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Abstract: This is the first paper in a sequence of studies including also [33]
and [34] in which we introduce a new type of neural networks (NNs) – wavelet-
based neural networks (WBNNs) – and study their properties and potential
for applications. We begin this study with a comparison to the currently ex-
isting type of wavelet neural networks (WNNs) and show that WBNNs vastly
outperform WNNs. One reason for the vast superiority of WBNNs is their
advanced hierarchical tree structure based on biorthonormal multiresolution
analysis (MRA). Another reason for this is the implementation of our new idea
to incorporate the wavelet tree depth into the neural width of the NN. The
separation of the roles of wavelet depth and neural depth provides a conceptu-
ally and algorithmically simple but very highly efficient methodology for sharp
increase in functionality of swarm and deep WBNNs and rapid acceleration of
the machine learning process.
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1. Introduction

The purpose of this paper is to propose a new approach to machine learning
of geometric manifolds in R

n, where n = 1, 2, 3, 4, ... using single-layer or deep
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neural networks (NNs) based on Riesz unconditional bases of biorthonormal
wavelets.

The first attempt to marry the theory of NNs with wavelet theory dates
back to the early 1990s [3]. This initial study gave rise to particularly con-
structed NNs which were named by the authors of [3] as wavelet NNs (WNNs).
In the course of the next twenty years, the theory and applications of WNNs
were studied by numerous authors. The results of these studies have been sum-
marized in [5] which constitutes a comprehensive account of the current status
of the study of WNNs. Before going into the mathematical details of the con-
struction and functioning of WNNs, let us note that this type of networks was
introduced relatively early, when wavelet theory was still quite new to the de-
velopers of applications in the field of Artificial Intelligence (AI). Due to this,
WNNs make use only of a very small subset of the useful properties of wavelet
bases. Thus, while the theory of WNNs relies on the basic property of wavelet
basis functions that they are dilations and translations of one and the same func-
tion, this theory ignores the more advanced properties of wavelet bases related
to Multi-Resolution Analysis (MRA). As a consequence of this, methods using
WNNs are no more than a variant of meshless kernel estimation methods. The
typical representative of these meshless methods are the ones using radial basis
functions [6]. The only essential difference with the variant of WNNs is that
radial basis functions are replaced by tensor-product functions with sufficient
number of vanishing moments. Not surprisingly, the mathematical apparatus
used with WNNs is identical with the one for radial basis functions: iterative
gradient or subgradient optimization methods. Unfortunately, these iterative
methods can guarantee providing the global extrema only when the respective
criterial functionals (objective functions) are convex. (Of course, in the partic-
ular case when the convex criterial functional is quadratic, possibly with linear
constraints, in addition to iterative methods there exists also a broad variety of
methods of computational linear algebra.) In practical applications, however,
the realistic criterial functionals are most often non-convex, with multiple local
extrema and saddlepoint singularities. In this general situation, the optimiza-
tion methods used with WNNs and radial basis functions produce only local
extrema which are close to the global extrema only if a very good initial starting
point of the iterative algorithm is proposed. The usual defense of this type of
results is to claim that all the local extremal values are close in value to the
global extremal value. Here is a typical exposition of this type of argument
[7]: “..., In particular, it was commonly thought that simple gradient descent
would get trapped in poor local minima – weight configurations for which no
small change would reduce the average error. In practice, poor local minima are
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rarely a problem with large networks. Regardless of the initial conditions, the
system nearly always reaches solutions of very similar quality. Recent theoret-
ical and empirical results strongly suggest that local minima are not a serious
issue in general. Instead, the landscape is packed with a combinatorially large
number of saddlepoints where the gradient is zero, and the surface curves up
most dimensions and curves down in the remainder. The analysis seems to show
that saddlepoints with only a few downward curving directions are present in
very large numbers, but almost all of them have very similar values of the ob-
jective function. Hence, it does not much matter which of these saddlepoints
the algorithm gets stuck at.”

Some critical analysis of the above text in [7] is due, as follows. While
there is some rationale in the above claims for large and very large sample and
network sizes, these claims cannot be accepted even as basic “rules of thumb”;
expressions like “rarely”, “nearly always”, “very similar”, “strongly suggest”,
“not a serious issue in general”, “seems to show”, “almost all”, “does not much
matter” are not good replacements for logical quantors. The argument about
saddlepoints with only very few negative components in the signature (that is -
to use fuzzy terminology in the spirit of [7] - ’saddlepoints which are almost local
minima’), is also unconvincing as a qualitative statement without any criteria
or means for quantitative measurement. Even if a saddlepoint in a problem
with a very large size has only one downward-curving dimension, the respective
value of the criterial functional (objective function) can be much larger than the
global minimum, if the downward curve is sufficiently steep. The one rigorous
conclusion that can be drawn from the above excerpt of [7] is that, once the
criterial functional (objective function) ceases to be (globally) convex, iterative
gradient/subgradient optimization is no longer a reliable approach to achieving
quality learning results. The only way to achieve best (or, at least, sufficiently
high) quality results is to start from a very good initial point of the iterative
process, but the traditional way of achieving this is by human intervention,
i.e., the use of natural, rather than artificial intelligence. In fact, the authors
of [7] acknowledge this in another excerpt of their text, as follows: “... The
conventional option is to hand design good feature extractors, which requires
a considerable amount of engineering skill and domain expertise. But this can
all be avoided if good features can be learned automatically using a general-
purpose learning procedure. This is the key advantage of deep learning ...”. Our
comment to this excerpt is that in the general case of non-convex criterial func-
tionals, gradient search only plays the role of an auxiliary tool for improvement
of already good results. Achieving these good initial results using AI is thus
claimed in [7] to be the main aim of deep learning, and, in general, this aim can-
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not be attained by only using local optimization methods. The major weakness
of WNNs proposed in [3] is that the crucial problem of finding a good initial
starting point for iterative local optimization has only been addressed by the
vague recommendation that some ’explicit link between the network coefficients
and the wavelet transform’ should be provided. This weakness persists also in
the later developments and upgrades of WNNs discussed in [5]. Our present
study shows that for sufficiently large samples this weakness can be overcome,
at least partially, via tools from functional analysis. Namely, there is a rigorous
mathematical general way to automatically improve the quality of the starting
point of the iterative optimization process, valid for all cases when the criterial
functional can be interpreted as distance between two mathematical objects.
Since, to the best of the authors’ knowledge, this systematic approach seems
to be new in the context of NNs (and much more certainly so in the specific
context of WNNs), we shall outline its main idea already in this early stage of
our exposition, as follows. If the metric criterial functional of an optimization
problem has an equivalent metric which can be computed efficiently without the
need of iterative optimization, then this equivalent metric d1:

0 < c0d1(x, y) ≤ d(x, y) ≤ c1d1(x, y) (1)

can be used to generate a consistently good starting point for the optimization
of the original metric d, provided that the equivalence constants cj , j = 0, 1,
with 0 < c0 ≤ 1 ≤ c1 < ∞, do not depend on x, y and, in numerical problems,
they are independent of the sample size of the numerical data (in the sequel of
this exposition we shall use the notation d ≍ d1). In most practical applications
in numerical analysis the metrics d and d1 are induced by respective equivalent
norms or quasinorms [9] or their seminorm variants. This refers not only to
deterministic quantities, but also in the indeterministic case, e.g. when consid-
ering equivalent risks in statistical estimation. A typical model example, with
various applications in deterministic approximation and statistical risk estima-
tion, is the Peetre K-functional between Lebesgue space Lp and homogeneous
Sobolev space Ẇ k

p , 1 ≤ p ≤ ∞, k ∈ N, [9],

K(hk, f ; Lp, Ẇ
k
p ) = inf

ϕ∈Ẇ k
p

(||f − ϕ||Lp
+ hk||ϕ||Ẇ k

p
) (2)

where f ∈ Lp + Ẇ k
p (the algebraic sum of the two spaces) and h is the

step (in applications, related to the sample size). An equivalent seminorm of
K(hk, f ;Lp, Ẇ

k
p ) is ||f − fk,h||Lp

+ hk||fk,h||Ẇ k
p

where fk,h is the Steklov mean

value of f with parameters k and h [10], the equivalence constants being inde-
pendent on f and h. The numerical computation of fk,h is based on quadrature
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formulae and does not involve optimization. Thus, ϕ0 = fk,h can be used as
a starting point of iterative optimization. The quality of ϕ0 as initial solution
of the optimization problem depends on the size of the equivalence constants
c0 and c1: if c0 = 1 = c1 (isometric equivalence) then ϕ0 is the exact solution
of the optimization problem. In the considered example, c1 increases rapidly
with increase of k and so for a fixed step h > 0 (fixed sample) the quality of
ϕ0 as initial solution deteriorates with the increase of k. Fix k ∈ N and let
h → 0+ (take sufficiently large sample): since cj , j = 0, 1, do not depend on
h (the sample size), for sufficiently large sample sizes ϕ0 will be a consistently
good starting point of the iterative optimization. Our first new result in Sec-
tion 2 is to use the above idea for automatic generation of an initial starting
point of iterative optimization in the case of WNNs. Although satisfactory from
theoretical point of view, the practical usefulness of this generation would be
rather limited, because the generated initial solution of the optimization prob-
lem would be consistently close to the global optimum only for sufficiently large
sample sizes. Nothing is guaranteed for large samples of any a priori fixed size,
let alone samples of medium or small size (in our numerical examples in the
sequel of this exposition we shall consider sample sizes with N ≥ 212 as very
large, 210 < N < 212 as large, 29 ≤ N ≤ 210 as medium-to-large, 28 ≤ N < 29

as medium, 27 ≤ N < 28 as medium-to-small, and 1 ≤ N < 27 as small). Our
conclusion is that WNNs can be used efficiently for finding a consistently good
local extremum only for very large sample sizes.

This weakness cannot be overcome within the conceptual construction of
WNNs: a more advanced construction of relevant NNs is needed which we
shall introduce in the present paper and call Wavelet-Based Neural Network
(WBNN). The principal difference between WNNs and WBNNs is explained, as
follows. Let ϕ be a scaling function (father wavelet) and ψ be the corresponding
wavelet (mother wavelet) obtained by MRA [1],[2], so that for any j0 ∈ Z the
functions

ϕj0k0(x1) = 2
j0
2 ϕ(2j0x1 − k0), ψjk(x1) = 2

j

2ψ(2jx1 − k), (3)

x1∈R, j = j0, j0 +1, ..., k0 ∈ Z, k∈Z, form an orthonormal basis of L2(R) and
∫

supp ψ

xλ1ψ(x1) dx = 0 holds for all λ = 0, 1, ... with λ < r for some, henceforward

fixed, r > 0, where supp ψ is the support of ψ in R.

