,t) + i (2, t)] Yii(z, t)dx = 0.

This is written as

bd
2dt

L
+'€/ [P (2, t) + i (2, 1)] ¥ (, t)dz = 0. (24)
0

\wﬁt(fﬁ,t)IdeC



266 1. Ouedraogo, G. Bayili

Summing (23) and (24), we obtain

g
1 d L L
1af, / ol (. 0)[2da + & / (@, 1) + U a, 0)Pde

L L
b /0 w;;(x,t)\?dx} T o /0 (e 0)Pda

L
s [ L 06l 0ds =0,
0

which means that

d

L
EGn(t) + p1 / 2 (x, 1, t)pp (x, t)dx
0

L
o / ol () Pde = 0, (25)
0
where

p " 2 ko[* 2
() = G [leneoPdo+ 5 [ et + i@l

b

L
+ —/ ™, (2, ) |2 d.
2 Jo

By integrating (25) from 0 to ¢ we have

t L
Gyt [ [ w196k o s)dods
0o JO

t L
1o / / o (2, 8)|2dds = G™(0),
0 0

where

L L
n p n k
&0 = & [ @0l +5 [0+ v o

b r n 2
v o [ e, 0.
0

As (Qpn(o)v @?(0)? Q/)n(o)7 Zn(o)) = (308? @?) 1/’8» Zg) - (9007 #1, Q/)Oa fO) strongly in
H, then there exists a positive constant Cy such that G™(0) < Cy. Hence

t L
Gyt [ w196k o s)dods
0 0

t L
10 / / & (2, ) Pdads < C. (26)
0 0
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Step 4. Passage to Limit

From (22) and (26) we have that:
{¢"} is bounded in L™ (0,T, H}(0, L)),
{¢7} is bounded in L* (0,7, L*(0,L)) ,
{¢p} is bounded in L™ (0, T, L2 0,L)),

)

<w”> is bounded in L*> (0 T,H0,L )
(%”) is bounded in L*® (0 T,L?(0,L) ) ,
{z"} is bounded in L> (0,T, L*((0, L) x (0,1))) .

So we can extract subsequences {@”},{Q/)”} and {z"} such as
{¢™} = ¢ weakly star in L> (0,7, H§(0, L)),
{¢} — ¢ weakly star in L™ (0,7, L*(0, L)),
{©l} — o weakly star in L™ (0,7, L2(0 L)),
{Y"} — ¢ weakly star in L>° (O T, H1 (0, L ) )
{¥p"} — vy weakly star in L> (0,7, L2 (0,L)),
{z"} = z weakly star in L> (0, T, L*((0, L) x (0,1))) .
Moreover, from (22) we have
{¢"} is bounded in L? (0,7, H§(0, L)),
{¢7} is bounded in L? (0,7, L*(0,L)) .

And since H}(0, L) is compactly injected into L?(0, L), see [6], we have by
the Aubin-Lions theorem [7] that
{¢™} — ¢ strongly in L> (0,7, L*(0, L)) .

We also show that
{©P} — ¢ strongly in L (0,7, L*(0, L)) ,
{¢"} — o strongly in L™ (0,7, H}(0,L)) .

Then we can pass to limit the approximate problem (18) — (19) in order to
get a weak solution of problem (7).

And we use density arguments to get problems (7) that admit a global weak
solution satisfying

(RS L (O,TaHl( ) )

wy € L™ (07T7 L2(07 )) ) (27)
¢ e L™ (0,T, H-(0, L)),

2 € L (0,7, L%((0,L) x (0,1))) .
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Step 5. A Priori Estimate II1
Suppose that the initiale data in the approximate problem (18) satisfies
(8007 Q0171/}07 fO) € Hl and
(4108790?,1/18,28) — (@07@1»1/)07.)00) (28)

strongly in H;j.
Replacing u by —¢2,; in (18),, v by =97, in (18), and w by 2, in (18),4
we arrive at

iF”() _ [C_T(Q”O_Ml)}/OL\z;‘(x,O,t)Fdx

dt 2T
H1 L

- ? |22($,1,t)—|—2’2($,0,t)‘2d$
0
o L

o[22 [ eope (20)
T 0

where
L L
P1 b K
A e Ry M

+ g/ / |2 2dpda.
2Jo Jo

Thus integrating (29) from 0 to ¢, we obtain from our choice of initial data that
for all t € [0; 7] and for every n € N*,

F™(t) — F"(0) = {C_TQ“O_‘“]// (2,0, 5)|2dzds

+ [T'ul ]// "z, 1,s) [*dxds

- // "z, 1,8) 4+ 22,0, )| dzds.
This means

) - [C_TQ“O_‘“]// " (2,0, 5) 2dwds
/ / n(2,1,5) + 22, 0, 5)|2dads
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|:7',U1 ]/ / "(2,1,s)2dxds = F™(0),

where

b L
P = 2 [lewora ) [ e ope

L
+ ’"”/ e (2,0) + (2, 0)|2da

+ C/ / 12" (x, p, 0)|*dpd.

