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Abstract: The commutativity degree P (G) of a finite group G, is the prob-
ability that two arbitrary elements in G commute. The commutativity degree
of a group G can be used to measure how close a group is to be commutative.
In this article, the commutativity degree of some finite groups is configured.
Furthermore, upper and lower bounds of the commutativity degree of p-groups
have been computed.
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1. Introduction

The commutativity degree P (G) of a finite group G, is the probability that
two arbitrary elements in G commute. To determine this probability we need
to count the number of choices for two elements being commute. This will be
configured as the cardinality of A, where A = {(x, y) ∈ G×G | xy = yx}. In [4],
Erdős and Turán found the commutativity degree for symmetric groups. Next,
Erfanian et al. in [5] generalized the notion of the commutativity degree of a
group to the relative commutativity degree, which is defined as the probability
of an element of a subgroup commutes with an element of the group. In [3],
Castelaz found bounds on the commutativity degree of finite groups and found

Received: April 15, 2022 © 2022 Academic Publications
§Correspondence author



828 B.N. Al-Hasanat, A.M. Awajan

the exact value for some groups. Furthermore, she addressed the case of equality
in the commutativity degree of a group and subgroup.

2. Preliminaries

Our notions are fairly standard, for a group G the identity element is e, the
center Z(G) of G is the set of all x ∈ G such that xy = yx for all y ∈ G.
Two elements x and y in G are conjugate if there is an element g ∈ G such
that x = gyg−1, the set of all such elements y is called the conjugacy class
of x and denoted by xG. The number of the conjugacy classes of a group G

will be denoted by k(G). Recall that, the lower central series of a group G

is G = γ0(G) ≥ γ1(G) ≥ · · · γc(G) ≥ · · · , where γi(G) = [γi−1(G), G] (the
commutator subgroup of γi−1(G) and G), for i = 1, 2, 3, · · · . A group G is
called nilpotent if there exists c such that γc(G) = [γc−1(G), G] = {e}, and the
smallest such c is the class of nilpotency.

The commutativity degree P (G) of a group G is given by

P (G) =
|{(x, y) ∈ G×G | xy = yx}|

|G×G|

=
|{(x, y) ∈ G×G | xy = yx}|

|G|2
.

Clearly, the commutativity degree of any abelian group is 1. Therefore,
P (Zn) = 1 for all n ∈ N and P (G) < 1 for any non-abelian group G. On the
other hand, if A = {(x, y) ∈ G ×G | xy = yx}, then (e, x) ∈ A , x ∈ G. Thus

P (G) ≥
|G|

|G|2
=

1

|G|
, which is the ordinary lower bound of P (G) for any finite

group G. The next proposition gives a better lower bound of the commutativity
degree for any finite group.

Proposition 1. Let G be a finite group of order n and center Z(G) with

|Z(G)| = k. Then P (G) ≥
2nk − k2 + n− k

n2
.

Proof. Let G be a finite group of order n and center Z(G) with |Z(G)| = k.
Let B = {(x, y) | x ∈ Z(G), y ∈ G} , C = {(y, x) | x ∈ Z(G), y ∈ G \ Z(G)}
and D = {(y, y) | y ∈ G\Z(G)}. Then A∪B∪C ⊆ {(x, y) ∈ G×G | xy = yx}.
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From the definition of P (G), it follows that

P (G) =
|{(x, y) ∈ G×G | xy = yx}|

|G|2

≥
|B ∪ C ∪D|

|G|2

=
kn+ k(n− k) + n− k

n2

=
kn+ kn− k2 + n− k

n2

=
2nk − k2 + n− k

n2
.

Hence the claim follows. It is obvious that, the equality holds when G is abelian
group.

The number of the conjugacy classes of a finite group G is a significant
quantity, which is denoted by k(G). It is used to measure the probability of
two elements to commute. See the next theorem.

Theorem 2. [3] Let G be a finite group. Then the commutativity degree
of G is

P (G) =
k(G)

|G|
.

3. Main results

In this section the commutativity degree of certain finite groups will be com-
puted.