Let ϕ be compactly supported in R (which implies the same for ψ). Let
Bs
pq(R),−∞ < s < +∞, 0 < p ≤ ∞, 0 < q ≤ ∞ be the inhomogeneous Besov

space with smoothness index s, metric power index p and metric logarithmic
index q (a definition will be given below). Assume that ϕ ∈ Br

∞∞(R), ψ ∈
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Br
∞∞(R). Then, since ϕ and ψ are compactly supported, ϕ ∈ Br

p∞(R), ψ ∈
Br
p∞(R) holds for every p : 0 < p ≤ ∞. For x = (x1, ..., xn) ∈ R

n, k =
(k1, ..., kn) ∈ Z

n, consider [27]

ϕ
[0]
0k(x) = ϕ0k1(x1)ϕ0k2(x2)ϕ0k3(x3)...ϕ0kn(xn)

ψ
[1]
jk (x) = ψjk1(x1)ϕjk2(x2)ϕjk3(x3)...ϕjkn(xn)

ψ
[2]
jk (x) = ϕjk1(x1)ψjk2(x2)ϕjk3(x3)...ϕjkn(xn)

. . .

ψ
[2n−1]
jk (x) = ψjk1(x1)ψjk2(x2)ψjk3(x3)...ψjkn(xn) .

(4)

Denote ϕ[0] = ϕ
[0]
00 , ψ[l] = ψ

[l]
00, l = 1, 2, ..., 2n − 1. Then, ϕ[0] ∈ Br

p∞(Rn),

ψ[0] ∈ Br
p∞(Rn for any p : 0 < p ≤ ∞, where ψ[l] is orthogonal to all polynomials

of n variables of total degree less than r. Besides, {ϕ[0]
0k, ψ

[l]
jk}k∈Zn,j=0,1,...,2n−1 is

an orthonormal basis of L2(R
n).

Moreover, for f ∈ Bs
pq(R

n), 0 < p ≤ ∞, 0 < q ≤ ∞, n(1
p
− 1)+ < s < r,

f(x) =
∑

k∈Zn

α0kϕ
[0]
0k(x) +

∞
∑

j=0

∑

k∈Zn

2n−1
∑

l=1

β
[l]
jkψ

[l]
jk(x) (5)

for Lebesgue almost everywhere (Lebesgue – a.e.) x ∈ R
n holds, where α0k =<

ϕ
[0]
0k, f >=

∫

Rn ϕ
[0]
0k(x)f(x)dx, β

[l]
jk =< ψ

[l]
jk, f > and a+ = max{a, 0}, a ∈ R.

Convergence in (5) is in the quasinorm topology of the inhomogeneous Besov
space Bs

pq(R
n) and, in view of the lower constraint about s, also in every

Lebesgue point of f , i.e., Lebesgue a.e. on R
n. Here, Bs

pq(R
n) admits the

following quasinorm in terms of wavelet coefficients:

‖f‖Bs
pq(R

n)=

{

(

∑

k∈Zn

|α0k|p
)

q

p
+

∞
∑

j=0

[

2
j[s+n( 1

2
− 1

p
)]
(

∑

k∈Zn

2n−1
∑

l=1

|β[l]jk|p
)

1

p

]q
}

1

q

. (6)

The construction introduced in (3-6) above generates an MRA with an
orthonormal wavelet basis

{ϕ0µ, µ ∈ Z} ∪ {ψ(l)
jν , j = 0, 1, ..., ν ∈ Z

n, l = 1, ..., 2n−1.} (7)

A typical example of such compactly supported wavelets are the Daubechies
wavelets [1] which will be the ones used in the remaining part of this paper. It
is possible to generalize this construction to generate a broader class of MRAs
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based on bi-orthonormal wavelets [2]. These are of considerable interest in
the case of polynomial spline-wavelets which are the type preferred in image
processing for n = 2 and surface processing for n = 3. In this case it is imper-
ative to use bi-orthonormal and not orthonormal spline-wavelets, because only
in the proper bi-orthonormal case can the spline-wavelet be compactly sup-
ported. (Moreover, an additional advantage in image processing is that there
exist proper bi-orthonormal spline-wavelets which are compactly supported and
whose graphs are symmetric.) There are no MRAs with compactly supported
orthonormal polynomial spline-wavelet bases. We intend to consider the use of
bi-orthonormal compactly supported spline-wavelets in a subsequent publica-
tion dedicated to deep image learning.

An important property of (bi)-orthonormal MRAs which follows from (3)
is that j = 0 in (4) can be replaced by any j0 ∈ Z, such that (5) continues to
hold true with j = 0 replaced by j = j0. In this case, (6) defines an equivalent
norm in Bs

pq(R
n) for p ≥ 1, q ≥ 1 (quasinorm for 0 < p < 1 and/or 0 < q < 1)

with equivalence constants dependant on j0. (The concept of equivalent metrics
continues to hold true for quasinorms, because quasinormed abelian groups are
metrizable [9, Section 3.10] – see also Section 3.

Consider now the above construction with j0 ∈ Z. Let J ∈ Z be such that
j0 < J < ∞ and consider the truncation

∑J
j=j0

of the series
∑∞

j=j0
in (5) and

(6). This defines a subspace VJ ⊂ Bs
pq(R

n) such that

VJ =span
(

{ϕj0µ : µ ∈ Z} ∪ {ψ[l]
jν : l = 1, ..., 2n−1, ν ∈ Z

n, j = j0, ..., J}
)

. (8)

Due to the properties of MRA, the following sequence of nested inclusions
holds:

Vj0 ⊂ Vj0+1
⊂ ... ⊂ VJ ⊂ VJ+1 ⊂ ... (9)

with
∞
⋃

j=j0

Vj = L2(Rn) (10)

holds where X̄ is the topological closure in Y of X ⊂ Y , where Y is a complete
topological space. (In the case of MRA, the complete topological space Y is L2

with respect to the topology induced by the inner product in L2 or, equivalently,

the norm in L2.) Consider also the spaces Wj = span{ψ[l]
jv : l = 1, ..., 2n−1, ν ∈

Z
n}, where j = j0, ..., J .

By the properties of MRA, f ∈ VJ admits two equivalent representations,
as follows:

∑

kJ∈Zn

αJkJϕJkJ (x) = f(x)
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=
∑

kj0∈Z
n

αj0kj0ϕj0kj0 (x) +

J
∑

j=j0

∑

kj∈Zn

2n−1
∑

lj=1

β
[lj ]
jkj
ψ
[lj ]
jkj

(x), x ∈ R
n, (11)

where the equalities in (11) are in the sense of Lebesgue – a.e. Invoking the
introduced spaces Wj, (11) can be equivalently rewritten as

VJ = Vj0
⊕

Wj0

⊕

Wj0+1

⊕

...
⊕

WJ = Vj0
⊕

J
⊕

j=j0

Wj. (12)

In applications involving processing of numerical data with sample size N ,
J is chosen dependent on N : J = J(N). Since

∫

Rn ψ(x)dx = 0, the usual

selection of J(N) is such, that the size of the support of ψ
[lJ ]
JkJ

is comparable to
the average step hN between adjacent data points:

diam(supp ψ
[lJ ]
JkJ

) ≍ hN ,where hN ≍ 1

N
, (13)

with equivalence constants independent of N . In view of the definition of ψ
[lJ ]
JkJ

,
(13) implies

J(N) ≍ log2N (14)

with equivalence constants independent of N . With this selection, the father
wavelet (scaling function) ϕJkJ acts as a consistent approximation of the Dirac
δ-function at the point x, as long as x ∈ supp ϕJkJ , and the rate of this ap-
proximation improves with the number of consecutive vanishing moments of ψ
additional to the condition

∫

R

ψ(x)dx = 0 needed for consistent approximation

(these would be
∫

R

xψ(x)dx = 0,
∫

R

x2ψ(x)dx = 0 etc.). With this selection, the

coefficient αJkJ is taken to be equal to the value of f at the point where ϕJkJ
is concentrated as a δ-function.

So far, we have been considering (3 - 12) for Bs
pg(R

n) of functions defined
on the whole space R

n. This means that the subspaces Vj and Wj , j ∈ Z, are
(countably) infinite-dimensional. To make the construction computationally
feasible, in numerical applications we limit the consideration to only those f ∈
Bs
pq(R

n) which are compactly supported with diam(supp f) comparable to the
diameter of the convex hull of the numerical data set (this numerical data set
is finite, therefore its convex hull is a bounded subset of R

n, so its closure is
compact (n < ∞)). In this case, the subspaces Vj,Wj , j ∈ Z are all finite-
dimensional, with dimensions depending on j, the distribution of the data set
and its sample size N .
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Now, let us extend the consideration to include also f ∈ Bs
pq(Ω), where

Ω ⊂ R
n is a nonvoid compact hyper-rectangle, i.e.,

Ω =
n
×
i=1

[ai, bi] (15)

where “× ” indicates Cartesian product, and −∞ < ai < bi < +∞, i = 1, ..., n.
The construction (3-12) continues to hold also in this case which is very similar
to the case of f ∈ Bs

pq(R
n) such that it is compactly supported, with supp f

contained in the closure of the convex hull of the numerical data set. In the
present case, the finite dimensions of Vj,Wj depend on j, the sizes of bi−ai, i =
1, ..., n, and the sample size N . Moreover, j0 ∈ Z is bounded from below by
diam(Ω):

j0 ≍ log2 diam(Ω), (16)

with constants of equivalence possibly dependent on n, but not on N . There
is one notable technical modification: the orthonormal wavelet bases in Vj and
Wj, j = j0, j0 +1, ..., J , contain boundary-corrected wavelet basis functions [11],
[12]. For the theory of deep learning of n-dimensional manifolds developed
here, there is no principal difference between the case of compactly supported
f ∈ Bs

pq(R
n) and the case of f ∈ Bs

pq(Ω) with Ω a compact hyper-rectangle in
R
n. Therefore, in our application we shall focus on the former one of these two

cases, to avoid the construction of boundary-corrected wavelets.
Now, we are in a position to provide a definition of WNNs which is equiv-

alent to the original definition in [3] and [5], but is in a new form which allows
an insightful comparison with the new type of WBNNs.