As (¢"(0),#7(0),9"(0),2™(0)) = (@5, 1, ¥6, 25) = (0, %1,%0, fo) strongly in
Hi1 we can deduce that each of the sequences {¢"(0)},{¢}(0)}, {¢"™(0)} and
{z"(0)} is bounded.

Thus there exists a positive constant C3 such that F™(0) < C5. Hence

e - [4_72"0_’“}// " (2,0, 5) 2dwds

Hl// "(x,1,8) + 2 (x,0,s)|*drds

[Tul ]// "(z,1,s)|*dzds < Cs.

Which means that

L
28 [Cgtpaasd [Cnrac s § [ ok vras

+ C/ / |22 2 dpdx
—[ _72“0_’“ ]// (2,0, 5)|2dzds (30)

+ / / "z, 1,8) + 2,0, )| dzds

[T'ul ] / / "z, 1,8)|*dzds < Cs,

where C} is a positive constant independent of t and n but depending on initial
data. Then we can conclude that
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{¢"} is bounded in L> (0,7, H*(0,L) N H(0, L)),
{¢7} is bounded in L* (0, T, H}(0, L)) ,

{y"} is bounded in L*> (0 T, H2(0, L)) ,

{2"} is bounded in L>(0, T, Hl((o, L) x (0,1))).

This implies that
{¢™} = ¢ weakly star in L> (0,7, H*(0, L) N H}(0, L)) ,
{ef} = ¢ weakly star in L™ (0,7, H}(0, L)) ,
{¢"} = ¢ weakly star in L> (0,7, H2(0,L)) ,
{z"} = z weakly star in L> (0,7, H'((0,L) x (0,1))) .

From the above limits, we conclude that (¢, ¢, 1, 2) is a strong weak solu-
tion satisfying

¢ € L>(0,T,H*0,L) N H}(0,L)),
¢y € L (0,T,H}(0,L)) ,

¢ e L>(0,T,H2(0,L)),

z€ L>®(0,T,H'((0,L) x (0,1))) .

Step 6. Continuous dependence

Let U(t) = (p,¢1,9%,2) and V(t) = (¢, ¢},¢,2") be the stronger weak
solutions of the problem (7) corresponding to initial data

U(O) = (@07@1)1/)0720)) V(O) = (()06790/171%)726) € Hi.

Then (®,®,, ¥, Z) = U(t) — V(t) is solution of the system

p1Pu(,t) — K(Pp(x,t) + W (x,t))s + poPe(x,t) + 1 Z(x,1,t) =0
n ]0, L[x (0, +0o0)
0@y (x,t) + K(Py(x,t) + ¥(x,t)) =01in |0,

0.
TZt(J:ypat) + Zp(x7p7t) =0 (1370, ) ( ) (

(0, +00),
0,1)

x (0, 400),

with initial data (@(0), ,(0), ¥(0), Z(O)) — U(0) — V(0).
)

Multiplying (32), by ®; and (32), by ¥; and integrating, we obtain

d L L
GO0+ [ @ )2 1,00+ [ @i e =0
0 0
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with

P1 L kot
g(t) = 3 |y (2, 1) dz + 5/ o (@, t) + Uz, t) do
0 0

b [F )
+ = |y (z, )| dx.
2 Jo

Applying Young’s inequality, we obtain the existence of a constant M; such
that

d L
—G(t) < Ml/ @y (z,t)|*dx
dt 0

L L
< Ml[/ \@t(m,t)|2da:—|—/ \@x(m,t)+‘ll(m,t)|2dx
0 0

+ /OL [0 (o, )], (33)

And by integrating (33) from 0 to ¢ we get

t . L
o) < g0+ [ [ [ ese 0P
0o tJo

L L
2 2
+ /O D, (2, ) + U (a, V)| da:—i—/o (e NPda]dr (34)

kb
On the other hand, we know that for My = min {%, 5 5}, we have

L L
G(\) > Mg[/O \<I>,\(m,)\)|2dx—|—/0 |, (2, \) + U(z, \)|*dx

+ /OL [0 (e, )] (35)

From (34) and (35) we have
G(t) <G(0) + 7 | G(A)dA. (36)

Applying Gronwall’s inequality we have
My .t

G(t) <G(0)e Mz . (37)

So we obtain the continuous dependence of solution on the initial data. In
particular, the solution is unique.
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The proof of theorem is thus completed. O

4. Exponential stability

Theorem 4. Let the assumption (5) be satisfied. Then, there exist posi-
tive constants M and K such that, for any solution of (7)

E(t) < ME(0)e Xt vt > 0.