3.1. Commutativity degree of non-abelian

2-generators 2-groups

For every natural number n ≥ 8 there are exactly 4 non-abelian groups (up to
isomorphism) of order 2n = 2(2i) , i ≥ 3, with a cyclic subgroup of index 2,
and they are:

• The dihedral groupD2n, which is a non-abelian 2-generator group of order
2n, has a subgroup Zn of index 2.
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• The quasidihedral group QD2n, which is a non-abelian 2-generator group
of order 2n, has a subgroup Zn of index 2.

• The generalized quaternion groupGQ2n, which is a non-abelian 2-generator
group of order 2n, has a subgroup Zn of index 2.

• A 2-generator group G described as:

〈

r, s | rn = s2 = e, sr = rn/2+1s
〉

,

is isomorphic to the semidirect product of Zn⋊Z2, it has Zn as a normal
subgroup of index 2. We call this group by a Nondihedral group and
denoted by ND2n.

For more information about these groups one may refer to [2].

Next, we will find the commutativity degree of this family of groups.

Recall that the dihedral group D2n of order 2n is the group of symmetries of
a regular n-polygon, which includes rotations and reflections. Dihedral groups
are among the simplest examples of finite groups. The presentation of the
dihedral group in terms of rules and generators can be given by:

D2n =

〈

r, s | rn = s2 = e =
(

rks
)2

, for k = 1, 2, . . . , n

〉

.

Remark 3. Let G = D2n be the dihedral group of order 2n. Then the
commutativity degree of G is

P (G) =















n+ 3

4n
, n is odd

n+ 6

4n
, n is even

.

Proof. Let G = D2n be the dihedral group of order 2n. The commutativity
degree of G is

P (G) =
|A|

|G|2
=

|A|

(2n)2
where A = {(x, y) | x, y ∈ G and xy = yx}.

We need to find |A|, which can be easily done when A is written as a union of
disjoint subsets. To do this, we have two cases:
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Case 1. If n is odd, then e commutes with all x ∈ G, the element rk commutes
with rm for any k,m = 1, 2, 3, . . . , n and any reflection rks commutes only
with itself. So

A = {(e, x) | x ∈ G}
∪{(x, e) | x ∈ G \ {e}}
∪{(x, y) | x = rk , y = rm , k,m = 1, 2, . . . , n − 1}
∪{(x, x) | x = rks , k = 1, 2, . . . , n}.

Then, it follows that

|A| = 2n+ (2n − 1) + (n− 1)(n− 1) + n

= n2 + 3n.

Hence, P (G) =
n2 + 3n

4n2
=

n+ 3

4n
for n is odd.

Case 2. If n is even, then there is a rotation a = rn/2 ∈ G for which a2 = e,
so arks = rksa for all k = 1, 2, . . . , n. Therefore, (a, rks), (rks, a) ∈ A

for all k = 1, 2, . . . , n, the number of such choices is n + n = 2n. Also,
rksrk+

n

2 s = rk+
n

2 srk = r
n

2 , then (rks, rk+
n

2 s) ∈ A , k = 1, 2, . . . , n and
the number of these choices is n. In addition to the same number of
choices in the previous case. So,

A = {(e, x) | x ∈ G}
∪{(x, e) | x ∈ G \ {e}}

∪{(x, a) | x ∈ G \ {e}} a = r
n

2

∪{(a, x) | x ∈ G \ {e, a}} a = r
n

2

∪{(x, y) | x = rk , y = rm , k,m = 1, 2, . . . , n− 1
and k,m 6= n

2 }
∪{(x, x) | x = rks , k = 1, 2, . . . , n}

∪{(rks, rk+n/2s) | k = 1, 2, . . . , n}.

Then
|A| = (2n) + (2n − 1) + (2n− 1) + (2n − 2)

+(n− 2)2 + (n) + (n)
= n2 + 6n.

Therefore, P (G) =
n2 + 6n

4n2
=

n+ 6

4n
for n is even.
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Recall that, the quasidihedral groups QDn, are also called semi-dihedral
groups, are hence non-abelian groups of order n = 2(2i) = 2m for a positive
integer i greater than or equal 3. The group presentation in terms of rules and
generators can be given by:

QDn =
〈

r, s | rm = s2 = e , rsr = rm/2s
〉

.

Using the previous description, the next remark gives the commutativity degree
of the quasidihedral group.

Remark 4. Let G = QDn be the quasidihedral group of order n = 2(2i) =
2m , i ≥ 3. Then the commutativity degree of G is

P (G) =
m+ 6

4m
.