Consider the left-hand side (LHS) of the identity in (11). Define first a
1-layer WNN with its JkJ -th node being a neuron processing the αJkJ -th coef-
ficient in the expansion in the LHS of (11). The edges of the WNN’s graph are
only the ones connecting the input to the JkJ -th neuron and the ones connect-
ing the JkJ -th neuron to the output neuron where received results are summed
up. In contrast to this construction, repeat the 1-layer NN but with 1–1 corre-
spondence to the α-coefficients in Vj0 and the β-coefficients in Wj , j = j0, ..., J
(in the right-hand side (RHS) of (11)). The definition of the edges of the graph
of the 1-layer WBNN is the same as with the previous 1-layer WNN construc-
tion. The widths of the so-defined 1-layer WNN and WBNN are, of course,
the same. A crucial advantage of the WBNN layer is its telescopic ordering
which incorporates the wavelet depth into the neural width of the WBNN layer.
Adding neural depth to the 1-layer WNN and WBNN is done in one and the
same way: the next layers are added as intermediate between the already de-
fined 1st layer and the output neuron, and each intermediate layer has exactly
the same structure and ordering as the 1st layer.
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As we shall see in the next sections, the learnability conditions and univer-
sal approximation theorems for each of WNNs and WBNNs ensure that 1-layer
NNs (with the widths specified via the LHS and RHS of (11) and the com-
pactness of supp f) are sufficient for learning every element of the range of the
respective approximation theorem. From this point of view, deep WNNs and
WBNNs are theoretically redundant, but as we shall see, they provide a highly
efficient computing architecture for acceleration of the rate of convergence of
the approximation process by using iterative algorithms. A maximally sparse
structure of the edges between the l-th and the (l + 1)-st layer should be used
(a neuron on the (l+1)-st level is only connected with its corresponding neuron
at level l by way of the 1–1 correspondence between levels l and l + 1). In
practice, in the context of WNNs, the intermediate levels of the NN are used
for iterative local optimization starting with the initial approximation provided
at level 1. Although the performance of the deep WNN is expected to be better
than the one of the 1-layer WNN, this can be expected to be noticeable only
for very large sample sizes and respective very large number of iterations (very
deep WNN). For example, in the case of Fig. 4 of [3] the number of iterations is
10000. In the case of WBNNs, the quality of initial approximation is expected
to be very high, due to the efficient use of the wavelet depth within the layer of
neural depth 1. As a consequence, in comparison with the very large sample size
needed for acceptable performance of WNN, it can be expected for the initial
approximation of the 1-layer WBNN to be sufficiently good for large to medium
samples sizes, while as the ultimate approximation achieved by a deep WBNN
(with the 1-layer WBNN as its initial layer) to be sufficiently good already for
medium to small samples.

Notice the distinction we make between learnability conditions and universal
approximation theorems for a given type of single-layer NN computing f : Rn →
R for a given n ∈ N. (To study the general case of parametric manifolds on
R
n, i.e., f : Rn → R

m, m ∈ N, n ∈ N, it is sufficient to study it coordinate by
coordinate, i.e., for m = 1 only.)

A universal approximation theorem (UAT) for a single-layer NN of width
N is a qualitative consistency result (i.e., refers to existence of convergence in
a given topology without specifying quantitative rates of convergence) when
N → +∞ under the assumption of an activation function of specific type being
used in the neural computation. For example, in the case of sigmoid activation,
the respective UAT is due to Cybenko [13], [14] 1, and refers to continuous
functions, while in the case of Rectified Linear Unit (ReLU) activation [4],

1In [3] Cybenko’s work has been imprecisely and incompletely cited. Here we provide the
relevant corrected and complete citation [13], [14]
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the respective UAT refers to the more general class of functions in L1 (see [4,
Theorem 1]. The learnability set (LS) for a given single-layer NN of width
N is the largest set of f : R

n → R which can be approximated by neural
computation via this NN when N → +∞ without the invocation of a specific
activation function, i.e., when activation is via the default identity function.

As mentioned above, both LSs and UATs are qualitative consistency results.
In the next sections we shall show that it is possible to obtain quantitative
upgrades of LSs and UATs where the consistency results are strengthened to
results about concrete rates of approximation.

In Theorem 1 (Section 2) we obtain a new result for the established WNNs:
we propose a type of activation which is shown to lead to optimal performance
of WNNs and show that even optimal performance of WNNs is vastly outper-
formed by WBNNs.

In Section 3, in Theorems 2 and 3 we obtain new results about the learn-
ability via WNNs and WBNNs and in Corollary 4 we show that WBNNs can be
used to learn efficiently not only any regular distribution in L1,loc but also sin-
gular distributions like the Dirac delta and its derivatives. In the same section
we provide the general characteristics (i–iii) of the rich diversity of activation
operators that can be used in machine learning via WBNNs of univariate and
multivariate manifolds in two, three and higher-dimensional spaces. Here we es-
tablish the principal differences between non-threshold and threshold activation
in learning fractal and piecewise smooth manifolds, respectively.

In Section 4 we briefly address the importance of interconnection and in-
teraction between swarm AI and deep evolutionary AI and the relevance to
computational implementations using CPU and GPU parallelism. In Section
5 we introduce a new activation method based on the concept of decreasing
rearrangement in functional analysis and function space theory. Theorem 5
is a uniform approximation theorem (UAT) providing qualitative proof of the
consistency of the learning process when using the decreasing rearrangement
activation. Theorem 6 provides an important quantitative upgrade of the UAT
in Theorem 5 by showing that decreasing rearrangement activation of WBNNs
results in machine learning process which is optimal in two key aspects: fastest
learning and maximal compression. In Section 6 we consider four representative
model examples which are then subjected to comprehensive graphical compari-
son the results of which have been systematized into a collection of conclusions
and comments. Section 7 is comprised of the proofs. In the concluding Section
8 we discuss the connection of the present results with the studies in [33], [34],
as well as some additional computational and research topics.
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2. A new result about WNNs

In this section we shall show how the idea of using equivalent metric (as dis-
cussed in Section 1) can be used to generate an initial solution in a single-layer
WNN which is a good starting point for local optimization in a deep WNN
(having as 1st layer the said single-layer WNN). The universal approximation
theorem invoked in [3] is Cybenko’s classical result, [13], [14], valid for con-
tinuous functions f . As noted in [5], after the publication of [3] more gen-
eral learnability conditions and universal approximation theorems were derived
about WNNs. Namely, results about UATs for ReLU NNs were formulated and
proved in [4] in relevance to the larger space of Lebesgue-integrable functions
f ∈ L1(Rn). The ideas of the proofs of the results in [4] make it possible to
identify the LS for sufficiently wide NNs, including the case of WNNs with (14).

To present this result, here we shall use terminology which will allow us to
compare this result to the respective result for WBNNs (derived in section 3
below). Namely, in the case of wavelets on R

n, learnable by sufficiently wide
single-layer WNN are all regular distributions f in S ′(Rn) - the dual of the
Laurent Schwartz space S(Rn) [15]. In the case of boundary-corrected wavelets
on Ω-compact hyper-rectangle in R

n (see Section 1), learnable by sufficiently
wide single-layer WNN are all regular distributions f ∈ D′(Ω) - the dual of the
space D(Ω) [15] 2. In both cases, the regular distributions f are exactly the
elements of L1,loc(∆), ∆ = R

n or ∆ = Ω ⊂ R
n (for Ω see Section 1). Here, as

usual, L1,loc consists of all g defined Lebesgue – a.e. on ∆ and such that for
every compact subset C ⊂ ∆ the statement fχC ∈ L1(∆) holds true, where χC
is the characteristic function of C :

χC(x) = 1 for x ∈ C and χC(x) = 0 for x ∈ ∆ \ C.

In the case ∆ = Ω, Ω considered in Section 1 is a compact in R
n, therefore,

L1,loc(Ω) = L1(Ω). Notice that in the wavelet context the width of WNN is
exponential (solving (14) for N yields the equivalent N ≍ 2J) and sufficiently
large for L1,loc to be learnable via single-layer WNN, according to [4]. Therefore,
’deepening’ the WNN does not result in increasing the set of learnable functions.
However, deep WNN may offer the following advantage: while the universal
approximation theorem for sufficiently wide single-layer WNN provides only
consistency of the approximation (i.e., convergence exists but may be arbitrarily
slow), the use of a deep WNN with the said single-layer WNN forming its 1st
layer may result in increasing the speed (rate) of approximation.

Now we shall formulate a model problem for which we shall be able to
automatically generate a single-layer WNN that is asymptotically optimal with

2In [15] a slightly different notation is used: DΩ instead of D(Ω) and D′

Ω instead of D′(Ω).
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respect to the paradigm based on (1) in Section 1. According to this paradigm,
local optimization with starting point at the automatically generated solution
at the 1st layer of a deep WNN is expected to provide the global minimum for
asymptotically large sample sizes (N → +∞).

Model problem. Let n = 1. From a random sample with size N , learn the
density f of an absolutely continuous cumulative distribution function F : R →
[0, 1]. In this case, f = F ′, f ∈ L1(R), f ≥ 0onR,

∫

R
|f(x)|dx =

∫

R
f(x)dx = 1.

This problem was addressed in [10] and [16], as follows. The density f
was approximated by a (father) wavelet expansion, using the basis of a frame
more general than a biorthonormal upgrade of LHS in (11). To consider the
construction in [10] and [16] strictly in our present context, it is necessary to
consider only those particular cases for which the frame is orthonormal, thus
corresponding to the LHS in (11). In [16, Remark 2.3.2] were identified all cases
when the frame used in [10], [16] is orthonormal: namely, these are exactly the
cases in the LHS of (11) where the scaling function ϕ in (11) is of Haar type,
i.e., the normalized characteristic function

ϕ(x) =
1

a
· χ[− a

2
, a
2
](x− x0), (17)

where a > 0, x0 ∈ [−a
2 ,

a
2 ], and a is chosen so, as to match with the selection of

j0 in the RHS of (11).
With this choice of ϕ in the LHS of (11), the random estimator of f is

obtained by plugging in the LHS of (11) the empirical density

f̂N (x) =
1

N

N
∑

i=1

δ(x− xi), (18)

where δ(·) is the delta-function and {xi, i = 1, ..., N} is the sample data set.
Here, as earlier, the selection of the level J in (11) is such that (14) holds. In
view of (18), the JkJ -th neuron in the WNN associated with the basis function
ϕJkJ in the LHS of (11) computes the empirical coefficient

α̂JkJ =
1

N

N
∑

i=1

ϕJkJ (Xi), kJ ∈ Z (19)

In [16] the selection of metric in which the risk is measured was relevant
to the expectation of “the generalized Cramér-von Mises loss” [16, Sections 2.2
and 2.3]. One very valuable feature of the estimates of this risk obtained in
[16] was that they revealed the precise interconnection between the density’s
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smoothness and the weight of its tails as x → ±∞. In our present study
we made the natural assumption of compactness of the density’s support in
correspondence with the compactness of the convex hull of the sample data
set. For densities with compact support with fixed diameter of the support, the
risk estimates in [16] simplify and are only dependent on the smoothness of the
density, and the following new result holds true.