L L
Proof. Let F(t) = 2cp / prpds + poc / || da,

0 0
where c is a constant whose conditions we will specify later.
Multiply (7); by 2c¢ and integrate from 0 to L. We obtain

L L
2¢epq /0 ou(z, t)p(z, t)dx — 26%/0 (e (2, t) + (2, 1), oz, t)dx

L L
+20H0/ er(z,t)p(z, t)dx + 26u1/ 2(z,1,t)p(x, t)dz = 0.
0 0
9 2
As oo = a(@tw) — |¢e]”, we have

L a L )
201 [l 0ot Ode 2001 [ i
0 0
L L a
4205 [ t) + (e, )] (o Oz + i [ 5 lel )P
0 0
L
+2e / 21, t)p(a, ) = 0,
0
which means that
o L )
or |, (2ot oo, ) + cuoliote, O [ da
L L
—2cp1/ |<pt\2d:v—|—20/<a/ [oz(x,t) + P(x,t)] pu(x, t)dx
0 0

L
—|—26,ul/ z2(x, 1, t)p(z,t)dr = 0. (38)
0
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Multiply (7), by 2ct) and integrate over 0 to L. We obtain

L L
~20b [ a0 + 20 [ at) + (o 1)] s =0,
0 0
Integrating by parts, we have

L L
—2cb [Q/Jggw]g + 2cb/ 1|2 d + 20&/ [pz(z,t) + P(z,t)] pdx = 0.
0 0

Since 1, is zero at 0 and L, we have

L L
20h / (o 2 + 20 / lou (1) + (@, £)] Gz = 0. (39)
0 0

Now summing (38) and (39), we obtain that

d

L L
%F(t) = 20p1/ \gpt\de—Qaﬁ/ | (x,t) + (2, t) | d
0 0

L L
— 2c,u1/ z(x, 1,t)p(x, t)dx —2Cb/ 1|2 da.
0 0

L
Applying Young’s inequality to —2cp; / z(x, 1,t)p(x, t)dx, we get
0

d L L
@}"(t) < 26p1/ \got\de—Qaﬁ/ Iz (2, ) + ¥ (z, t)|Pdx
0 0
9 2 L L
+ B [ Pde e [t 0
4e 0 0

L
- 2cb/ 1| 2d, Ve > 0
0

IN

L L
2Cp1/ \gpt\de — 2C/<a/ |z (z,t) —I-l/)(a:,t)\Qde‘
0 0
L 2 L
+ 5/ |g0(x,t)\2d1‘+—(c/?) / 2(x, 1,8)[2dz
0 0

L
— 2cb/ || 2dx, Ve > 0.
0

L
Applying Poincare’s inequality at & / lo(x,t)|*dx, we obtain
0

d

L L
@}"(t) < 26p1/ \got\de—Qaﬁ/ Iz (2, ) + 9 (z, t)|Pdx
0 0
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L
+ EL2/ l0u (, 1) dx+(c’“) / I2(2, 1,1) Pda
0

- 2cb/ || ?dx, Ve > 0.
0

We also know that

L

L L
/ ou (e, D)Pdz < 2 / (o) + (a0 2de + 2 / (e, t)Pde.
0 0

0

By Poincare’s inequality we have

L L
/ ou(e DPde < 2 / (a2, 1) + (. t)2da
0 0
L
- 2L2/ [t (2, 1) dex.
0
Multiplying (41) by eL? we have
L L
12 / oo )Pde < 2L / 0@, 1) + (. t) Pde
0 0

L
- 25L4/ W (, t)|*d

2e L2
< EX / () + ()P
2eL*
b 2 [ e P
2eL? 2eL* ,
If we put ¢ = max TR we obtain

L L
eI? / oa(e DPds < ck / (o, 1) + (. 1) Pde
0 0

L
+ cb/ |1 (0, t)|*da.
0

From (40) and (42) we can write

d L L
dt]:( ) < 2ep / \gpt\Qdaz — QCFL/ |z (z,t) + @b(x,t)\Zda:
0 0

(40)

(42)
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L
Lok / 02, 1) + (. t) Pde
0

L 2 L
- cb/ o, 1) %da + (C’i}) / |22, 1,0)|%de
0 0
L
— 2cb/ [z |?dx, Ve >0,
0
which means that

L L
GO < 2 [loldn s [ lpa(ot) + vla )Pl
0 0

2 L
+ M/ |2(2,1,t)2dx
0

9

L
— cb/ || 2dx, Ve > 0. (43)
0

Let us put I(t) = c(e*" fOL fol e 2| z|2dpdx, we have

—I —QCCeQT/ / 2P 22 dpd.