Proof. Let G = QDn be the quasidihedral group of order n = 2(2i) =
2m , i ≥ 3. The commutativity degree of G is

P (G) =
|A|

|G|2
=

|A|

(2m)2
where A = {(x, y) | x, y ∈ G and xy = yx}.

We need to find |A|, which can be easily done when A is written as a union of
disjoint subsets. Set B = {(e, x) | x ∈ G}∪ {(x, e) | x ∈ G \ {e}}. Then B ⊂ A.
Also, rirj = rjri for all i, j = 1, 2, . . . ,m, so C = {(ri, rj) | i, j = 1, 2, . . . ,m−
1} ⊂ A. In addition, rm/2x = xrm/2 for all x = rks , k = 1, 2, . . . ,m. So,
let D = {(x, rm/2) | x = rks , k = 1, 2, . . . ,m} ∪ {(rm/2, x) | x = rks , k =
1, 2, . . . ,m}, then D ⊂ A. Similarly, E = {(rks, rks) | k = 1, 2, . . . ,m} ⊂
A. The last subset F can be constructed from all pairs (rks, rk+m/2s) , k =
1, 2, . . . ,m. This implies that A = B ∪C ∪D ∪E ∪ F , and since these subsets
are disjoint, then

|A| = |B| + |C| + |D| + |E| + |F |
= 2m+ 2m− 1 + (m− 1)2 + m+m + m + m

= m2 + 6m.

Therefore, P (G) =
m2 + 6m

(2m)2
=

m+ 6

4m
.

Recall that, the generalized quaternion group GQn is a non-abelian 2-
generator group of order n = 2(2i) = 2m for a positive integer i , i ≥ 3.
The group presentation in terms of rules and generators can be given by:

GQn =
〈

r, s | rm = s4 = e, rm/2 = s2, rs = sr
〉

.
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Using the previous description, the next remark gives the commutativity degree
of the generalized quaternion group.

Remark 5. Let G = GQn be the generalized quaternion group of order
n = 2(2i) = 2m , i ≥ 3. Then the commutativity degree of G is

P (G) =
m+ 6

4m
.

Proof. Let G = GQn be the generalized quaternion group of order n =
2(2i) = 2m , i ≥ 3. Let A = {(x, y) ∈ G×G | xy = yx}, to consider P (G) we
first list the elements structure of A:

• The identity element e commutes with every element inG. So, (e, x), (x, e) ∈
A for all x ∈ G. There are 2m and 2m− 1 elements of such pairs.

• Since Z(G) = {e, rm/2}, then rm/2 commutes with every element in G.
Thus, (rm/2, x) ∈ A for x ∈ G \ {e}. There are 2m − 1 elements of such
pairs, these pairs are listed below.

• rk , m
2 6= k = 1, 2, . . . ,m− 1 commutes with x = ri , i = 1, 2, . . . ,m− 1.

So, (rk, ri) ∈ A , m
2 6= k = 1, 2, . . . ,m− 1 , i = 1, 2, . . . ,m− 1. There are

(m− 2)(m− 1) = m2 − 3m+ 2 elements of such pairs.

• rks for k = 1, 2, . . . ,m commutes with rm/2 , rks and
(

rks
)−1

. There are
3m elements of such pairs in A.

Using the previous list, one obtains:

|A| = (2m+ 2m− 1) + (2m− 1) + (m2 − 3m+ 2) + (3m)
= m2 + 6m.

Therefore, P (G) =
|A|

|G|2
=

m2 + 6m

4m2
=

m+ 6

4m
.

Recall that, the Nondihedral groupND2n is a non-abelian 2-generator group
of order n = 2(2i) = 2m for a positive integer i , i ≥ 3. The group presentation
in terms of rules and generators can be given by:

NDn =
〈

r, s | rm = s2 = e, sr = rm+1s
〉

.

Using the previous description, the next remark gives the commutativity degree
of the Nondihedral group.
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Remark 6. Let G = NDn be the Nondihedral group of order n = 2(2i) =
2m , i ≥ 3. Then the commutativity degree of G is

P (G) =
5

8
.