Theorem 1. Under the above assumption about the compact support of
the density f , assume f ∈ Bs

p∞(R), 0 < p ≤ ∞, 0 < s < 2, and (14) holds. Let
the single-layer WNN associated with the Haar-type basis (17) used in (11) be
defined as above, with (19) holding true. Let the risk of estimating f via the
empirical density f̂N in (18) be defined as in [16, Section 2.2]. Then,

(i) The risk R(f, f̂N) of learning f by the neural computations (19) in the
LHS of (11) is:

R(f, f̂N) ≍ N− s
1+2s (20)

with constants of equivalence dependent on s and the fixed size of the
support of f , but not on the choice of f ∈ Bs

p∞(R).

(ii) The rate in the RHS of (20) is asymptotically optimal in the sense of [16,
Theorem 2, 3.2].

As a consequence of Theorem 1, under its assumptions, the single-layer
WNN computing (19) generates automatically an element of VJ in (12) which
is a good starting point for optimization search in VJ when the sample size N
(and J ≍ log2N) is asymptotically large (N → ∞). For such N and J , using
a deep WNN upgrade of the single-layer WNN (with the latter being the 1st
layer of the deep WNN) it is possible to obtain an essential improvement of the
learning of f within VJ and, possibly, even obtain globally optimal solution of
the iterative optimization search in VJ performed by the deep WNN computing
architecture. Thus, we have provided an instance when the equivalent-metric
paradigm based on (1) in Section 1 offers an efficient AI alternative of the use
of natural intellect in designing good starting point of deep WNN-compatible
iterative optimization search, as discussed in [7] – see Section 1. Although
results of the type of Theorem 1 provide a rigorous mathematical justification
of the use of AI based on deep WNNs, in practice, notable improvement can be
generally expected only, or almost only, for very large samples sizes N .

Let us note two additional new features in Theorem 1 and its proof:



WAVELET NEURAL NETWORKS VERSUS... 219

• Theorem 1 shows that the optimal estimation rate can be achieved when
the activation function is the default identity (i.e., for the empirical den-
sity).

• The quantitative result involving rates is achieved in Theorem 1 under less
restrictive assumptions for WNNs than the assumptions on generic NNs
for the qualitative universal approximation theorem in [4, Theorem 1] in
the sense that the latter NN must be fully connected (i.e., with densely
distributed edges between the nodes of the NN) while the former WNN
has very sparse edge distribution.

In the remaining part of this exposition, we shall show that the alternative of
using WBNNs associated with the RHS of (11) and (12) provides highly efficient
AI algorithms with quality practical results achieved already for medium to
small sample sizes N .

3. WBNNs: learnability and universal approximation

To study learnability conditions and universal approximation theorems in the
case of WBNNs it will be necessary to study some properties of the scale of
Besov spaces Bs

pq(R
n) as defined via (5, 6). (The case of Bs

pq(Ω) using boundary-
corrected wavelets in (5, 6) can be studied, mutatis mutandis, but our focus
will continue to be on the case Ω = R

n.) To study the necessary aspects of the
properties of the Besov-space scale {Bs

pq(R
n), 0 < p, q ≤ ∞, s ∈ R}, n ∈ N, we

need some preparation, as follows.

• For the concept of quasinorm (or c-norm (c-quasinorm) with c ≥ 1 being
the constant in the quasi-triangle inequality), we refer to [9, Section 3.10].
See also there for the definition of quasinormed abelian groups.

• By [9, Lemma 3.10.1], a quasinormed abelian group A with c-quasinorm
||.||A, : c ≥ 1, is metrizable, in the sense that the ρ-power Aρ of A with
1-quasinorm ||.||ρA, 0 < ρ = 1

1+log2 c
≤ 1, is a metric space with d(a, b) =

||a− b||ρA.

• A necessary and sufficient condition for a normed space A to be complete
(i.e. for A to be a Banach space is given in [9, Lemma 2.2.1].

• The previous item is being generalized in [9, Lemma 3.10.2] to a necessary
and sufficient condition for a quasinormed abelian group A to be complete.
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(If A is not only abelian group, but also a vector space, then, endowed
with the quasinorm ||.||A, it is called quasinormed space and, if it is also
complete, quasi-Banach space.

• For example, consider the vector space l2 of all sequences: = (x1, ..., xn, ...), n ∈
N, xj ∈ R or xj ∈ C, j ∈ N, with quasinorm ||x||lr = (

∞
∑

j=1
|aj |r)

1

r ,

0 < r < ∞, or ||x||l∞ = max
j∈N

|aj |, r = ∞. By the theory in [9, Sec-

tion 3.10], lr is a Banach space for r : 1 ≤ r ≤ ∞ and quasi-Banach space
when r : 0 < r < 1. In the latter case, the constant c in the quasi-triangle

inequality for ||.||lr is c = 2
1−r
r > 1; for the power ρ one gets ρ = r ∈ (0, 1)

and the 1-quasinormed abelian group (lr)
r with 1-quasinorm ||.||rlr is a

metric space with metric d(a, b) = ||a− b||rlr .

• Using the properties of lr from the previous item, it is possible to establish
that Bs

pq, as defined via (5, 6), are Banach spaces for 1 ≤ p ≤ ∞, 1 ≤ p ≤
∞, and quasi-Banach spaces when 0 < p < 1 and/or 0 < q <∞ [17].

• Another aspect of the theory of the Besov-space scale which proves to
be relevant is the lifting property of the Bessel potential Jσ, σ ∈ R, in
the Besov-space scale. Following the exposition in [17, Section 1.2.1], we
define the Fourier transform F and its inverse F−1 first on S(Rn), and
then extend it to S ′(Rn), after which, following [17, Section 2.3.8], we
define the Bessel potential Jσ : S ′(R) → S ′(Rn), as follows:

Jσf = F−1[(1 + |.|2)−σ
2Ff ], f ∈ S ′(Rn), (21)

where σ ∈ R. Now the σ-lifting property of the Bessel potential in the
Besov-space scale can be formulated, as follows [17, Section 2.3.8]. Jσ acts
bijectively on S ′(Rn) and the restriction of Jσ on S(Rn) acts bijectively
on S(Rn). Moreover, if s, p, q are as in (5, 6) and f ∈ Bs1

pq(R
n), where

s1 ∈
(

−∞, n(1
p
− 1)

+

]

∪
[

r,∞
)

with σ : s = s1 + σ, then Jσf ∈ Bs
pq and

formulae (5, 6) can be applied on g = Jσf and

||Jσf ||Bs
pq(R

n) ≍ ||f ||
Bs−σ

pq (Rn). (22)

Moreover, using (22) when s1 ∈ (−∞, n(1
p
− 1)

+
], i.e., for σ > 0 allows to

extend the wavelet-based representation (5) and the quasinorm definition (6)
for arbitrary s ∈ R, i.e., including also singular distributions like the δ-function
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and its derivatives which are not in L1,loc
1. Indeed, choose and fix any s1 ∈ R

and select and fix σ such that n(1
p
− 1)

+
< s−σ < r. Then (5,6) will make sense

for f replaced by Jσf and (22) can be used to define an equivalent quasinorm
in Bs1

pq(R
n).

Now we are ready to formulate and prove the following results about WBNNs.

Theorem 2. Using arbitrary samples with size N with J(N) satisfying
(14), f ∈ S ′(Rn), is learnable for N → ∞ by WNNs if, and only if (iff) f is
also learnable by WBNNs, i.e. the learnability sets by WNNs and by WBNNs
coincide.

Theorem 3. Let N and J(N) be as in Theorem 2, and let f ∈ Bs
pq(R

n),

0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R. Then, for any r : n(1
p
− 1)

+
< r < ∞ and

orthonormal wavelet basis satisfying (3, 4) and for every σ ∈ R such that s−σ ∈
(n(1

p
− 1)

+
, r) it holds true that Jσf is learnable by the WBNN generated by

the said wavelet basis.

Corollary 4. The space Bs
pq(R

n) is contained in the learnability set of
WBNN for every s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞.

Corollary 4 implies that the learnability set of WBNNs contains not only
all regular distributions in S ′(Rn), but also singular distributions, since Besov
spaces with s < 0 do contain singular distributions.

Theorem 2 now suggests that Corollary 4 extends also to WNNs, but here
lies one big difference between the efficient use of WBNNs and WNNs. Re-
covering f from g = Jσf requires approximate numerical computation of J−σg
which is very numerically sensitive to errors in the computation of g especially
when f can be a singular distribution. Since for a given sample with size N the
quality of learning g via WNNs is expected to be much worse than via WBNNs,
the deterioration of the recovery of f from g when using WNNs would be much
more exacerbated compared to the use of WBNNs so that the only case of σ
for which the use of WNNs could be marginally acceptable is the trivial case
σ = 0. (A detailed error analysis of the computations for σ 6= 0 would require
the invocation of aspects of Paley-Wiener theory [19, Sections 4–6], including
sampling results of Shannon type [19, Theorem 6.4] which goes beyond the

1This fact is relatively easy to derive even in the n-dimensional case, using the theory
of Fourier multipliers on Lp(R

n), 1 ≤ p ≤ ∞, see [9, Section 6.1], [29, Chapter 1] and [41,
Introduction].
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study of AI aspects considered here.) Theorems 3 and 2 now imply that WNNs
can be efficiently used (albeit only marginally for very large sample sizes N
only) for learning f ∈ Bs

pq(R
n) only for the original range s, p, q for which (5)

was formulated. Note that for the these values of s, p, q Bs
pq(R

n) ⊂ L1,loc(R
n).

The results obtained here for wavelet bases on R
n can in principle be refor-

mulated for boundary-corrected wavelets on a compact hyperrectangle in R
n,

this modification is technically involved. For example, the lifting property of
the Bessel potential has to be replaced by a respective property of fractional
integro-differential operators of Riemann-Lionville, Grünwald-Letnikov, Caputo
and other types under additional assumptions for each of these types [18].

As far as UAT for WBNNs is concerned, it is much more rich and diversified
than UAT for WNNs, due to the much more flexible telescopic structure of
the RHS in (12). While in the case of WNNs the focus has been only on
sigmoid and ReLU activation, in the case of WBNNs there is a great variety
of meaningful activation methods, each of which is with its own UAT and own
range of practical applications. In this section we study the common features
of all these activation methods and provide a classification of these methods
into two general subclasses, together with the general range of applications for
each of these subclasses.

Any activation method can be defined as a (generally, nonlinear) operator
Λ acting on the space sum in the RHS of (12) and being of shrinkage type, i.e.
having the following properties.