1
From (7), we have z; = ——%p; 50
d —20C€27- _or
—I(t) = Pzz,dpda

dt
= — 2CC62T/ /eQszdeda:
0o Jo
27 L 1
d
B CCG / / —(672Tp2’2)d$dp
T o Jo dp
L 1 CC@ZT L
= — QCCeQT/ /6_2Tp22dpd$— / e 2722 (x,1,t)dx
o Jo T Jo
27 L
+ cCe / 022(z,0,t)dx

= - 2CC62T/ / e P2 dpdx — C/ 2(z,1,t)dx

2T
+ «e / 2(x,0,t)dx
0

T
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L rl CC L
CC@QT/ / e 2P 2dpdr — = / 22(x,1,t)dx
0 Jo T Jo

T L
ﬂ/ 2(2,0,t)dz

27/ / —2r ded:v——/ (x,1,t)d

27
e / (2,0, )da,
T 0

< —cg/ / dedx—— 22(x,1,t)dx

2T
+ ce / 2(x,0,t)dx.
0

T

Summing (43) and (44) we have

4 (1) + 7))

IA

IN

<

_l’_

L L
27 2
201 /0 oe2dz — ox /O (0@, 1) + (. t) 2da
2 L
(C‘“) / 2(z,1,1)] da:—cb/ o] 2da

CC/ / |z dpdx——/ |2(z,1,t)|*dx

2T
%e / +(2,0,1)|da
0

~
L L L 1

C[m/ \sDtIdeer/ \1/)$\2dx+c/ / |z|*dpdx
0 0 0 0

L
[ leate0) + 0w 0]
0

L 2 L

30P1/ |90t|2d$+[(6#1) —g}/ 2(z, 1, 1) da
0 € 0

.
2T L
e / (2,0, ) 2da
0

.
L 2 L

seon [ oo+ [FE - £ [Man,pas
0 € T4 Jo

CC€2T

L
/ |2(2,0,t)|*dx — 2cE(t)
0

-

(44)
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L
< - 20E(t)+30p1/ 12(2,0,t)*dz
0

n [(6#1)2 _ﬁ} /OL\Z(x,l,t)Fda:

3 T
CC€2T L 5
3 & /O\z(x,o,m da.
Thereby,
d 2T L
a(l(tﬂ—}'(t)) < _2CE(t)+(ch + 3ep ) /O I2(2,0,8)|2de
2 L
+ [@—%}/0 I2(2, 1, 8)2da. (45)

Setting
L(t)=NE(t)+ I(t)+ F(t), Vt>D0,

where N is a constant whose conditions we will specify later. We obtain from

(14) and (45)

_ 9 _ 2T L
Sewy < [N TRuo =) | cce +36p1}/ I2(2,0, ) 2da
dt 2T T 0

IN

N L
_ #/ 22, 1,8) — 2(2,0,8)[2dz — 2¢E(t)
0

As

-
enough such that

< 0, just take N very large

C—7(210 — 1) < 0. - <0 and T — ¢
2 2T

o 9 o 2T
NC T(2p0 — p1) n cGe +3epy <0,
i

2T
and )
L B S C D S
2T € T

Now we can take

6cTpy + 2cCe?™ 21t ud — QCCE}

N>max{7(2l~to—/ll)—C’ (¢ —Tp1)e
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For this value of N we obtain that

%E(t) < _2cE(). (46)

Moreover, it is easy to see the existence of two constants o and 3 such that
aE(t) < L(t) < BE(t),Vt > 0. (47)

By (46) and (47) we obtain

dﬁ

@~ _ —2B(t) _ —20E(t)

L(t) — L) — BE®)’

which means that

d
—L(t) —2c
dt
ORI (48)

Integrating (48) from 0 to ¢ we have

InL(t) — InL(0) < _7%.

This means that

By (47) we obtain

and

We obtain, by taking M = é and K = %, that
Q

E(t) < ME(0)e Kt vt > 0.

The proof of theorem is thus completed. O
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