(i) The restriction of Λ on Vj0 coincides with the identity on Vj0 , i.e.,

Λ(αj0k0ϕj0k0) = αj0k0ϕj0k0 (23)

for every j0, k0, ....

(ii) Using the Euler representation of z ∈ C

z = |z|(cos(arg z) + i sin(arg z)), arg z ∈ [0, 2π), (24)

the action of Λ on the space
⊕J

j=j0
Wj in the RHS of (12) is defined such,

that

Λ(β
[lj ]
jkj
ψ
[lj ]
jkj

) = β̃
[lj ]
jkj
ψ
[lj ]
jkj
, (25)

where

arg β̃
[lj ]
jkj

= arg β
[lj ]
jkj

(26)

|β̃[lj ]jkj
| ≤ |β[lj ]jkj

| (27)
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for every (j, kj) participating in the formation of
⊕J

j=j0
Wj.

Notice that when β
[lj ]
jkj

∈ R (26) reduces to

sgn β̃
[lj ]
jkj

= sgn β
[lj ]
jkj
, (28)

where for x ∈ R\{0}

sgnx =











+1, x > 0;

−1, x < 0;

undefined, x = 0;

(29)

and for the case z = x = 0 it is convenient to define

arg 0 = sgn 0 = 0. (30)

Clearly, Λ has the special property that it preserves the directrice and re-
spective orientation of every basis function in Vj0 and

⊕J
j=j0

Wj . It is also clear
that, in general, Λ is nonlinear, since the shrinkage is individual for every basis
function. Now, we divide all possible activation methods Λ with properties (i)
and (ii) into two disjoint subclasses, as follows.

A. Non-threshold-type activation methods have the following additional
property:

(iii) for any selection of the coefficient vector {αj0k0 , β
[lj ]
jkj

} in the RHS of (11),

such that β
[lj ]
jkj

6= 0 for some triple (j, kj , lj), it is fulfilled that β̃
[lj ]
jkj

6= 0

holds true. (In other words, there is only reducing |β[lj ]jkj
| > 0 without ever

“killing” the coefficient β̃
[lj ]
jkj

, i.e., having |β̃[lj ]jkj
| = 0.

B. We shall say that the activation method Λ is of threshold-type, if (iii) is
not fulfilled for Λ.

In the second part of this study we shall study an important model ex-
ample of activation of WBNNs resulting in learning geometric manifolds with
compression. The analysis of concrete examples will show that there is an in-
trinsic separation of geometric manifolds into ones that are highly compressible
and ones that are not. From a geometric point of view, the latter class of
manifolds will be identified as fractal-type while the former class consists of
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manifolds of piecewise-smooth type. Our forthcoming study [33] of diverse acti-
vation methods of both threshold and non-threshold type (type B and A) will
demonstrate that activation of threshold type is performing well when learning
piecewise-smooth manifolds, while activation of non-threshold type performs
well when learning manifolds of fractal type.

4. Particle vs multiagent simulation and swarm vs. deep

evolutionary AI

A very new research topic in AI research is establishing connection between
swarm AI and deep neural networks by the invocation of evolutionary algo-
rithms [20], [21]. Scientifically, this is a very new field, but conceptually it
appeared in some of the most famous early sci-fi novels [22], [23] (latest English
translation [24]) which were written in the first few years after the concept of AI
emerged as a term at the workshop “Dartmouth Summer Research Project on
Artificial Intelligence” at Darthmouth College, Hannover, NH, USA in 1956,
to designate a specialized branch of cybernetics. Both of the novels of Fred
Hoyle and Stanis law Lem successfully predicted the development of important
modern scientific trends: the latter – nanotechnology and swarm AI; the former
– deep learning by AI systems and connections with evolutionary algorithms.

Our present interest to the connection between swarm and deep evolution-
ary AI is only limited to its computational aspects. From this limited point of
view, the above-said connection can be considered as a particular case of particle
simulation and multiagent simulation (i.e., simulation of systems involving large
numbers of relatively simple agents vs. simulation of systems involving small to
moderate number of agents with relatively high level of individual intelligence
features). Notice that the most efficient simulation of each of these two types
of system is performed on different types of parallel computing architectures.

(a) Swarm of sufficiently broad single-layered NNs (including single-layered
WBNNs with (14)) – CPU parallelism – (relatively expensive) large-size
multi-CPU supercomputing architectures; e.g., hypercubic [25].

(b) Deep (multi-layered, sufficiently broad) NNs (including deep WBNNs
with (14)) – GPU parallelism – (relatively cheap) small-size multi-GPU
computing architectures using GPGPU-programming – currently in CUDA,
and more recently, Python [28].

Using connections between swarm intelligence and deep NNs [20], [21], it is
possible to emulate the performance of the expensive computing architectures in



WAVELET NEURAL NETWORKS VERSUS... 225

item (a) by the cheap computing architectures in item (b), but at the inevitable
price of some loss of efficiency. Ideally, hybrid multi-CPU multi-GPU computing
architectures should be recommended.

5. Best activation of WBNNs for fastest learning and maximal

compression

In [26] was considered and systematized a rich diversity of threshold and non-
threshold wavelet shrinkage methods for nonparametric statistical estimation of
densities and denoising of nonparametric regression functions. In [34] we shall
show that each of these shrinkage methods gives rise to respective activation
of WBNNs, generating highly efficient learning algorithms. Moreover, in some
cases these learning algorithms can be shown to be best possible with respect
to certain aspects which are important for applications. As a model example
of the high efficiency of learning with WBNNs, we shall study here the activa-
tion induced by only one of these wavelet shrinkage methods, namely, the one
discussed in [26, Appendix B10 b)].

For the sake of maximal clarity, we shall consider here only the simplest
univariate case n = 1. This will be a very clear illustration of the optimal
speed of learning and compression in model examples of curve learning in the
next sections. The general case n ∈ N and some graphical visualization for the
cases n = 2 and n = 3 will be considered in [34].

Assume f ∈ Bs
pq(Ω) where Ω = R or Ω = [a, b], −∞ < a < b < ∞,

0 < p ≤ ∞, 0 < q ≤ ∞ and (1
p
− 1)

+
< s < r. Assume also that both

the metric power index p1, the metric logarithmic index q and the smoothness
index s are exact, that is, f /∈ Bs1

p1q1
(Ω) for any p1 : 0 ≤ p1 < p, 0 < q1 ≤ q and

any s1 : s1 > s.
As usual in our present study, when considering the domain R, we shall

be making the default assumption about compactness of supp f (in the case
of boundary-corrected wavelets and Ω = [a, b] with −∞ < a < b < +∞, we
do not need this default assumption, i.e., it is possible that f(a+) 6= 0 and/or
f(b−) 6= 0). For the index triple (p, q, s) consider now the Sobolev embedding
plane passing through the point (p, q, s), i.e.,

{(ρ, η, σ) : σ − 1

ρ
= τ(p, s) = s− 1

p
, 0 < ρ ≤ ∞, 0 < η ≤ ∞}. (31)

What is important about this selection is the well-known embedding

Bs
pq(Ω) →֒ Bσ

ρη(Ω), σ − 1

ρ
= s− 1

p
, 0 < p ≤ ρ ≤ ∞, 0 < q ≤ η ≤ ∞, (32)
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where Ω = R or Ω = [a, b].

(For two quasinormed spaces A and B, the notation B →֒ A (”B is embed-
ded/imbedded in A”) means B ⊂ A and ∃c ∈ (0,∞) : ||b||B ≤ c||b||A for any
b ∈ B.)

Due to the Sobolev embedding/imbedding (32), our assumption f ∈ Bs
pq(Ω)

implies

f ∈ Bσ
ρη(Ω) (33)

for any (ρ, η, σ) : σ − 1
ρ

= s − 1
p
, 0 < p ≤ ρ ≤ ∞, 0 < q ≤ η ≤ ∞. In [26,

Appendix B10 b)] it was explained that for the Besov spaces Bσ
ρη with (ρ, η, σ)

lying on one and the same Sobolev embedding plane, an important part of the
function-space theory is related with the so-called decreasing rearrangement of
f in all Besov spaces Bσ

ρη with (ρ, η, σ) on the same Sobolev embedding plane. A
detailed consideration of the concept of decreasing rearrangement can be found
in [9, Section 1.3] and the Peetre-Krée formula [9, Theorem 3.6.1] together with
[9, 3.14.5.6 and Theorem 5.2.1 (2) for q = p in local notation] (see also [26,
(B8)]. For our purposes in our present context it is sufficient to consider the
normalized decreasing rearrangement of the β-coefficients in the series (5) and
in
⊕J

j=j0
Wj in its truncation (11, 12), as follows (compare with [26, Appendix

B10 b), items b1 and b2]). Recall that here we consider only the case n = 1 in
(5-16) - in particular, in (5-8, 11) this implies l = 1. Thus, in the sequel of the
present definition of decreasing rearrangement, we shall be skipping the index
l.

b1) Fix j0 ∈ Z (with no loss of generality, it can be assumed that j0 = 0).
Consider all (j, k) in (5, 6) such that suppψjk∩supp f 6= ∅. Denote the set of all
such (j, k) by I(f, ψ) = I(f, ψ, j0). It is clear that for every fixed j = j0, j0+1, ...
in the generalization of (5, 6) involving j0 the number Mj of elements of I(f, ψ)
from the j-th level does not exceed c(f, ψ). 2j , for some c(f, ψ) ∈ (0,∞).

Therefore, Mj is finite for any j = j0, j0 + 1, ..., but M =
∞
∑

j=j0

Mj is, generally,

not finite. On the other hand, for the truncation (11,12) the number m(j0, J) =
J
∑

j=j0

Mj is finite, with M = limJ→∞m(j0, J). Denote by i(f, ψ, j0, J) the subset

of I(f, ψ, j0) such that (j, k) participates in the formation of the truncation (11)
and

⊕J
j=j0

Wj in (12).

The number of elements of i(f, ψ, j0, J) is

m(j0, J) ≤ c(f, ψ) · 2j0
J−j0
∑

k=0

2k
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= c(f, ψ)2j0 · 2J−j0+1 − 1

2 − 1
= c(f, ψ)(2J+1 − 2j0) ≤ 2c(f, ψ)2J , (34)

regardless of the choice of j0.

b2) Recalling that τ = τ(p, s) = s− 1
p

in (31), for every (j, k) ∈ I(f, ψ) nor-

malize |βjk| by multiplying with the factor 2j(τ+
1

2
) and consider the decreasing

rearrangement {bν : ν = 1, ...,M} of the (possibly, infinite) set {2j(τ+
1

2
)|β

jk
| :

(j, k) ∈ I(f, ψ)}.

In the case of the truncation (11, 12), we get the subset {2j(τ+
1

2
)|βjk| :

(j, k) ∈ i(j0, J)} which is finite, with number of elements Of,ψ(2J ), according
to (34).

For this model case, the activation operator Λ = Λδ is of threshold type,
with threshold δ ∈ (0,∞), defined in the following way. Let the decreasing re-
arrangement of I(f, ψ) be {bν , ν = 1, ...,M}, with (j, k) ∈ I(f, ψ) being ordered
in a respective sequence {(jν , kν), ν = 1, ...,M} where (jν , kν) corresponds to
bν for any ν = 1, ...,M .

Then

Λ(βjνkνψjνkν ) =

{

0, if 2jν(τ+
1

2
)|βjνkν | ∈ (0, δ),

βjνkνψjνkν , if 2jν(τ+
1

2
)|βjνkν | ≥ δ.

(35)

The selection of the threshold δ depends on the concrete context of the
learning process. We shall call every threshold activation method designed via
the sequence of steps b1) and b2) a decreasing rearrangement activation method.
For this type of activation method with threshold δ, the UAT corresponds to
δ → 0+ and is given by the following theorem.

Theorem 5. Let δ → 0+ in (35), and let f be as assumed above. Then,
the summands in the series in the RHS of (5) can be commuted in such a way
that (5) becomes

∑

k∈Z

αj0kϕj0k(x) +

∞
∑

j=j0

∑

k∈Z

βjkψjk(x) = f(x)

=
∑

k∈Z

αj0kϕj0k +

M
∑

ν=1

βjνkνψjνkν (x), (36)

where the RHS converges to f(x) Lebesgue – a.e. in R, as well as in the topology
of Bs

pq(R) and Bσ
ρη(R) for any (ρ, η, σ) : 0 < p ≤ ρ ≤ ∞, 0 < q ≤ η ≤ ∞,

σ − 1
ρ

= s− 1
p

= τ .
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Theorem 5 continues to hold true for boundary–corrected wavelets and Ω =
[a, b], with respective modifications in (5) and (36).

We shall now upgrade the qualitative result of Theorem 5 by formulating a
quantitative result which proves to be best possible in a certain sense specified
below. Among all Besov spaces with (quasi)norm (6), the ones which are Hilbert
spaces are exactly

Bs
pq(Ω) with p = q = 2 and 0 < s < r, (37)

where, for n = 1 considered here, Ω = R or Ω = [a, b],−∞ < a < b < +∞.
Choose arbitrary triple (p, q, s) such that 0 < p ≤ 2, 0 < q ≤ 2, (1

p
− 1)

+
< s <

r, and consider the respective triple ρ = η = 2, σ − 1
ρ

= s − 1
p
. For (5, 6) to

hold for this choice of (ρ, η, σ) it is necessary that

0 ≤ σ < r (38)

holds where σ = 0 corresponds to the case B0
22(Ω) = L2(Ω). Therefore, (5,

6) hold simultaneously for the couples (p, q, s) and (2, 2, σ), iff the following
inequalities and equalities are simultaneously

(
1

p
− 1)

+

< s < r, 0 ≤ σ < r, σ = s− 1

p
+

1

2
, p ≤ 2, q ≤ 2. (39)

Solving (39) for p, q and s, we obtain

1

r + 1
2

< p ≤ 2, 0 < q ≤ 2,
1

p
− 1

2
≤ s < r, (40)

under which assumptions (38) holds. Consider the orthocomplement

Oj0σ = O
(

Vj0 , B
σ
22(Ω)

)

= V
⊥(Bσ

22(Ω))
j0

(41)

of Vj0 in Bσ
22(Ω), with respect to the inner product in Bσ

22(Ω), 0 ≤ σ < r. This
orthocomplement is well defined because {ϕj0k0 , ψjkj} is an unconditional Riesz
basis in all Besov spaces where (5, 6) hold, and Bσ

22(Ω) is a Hilbert space, so
that V ⊥

j0
is well-defined with respect to the inner product in Bσ

22(Ω), 0 ≤ σ < r.
For a given f ∈ Bσ

22(Ω), define fj0 ∈ Vj0 as follows

fj0 =
∑

k

αj0k(f)ϕj0k. (42)

Let k ∈ N and consider an arbitrary subspace Sk with dimSk = k, such
that

Sk ⊂ Oj0σ ⊂ Bσ
22(Ω), (43)
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and define the best-approximation functional

Ek(f ;Bσ
22(Ω)) = inf

s∈Sk

inf
Sk⊂Oj0σ

||f − fj0 − s||
Bσ

22
. (44)

Now, we are in the position to formulate the following remarkable result.

Theorem 6. Assume that f is as in Theorem 5 with the additional
assumption that (40) holds. Then,

||f −
k
∑

ν=1

βjνkνψjνkν ||
B

s− 1
p+1

2
22

(R)

= Ek
(

f ;B
s− 1

p
+ 1

2

22 (R)
)

, k = 1, 2, ... (45)

The result (45) holds, mutatis mutandis, also for the case of boundary-
corrected wavelets and Ω = [a, b], −∞ < a < b < +∞.

Theorem 6 shows that using a sufficiently broad (i.e., satisfying (14)) single-
layered WBNN for learning curves with Besov regularity while using the current
activation method results in a learning strategy which is optimal in the following
two senses:

1. Fastest learning – using a fixed number of active neurons, the learned
function is closest possible to the original, with the distance measuring
the closeness being in terms of || · ||Bσ

22
, 0 ≤ σ < r, that is, taking into

account not only position in space (σ = 0) but also fractional derivatives
up to order r.

2. Maximal compression – for a benchmark determined by a fixed distance
between the target function and its learned version measured in terms of
|| · ||Bσ

22
, the benchmark result is achieved with the fewest possible acti-

vated neurons.

In the remaining part of the present study, we shall illustrate graphically
aspects 1. and 2. of the optimality of the learning process with WBNNs when
the current activation method is being used.

6. Representative model examples

We shall consider in detail graphical visualization related to two model examples
which are representative in three important aspects.
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(a) ”λ-tear” (b) Weierstrass type fractal

Figure 1: Piecewise smooth type vs fractal type manifolds

1. The first one (the ”λ-tear”) is a typical manifold of piecewise smooth
type, while the second one (Weierstrass-type curve) is a typical manifold
of fractal type.

2. For both of them, their exact metric power, metric logarithmic and smooth-
ness index of their Besov regularity is known.

3. The exact metric power, metric logarithmic and smoothness index of
Besov regularity can be selected to be the same for both examples, which
allows for insightful graphical comparisons.

Example 1 (see Fig. 1a). The “λ-tear”

f1(x) =

{

xλ+ exp(− x2

1−x2 ) x ∈ (0, 1),

0 x ∈ [−1, 0] ∪ [1, 2],
(46)

where λ ∈ (0, 1). This function is analytic for x ∈ [−1, 0) ∪ (0, 1) ∪ (1, 2]; it is
C∞, but not analytic at x = 1; at x = 0 it is only C0. Its exact Besov regularity

for p : 1 ≤ p ≤ ∞ is f ∈ B
λ+ 1

p
p∞ (Ω), where Ω = R or Ω = [−1, 2] [29, Proposition

2.4.2], see also [26, Section 7, Example 1].
Example 2 (see Fig. 1b). Weierstrass-type curve

f2(x) =
∞
∑

k=0

1.5−τk sin(1.5k × 5x), x ∈ R, (47)

where τ ∈ (0, 2). For the purpose of comparing with Example 1, we shall
consider only the restriction of f2 onto supp f1, i.e., for x ∈ [0, 1].
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(a) ”Double chirp” (b) Sinusoidal density

Figure 2: Curves used to study Besov regularity

The graph of f2 is a typical self-similar monofractal with constant local
Hölder index τ and constant local fractal dimension 2 − τ which is also its
global fractal dimension on [0, 1]. When considering Ω = R, for any compactly
supported χ ∈ C∞(R) such that [0, 1] ⊂ suppχ and χ ≡ 1 on [0, 1], χ · f2 ∈
Bτ
p∞(R) [29, Proposition 2.4.1 for the imaginary part Gt in local notations, with

additional rescaling], see also [26, Section 7, Example 2]. For the restriction

f2 = f2

∣

∣

∣

∣

supp f1

in the case of boundary-corrected wavelets with Ω = [0, 1], we

have directly f2 ∈ Bτ
p∞([0, 1]). For every p : 1 ≤ p ≤ ∞ this Besov regularity

of f2 is exact. Clearly, when τ = λ+ 1
p
, f1 and f2 have exactly the same exact

Besov regularity.

Besides the detailed comparative study of Examples 1 and 2, we shall study
some additional geometric aspects of the learning process on two other model
examples: “Double chirp” and “Sinusoidal density”.

Example 3 (see Fig. 2a). “Double chirp”

f3(x) = 4
√
x exp(− x2

1 − x2
) sin[64πx(1 − x)], x ∈ [0, 1], (48)

Compare also [26, Section 7, Example 3]. The graph of f3 is very spatially
inhomogeneous, containing at the endpoints 0 and 1 two chirps of a very dif-
ferent nature. f3 in (48) is a product of ”λ-tear” for λ = 1

2 and C∞-smooth
function, so its Besov regularity is exactly the same as the Besov regularity of
a ”λ-tear” (Example 1) for λ = 1

2 . Of special interest is to compare how the
optimal learning algorithm deals in the spatially different parts of the graph for
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large, moderate and small samples, or for small, medium or high compression
percentage.

Example 4 (see Fig. 2b). “Sinusoidal density”

f4(x) =

{

1
2 | sin x| x ∈ [−2π

3 ,
π
3 ]

0 x ∈ (−∞,−2π
3 ) ∪ (π3 + ∞),

(49)

f4 is analytic on (−∞,−2π
3 ) ∪ (−2π

3 , 0) ∪ (0, π3 ) ∪ (π3 ,+∞) ; f4 is C0 at x = 0;
f4 is discontinuous at x = −2π

3 and x = π
3 .

Because of the presence of the two jumps, f4 ∈ B
1

p
p∞(Ω), 1 ≤ p ≤ ∞, Ω = R

or, for boundary corrected wavelets, Ω = [−π, π]. This result about the Besov
regularity of f4 follows from the result about Besov regularity of the Heavi-
side step function which is present in implicit form in the embeddings in [26,
Appendix B12b, item (iv)]. The function exhibits considerable spatial inho-
mogeneity in the neighbourhoods of the three points of singularity (x = −2π

3 ,
x = 0 and x = π

3 ). Of particular interest is to compare the performance of the
optimal learning algorithm in a neighbourhood of each of the three singulari-
ties. The comparison of the performance between the two jump-singularities at
x = −2π

3 and x = π
3 should include also comparative study of the local Gibbs

phenomenon.
The sample sizes in Figures 1-13 are N = 210 or less.
First we focus on faster learning and maximal compression, according to

items 1 and 2 in Section 5. The comparative graphical analysis of Figures 3–6
leads to the following conclusions.

1. Examples 1, 3, 4 are of piecewise smooth type, while Example 2 is of the
fractal type.

2. The decreasing rearrangement activation allows very fast learning com-
bined with very high compression rate for the piecewise smooth curves:
the quality of learning is superb at 85% compression. In comparison, re-
taining such high quality of learning for the fractal curve in Figure 2 is
possible only at compression rate up to 3 − 4%. (See item (a) in each of
Figures 3–6.)

3. Approximation of the target function by the learned one is very good even
for superhigh levels of compression (98 − 99%). This also indicates that
if the large-to-medium sample size N = 210 be reduced to moderate or
even small sizes (cf. Section 1), the rate of learning can be expected to
be quite good, while the compression rates will decrease, but remain still
quite good.
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(a) 85 % compression

(b) 98 % compression

(c) 99 % compression

Figure 3: Target function (dashed black), learned function (red)
and the error between the two (blue) for the “λ-tear” under high
compression.
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(a) 85 % compression

(b) 98 % compression

(c) 99 % compression

Figure 4: Target function (dashed black), learned function (red) and
the error between the two (blue) for the “Weierstrass function” under
high compression.
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(a) 85 % compression

(b) 98 % compression

(c) 99 % compression

Figure 5: Target function (dashed black), learned function (red) and
the error between the two (blue) for “the double chirp” under high
compression.



236 L.T. Dechevsky, K.M. Tangrand

(a) 85 % compression

(b) 98 % compression

(c) 99 % compression

Figure 6: Target function (dashed black), learned function (red) and
the error between the two (blue) for “the sinusoidal density” under
high compression.
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(a) Distribution of benchmark MISE
for ”λ-tear”, at compression rate ≈
99.610%. This is the benchmark MISE
for all cases (a) – (d).

(b) Distribution of benchmark MISE
for ”Weierstrass function”, attained at
compression rate ≈ 3.418%.

(c) Distribution of benchmark MISE
for ”double chirp”, attained at com-
pression rate ≈ 83.984%.

(d) Distribution of benchmark MISE
for ”sinusoidal density”, attained at
compression rate ≈ 83.984%.

Figure 7: Benchmark error distribution for Examples 1-4.
Benchmark error was MISE for Example 1 at compression ≈
99.610%.

4. The effect of subjecting the fractal-type curve to high or superhigh com-
pression rates is that the learned curve get smoothed out to a piecewise
smooth (few isolated singularities, similar to Examples 1,3 and 4) or even
smooth – no singularities at all. In [33] and [34] we shall show that if
the fractality of the manifold is due to noise, then, learning the manifold
with WBNNs where the decreasing arrangement activation is applied on
the noisy (empirical) wavelet β–coefficients results in denoising and high-
quality statistical estimation of the manifold. The level of compression
resulting from this process can be useful in determining the chances for
the manifold to have certain regularity.

The comparison of graphical data for the four examples on Figure 7 leads
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to the following observations:

5. For piecewise smooth manifolds having isolated singularities of the first
kind only (left and right onesided limits exist at the singularity) the dis-
tribution of the benchmark MISE error is narrowly concentrated in small
neighbourhoods of the respective singularities. This also shows that the
vector of β–coefficients of such manifolds tends to be sparse, i.e., it con-
tains large in absolute value coefficients on all levels j only in small neigh-
bourhoods of the singularities. Thus, manifolds of this type are highly
compressible with threshold activation methods and are the fastest to
learn with WBNNs. Typical examples are 1 and 4, see Figure 7 (a) and
(d), resp.

6. Piecewise-smooth manifolds with isolated singularities of the second kind
(at least one of the onesided limits does not exist at the singularity).
Typical case of this type of singularity is the presence of a chirp on the
side of the missing onesided limit (for example, functions g(x) = xa sin 1

xb
,

x > 0, a > 0, b > 0). Chirps can be very spatially inhomogeneous and
even exhibit some fractal properties (for example, the function g in the
above formula, with a = 0, has unbounded variation in a neighbourhood
of x = 0 and the part of its graph in this neighbourhood is infinitely long.
Thus, functions with chirps take a somewhat intermediate place between
the functions in item 5 and the function in the next item 7. Typical
example is 3 – see Figure 7 (c).

7. Fractal-type curves, especially ones with locally constant Hölder index,
gather their Besov regularity from a dense vector of β–coefficients where
all, or, at least, the vast majority of β–coefficients provide significant
contribution which can only be ignored at the price of slowing the rate
and decreasing the quality of the learning process. In [33] and [34] we
shall show that manifolds of fractal type can be learned well only us-
ing non-threshold shrinkage activation. This type of activation produces
0% compression. Threshold activation methods, including the decreasing
rearrangement activation, oversmooth the manifold, thereby altering its
fractal type. This explains the low compression rate when achieving the
benchmark MISE in the typical Example 2 – see Figure 7 (b).

8. (Remark.) One of the main goals of research in [33] and [34] will be to
design hybrid activation strategies for adaptive learning by composing a
sequence of activation strategies of diverse – threshold and non–threshold
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– nature which will be achieved by the use of deep WBNNs, each single-
layer WBNN in which will contribute with its own activation strategy.

Figure 8: Compression percentage (x-axis) vs standardized relative
MISE for Examples 1-4

While Figure 7 provided detailed information about the local distribution of
a benchmark MISE, Figure 8 provides an insightful comparison of the ratio be-
tween compression percentage and relative MISE for each of the four considered
examples.

9. The aspect, in which Figure 8 is most insightful, is the comparative de-
termination of the fractality type of the curves in each of Examples 1–4:
”the Weierstrass curve” of Example 2 exhibits markedly fractal behaviour,
followed by the ”double chirp” of Example 3 exhibiting a somehow ’semi–
fractal’ behaviour, and with the curves in Example 1 and 4 being of
markedly piecewise smooth type.

10. (Remark.) Tracing the behaviour of the ”double chirp” of Example 3 in
Figures 5, 7(c) and 8, some notable differences are observed with ”the λ–
tear” in Example 1, despite of the fact that they are both of the piecewise
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(a) Zoomed region for Example 1 (see Fig.
11a), compression rate 98%

(b) Zoomed region for Example 2 (see Fig.
11b), compression rate 91%

Figure 9: Local zooming for Examples 1 and 2

(a) Zoomed regions for Example 3 (from
left to right, see Fig. 12 12a) and 12b),
resp.), compression rate 96%

(b) Zoomed regions for Example 4 (from
left to right, see (13a), 13b) and 13c),
resp.), compression rate 98%

Figure 10: Local zooming for Examples 3 and 4

smooth type and, especially, despite of the fact that they have exactly
the same Besov regularity. The explanation of this phenomenon is that
although the Besov norms of f1 and f3 with the same exact parameters are
both finite, the norm of f3 is several orders of decimal magnitude larger
than the norm of f1, mainly due to the presence of the factor 64 = 26 in
the sine component of the formula (48) for f3.

In Section 6 the exact Besov regularity of the example was known, and it was
used in the construction of the activation operator. What if only approximate
information is available about each of the parameters (p, q, s) of the Besov
regularity? The algorithmically simplest way to overcome this ambiguity is to
use a swarm of sufficiently broad single-layer WBNNs. As discussed in Section
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(a) (b)

Figure 11: Region zoom for (a) Example 1, (b) Example 2 (see Fig.
9a and 9b), resp.

(a) (b)

Figure 12: Region zoom for Example 3: see Fig 10a

4, using a deep WBNN is possible, but requires adjustments, with some loss
of efficiency. This is why here the new research topic about relation between
swarm and deep evolutionary AI ([21]) is of great interest.

In Figures 9–13 we produce the graphical results of sequential emulation of
the parallel learning process of a ’swarm’ of 3 single-layered sufficiently broad
(satisfying (14)) WBNNs, one of which is biased towards underestimating the
Besov regularity (blue colour), the second one is using the exact Besov regularity
information (green colour) and the last one is biased towards overestimating the
Besov regularity. The graphical results for Examples 1–4 are presented in Figure
9(a) and 9(b), and Figure 10(a) and 10(b), resp. The rectangular regions on
these figures, where the differences are most notable, are marked with window
frames.

In Figures 11–13 are given zoomings of all windows in Figures 9 and 10, as



242 L.T. Dechevsky, K.M. Tangrand

(a)

(b)

(c)

Figure 13: Region zooms for Example 4: see Fig 10b
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follows.

• The window in Figure 10(a): Figure 11(a)

• The window in Figure 10(b): Figure 11(b)

• The two windows in Figure 10(a): Figure 12(a) and (b)

• The three windows in Figure 10(b): Figure 13(a), (b) and (c)

Some observations from the graphical comparison, as follows:

11. The learning process using WBNNs activated by decreasing rearrange-
ment method proves to be very robust with respect to errors of estimation
of the Besov regularity information when manifolds without singularities
are being learned.

12. In the presence of singularities, the robustness in item 11 decreases: the
more the singularities, the less the robustness, with the maximal deterio-
ration of robustness being in the case of learning fractal-type manifolds.
However, due to the relatively uniform distribution over all, or most of
the β–coefficients of a fractal manifold (see item 7 above), for the low
compression rate in Figure 7(b), the differences between the blue, green
and red lines in Figure 9(b) would hardly be noticeable (see also item 13).

13. Due to the robustness properties in items 11 and 12 above, it makes
sense to use large-size swarms of single-layered WBNNs only in the case
of learning fractal-type manifolds, for a reason that will be explained in
item 15.

14. Learning of piecewise smooth manifolds with WBNNs activated via the
decreasing rearrangement method is robust with respect to small errors
of underestimating or overestimating the manifold’s Besov regularity, as
long as compression rate is none or relatively small. This robustness
rapidly deteriorates with the increase of the compression rate, but at the
same time the quality of learning deteriorates slowly with the increase of
the compression rate (which is an equivalent way of saying that piecewise
smooth manifolds are being learnt fast). This is why in the case of learning
a piecewise smooth manifold, small to medium sized swarms of sufficiently
broad single-layered WBNNs are expected to be sufficient when the Besov
regularity of the manifold is only approximately known, see Figure 11(a)
and Figures 12 and 13.
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15. In the case of fractal manifolds, the crucial difference is that, unlike the
case of piecewise smooth manifolds, the quality of learning of the frac-
tal deteriorates rapidly together with the rapid deterioration of robustness
with respect to errors in the Besov regularity estimation, when the com-
pression rates increases. This is why, contrary to the comparable com-
pression rates in Figure 7(a) vs. Figure 9(a), Figure 7(c) vs. Figure 10(a)
and Figure 7(d) vs. Figure 10(b), resp., there is a sharp difference in the
compression rates in Figure 7(b) vs. Figure 9(b): less than 4% vs. more
than 90%, resp. Because of this important difference, it can be expected
that in the current context large-size swarms of sufficiently broad single-
layered WBNNs would be needed to attain high quality of learning fractal
manifolds. Notice that in the context of item 4, when the fractality is due
to noise, the denoised manifold may still be of fractal type, or it may be
of piecewise smooth type. In the context of the present item, in this case
determination of the size of the swarm requires special care (this topic
will be addressed in [33]).

16. Finally, let us turn our attention on the three singularities in Figure 13.
Comparing the three singularities in Figure 13 with the singularity in
Figure 11(a), it is observed that the latter singularity is somehow inter-
mediate between the one in Figure 13(b) and the two in Figure 13(a) and
(c). This is so, because, on the one hand, the singularities in Figure 13(b)
and 11(a) are of the same type – discontinuity of the first derivative f ′1,
resp. f ′4 and, on the other hand, f ′1(0+) = +∞, which forces the graph
of f1 left of 0 to resemble that of the graph of f4 at the left discontinu-
ity point in Figure 13(a) and, modulo vertical axial symmetry, also the
graph of f4 in Figure 13(c). What is remarkable about the discontinuity
singularities of the first kind in Figure 13(a) and (c) (and, to some less
expressed extent, also about the singularity in Figure 11(a)) is the pres-
ence of Gibbs phenomenon. As it can be seen from Figure 3(a) and Figure
6(a), even at high compression rates there is no Gibbs phenomenon at all,
which is due to the selection of compactly supported wavelet basis. If in
this context a trigonometric basis is used there will be very significant
Gibbs phenomenon even at compression rate 0%. Thus, we conclude that
in the case of use of compactly supported wavelet basis, notable Gibbs
phenomenon may eventually appear at jump points only at superhigh lev-
els of compression, and it is due to uncompressed β-coefficients with low j
(j = j0 or j near to j0). It is also at these superhigh levels of compression,
and for the same reason, that errors in the estimation of Besov regularity
can result in the decreasing rearrangement activation producing notable
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differences in regions with Gibbs phenomenon.

7. Proofs

Proof of Theorem 1. Let first s : 0 < s < 1. Using the the definitions and
notations of [16, Section 2.2] for ρ, k∗, p and q, the upper bound

∃ c1 < +∞ : R(f, f̂N ) ≤ c1N
− s

1+2s , (50)

where c1 = c1(s,diam(supp(f))), follows after taking power 1
ρ

from the two
sides of [16, (2.2.3] where the choice q = +∞ has been made. Under the as-
sumptions of [16, Corollary 2.2.4] on f , taking in consideration the compactness
of suppf implies the equivalence of the assumptions in [16, Corollary 2.2.4] and
the current assumption f ∈ Bs

p∞(R)
The lower bound

∃ c0 > 0 : R(f, f̂N ) ≥ c0N
− s

1+2s , (51)

where c0 = c0(s,diam(suppf)), follows from [16, Theorem 2.3.2] for q = ∞.
The selection of J in (14) assumes that in all cases considered in [16, Section
2.2], the optimal level k∗ defined there, always satisfies

j0 ≤ k∗ ≤ J, (52)

which ensures the validity of all upper and lower bounds in [16, Corollaries
2.2.2-11 and Theorem 2.3.2]. Under the assumptions q = ∞ and compactness
of suppf , the norm ||.||p,s defined in the formulation of [16, Theorem 2.3.2] can
be replaced by the simpler ||.||Bs

p∞(R). This proves (i). The optimality of the rate

N− s
1+2s in the context of the assumptions of Theorem 1 follows by the standard

argument in risk estimation: with the increase of N , the bias term decreases
and tends to 0 when N → ∞, while the variance term increases and tends to
+∞ when N → ∞. So, the optimal rate in N is achieved when the contributions
of the bias and variance terms are equal. Under the assumptions of Theorem
1, it follows from the proof of [16, Theorem 2.2.1, under the assumptions of
Corollary 2.2.4] that the rate for which the bias and variance terms are balanced

is N− s
1+2s . (ii) is proved.

Now let s : 1 ≤ s < 2. In this case the proof is based on the same line of
arguments, but with [16, Corollary 2.2.4] being replaced by by [16, Corollary

2.2.8] and noting that the expression
s− 1

r
+ 1

q

1+2s− 2

r
+ 2

q

in [16, (2.2.4)] becomes s
1+2s

for r = q = +∞.
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Proof of Theorem 2. Follows straight-forwardly from the chain of equalities in
(11).

Proof of Theorem 3. To prove the theorem for every quadruple (p, q, s, σ) : 0 <
p ≤ ∞, 0 ≤ q ≤ ∞, n(1

p
− 1)

+
< s + σ < r we invoke [9, Lemma 3.10.2], as

follows. Assume that g = Jσf and g ∈ Bs+σ
pq (Rn), that is, the RHS of (6) is

finite when s is replaced by s + σ. Then, by [9, Lemma 3.10.2], the series (5)
for g is convergent in the topology of Bs+σ

pq (Rn), therefore, g = Jσf is learnable
by the WBNN generated by the specified wavelet basis.

In the particular case 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, the above proof can be
simplified, by using [9, Lemma 2.2.1] instead of [9, Lemma 3.10.2].

Proof of Corollary 4. Follows from Theorem 3 by using the lifting property of
Jσ.

Proof of Theorem 5. The RHS of (36) is just a commuted version of its LHS.
Since the basis {ϕj0k, ψjk} is a Riesz unconditional basis [1] all that has to be
shown is that the series in the LHS of (36) is absolutely convergent, because then
[9, Lemma 3.10.2] (or, alternatively in the particular case of Theorem 5 when
p ≥ 1 and q ≥ 1, [9, Lemma 2.2.1]) implies the statement of the theorem. The
absolute convergence of the LHS in (36) in Bs

pq follows from f ∈ Bs
pq, implying

the the finiteness of || · ||Bs
pq

in (6). From here, the absolute convergence of the

LHS of (36) in Bσ
ρη for every (ρ, η, σ) specified in the theorem follows from the

Sobolev embedding Bs
pq →֒ Bσ

ρη, see (32).

Proof of Theorem 6. The space Bσ
22 is a Hilbert space and, by Theorem 5, the

RHS of (36) holds true. Because of the Hilbertian geometry of Bσ
22, removing

the term involving any one ψjν0kν0 from
M
∑

ν=1
βjνkνψjνkν in (36) has the geometric

meaning of orthogonal projection of
M
∑

ν=1
βjνkνψjνkν ∈ span{ψjνkν}Mν=1 onto

(

ν0−1
∑

ν=1

+

M
∑

ν=ν0+1

)

βjνkνψjνkν ∈ span

{

{

ψjνkν
}ν0−1

ν=1

⋃

{

ψjνkν
}M

ν=ν0+1

}

.

Since |βjνkν | are ordered as decreasing rearrangement with factor 2
jν(s−

1

p
+ 1

2
)

and σ : σ− 1
2 = s− 1

p
, (45) follows, which proves the theorem. Note the following

remarkable geometric fact which remained implicit, but is crucial for the proof
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of the theorem: the basis {ϕj0k0 , ψjk} is orthonormal only in L2(σ = 0) but
remains orthogonal in Bσ

22 (0 ≤ σ < 2) which has the norm of a weighted
l2–sequence space with weight 2jσ.

8. Concluding remarks

The present work is the first part of a sequence of studies dedicated to the
new WBNNs. The next two parts of this series [33] and [34] are currently in
preparation. The main focus in [33] will be on a detailed study of the rich
variety of threshold and non-threshold activation methods for learning curves
in 2, 3 and higher dimensions. [34] will be dedicated to the diverse problems
which arise when learning multivariate multidimensional geometric manifolds
(surfaces, volume deformations and manifolds in dimensions higher than 3).
One topic will be to reduce the dimensionality of high-dimensional WBNNs
to 1- and 2-dimensional WBNNs with full preservation of their functional ef-
ficiency. One important application of this approach is to enable the use of
GPGPU programming algorithms for learning parametric manifolds with ar-
bitrary number of parameters, immersed in arbitrarily high-dimensional space
[38], [39]. Another topic in these two studies is to make progress in understand-
ing the connection between learning and approximation [35] in the context of
the new WBNNs. It should be noted that the essence of our new approach in
the present paper – (a) separating the roles of wavelet depth and neural depth,
(b) incorporating wavelet depth into the WBNN width to achieve consistency
of learning, and (c) using the neural depth for accelerating the rate of consistent
learning – can in principle be used also in the much more general context of
arbitrary tree–based adaptive partitions [40], [36].

We conjecture that Theorem 6 can be generalized for a broader range than
(2, 2, σ) with σ ∈ [0, r), namely, for the general assumptions on (p, q, s) and
ρ, η, σ in (36) of Theorem 5. However, to investigate this conjecture, one needs
to resort to a very different and much more technically involved and spacious
research approach, beginning with the derivation of direct inequalities (Jackson-
type, etc.) and inverse inequalities (Bernstein/Markov-type, etc.) and then,
based on the derived inequalities establish a connection between appropriately
selected best-approximation functionals and Peetre K -functionals. We refer to
[37, Chapter 3] for an early, but sufficiently complete general exposition of this
line of argument.

In conclusion, we note that by focusing on gradient/subgradient iterative
optimization method in learning algorithms for NNs in the introduction, we left
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an important methodological gap which needs to be filled here [30]. Numer-
ical methods for optimal control based on Bellman’s principle are very pow-
erful in learning theory, both by swarm and deep evolutionary AI, including
optimal control using feedback for supervised problems [30]. Although, theo-
retically, Bellman’s principle allows finding global extrema for a very general
class of criterial functionals (including non-convex, non-smooth (including non-
Lipschitzian) ones), and under complicated sets of constraints (including ones
induced by technological standards in real-life engineering problems): comput-
ing the/a global extremum is often unfeasible due to the huge computational
complexity. So, in many cases, a tradeoff is needed between affordable compu-
tational complexity and sufficiently high quality of a local extremum attained
[31], [32]. So far, similar to gradient methods, optimal tradeoffs in dynamical
programming are also achieved via natural, rather than artificial intelligence.
Nevertheless, if a dynamical programming algorithm is being applied in the
context of machine learning using WBNNs, we may now have an acceptable
automatic alternative.
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