Proof. Let G = NDn be the Nondihedral group of order n = 2(2i) =
2m , i ≥ 3. Let A = {(x, y) ∈ G×G | xy = yx}, to consider P (G) we first list
the elements structure of A:

• The identity element e commutes with every element inG. So, (e, x), (x, e) ∈
A for all x ∈ G. There are 2m and 2m− 1 of elements such pairs .

• Since rm/2 ∈ Z(G), then rk for k = 2, 4, . . . ,m− 2 commutes with every
element in G. Thus, (rk, x), (x, rk) ∈ A for k = 2, 4, . . . ,m − 2. There
are (m2 − 1)(2m − 1) and (m2 − 1)(32m) elements of such pairs (note that
e = rm has been already used in the previous item).

• rk for odd k commutes with x = ri , i = 1, 2, . . . ,m. So, (rk, ri) ∈
A , k = 1, 3, . . . ,m− 1 , i = 1, 2, . . . ,m. There are 1

4m
2 elements of such

pairs (note that (rk, ri) , k = 1, 3, . . . ,m−1 , i = 2, 4, . . . ,m have already
been used above).

• rks for even k commutes with x = ris , i = 2, 4, . . . ,m. So, (rks, ris) ∈
A , k = 2, 4, . . . ,m , i = 2, 4, . . . ,m. There are 1

4m
2 elements of such

pairs.

• rks for odd k commutes with x = ris , i = 1, 3, . . . ,m−1. So, (rks, ris) ∈
A , k = 1, 3, . . . ,m − 1 , i = 1, 3, . . . ,m − 1. There are 1

4m
2 elements of

such pairs.

Using the previous list, we has:

|A| = 2m+ 2m− 1 + (m2 − 1)(2m − 1) + (m2 − 1)(32m) + 1
4m

2

+1
4m

2 + 1
4m

2

= 4m− 1 +m2 − 5
2m+ 1 + 3

4m
2 − 3

2m+ 3
4m

2

= 5
2m

2.

Therefore, P (G) =
|A|

|G|2
=

5
2m

2

4m2
=

5

8
.

The number of the conjugacy classes of G = NDn can be easily considered
from the previous result and Theorem 2. That is:

k(G) = P (G) · |G| =
5

8
n.
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3.2. Commutativity degree of the symmetric group Sn

In this part we will use the number of conjugacy classes of the symmetric group
G = Sn to find P (G). So we need the following theorem.

Theorem 7. [6] For the symmetric group Sn of cycle lengths L =
{0, 2, 3, · · · , n}. The number of conjugacy classes uniquely determined by a
cycle of length k ∈ L is Mk, where Mk is the number of solutions of ki ∈ L for

the inequality k +
∑

k≥ki∈L

ki ≤ n. Therefore, k(G) =
∑

k∈L

Mk.

Now, we find P (Sn) using the following remark.

Remark 8. Let G = Sn be the symmetric group of cycle lengths L =
{0, 2, 3, · · · , n}, and let Mk be the number of solutions of ki ∈ L for the in-
equality:

k +
∑

k≥ki∈L

ki ≤ n. (1)

Then

P (G) =

∑

k∈L

Mk

|G|
.

Proof. The proof is straight forward using Theorem 2 and Theorem 7.

Example 9. Let G = S12. The next list shows the number of solutions
for Inequality (1).

• For k = 0: The cases of ki ∈ L; ki ≤ 0 is only 0. Thus the choices of the
sum ≤ 12 is 0 + 0, implies that M0 = 1.

• For k = 2: The cases of ki ∈ L; ki ≤ 2 are 0, 2. Thus the choices of the
sum≤ 12 are 2+0, 2+2, 2+2+2, 2+2+2+2, 2+2+2+2+2, 2+2+2+2+2+2,
implies that M2 = 6.

• For k = 3: The cases of ki ∈ L; ki ≤ 3 are 0, 2, 3. Thus the choices of the
sum ≤ 12 are 3+0, 3+2, 3+2+2, 3+2+2+2, 3+2+2+2+2, 3+3, 3+
3+2, 3+3+2+2, 3+3+2+2+2, 3+3+3, 3+3+3+2, 3+3+3+3,
implies that M3 = 12.
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• Similarly, for k = 4, 5, 6, 7, 8, 9, 10, 11 and k = 12, one has M4 = 15,M5 =
13,M6 = 11,M7 = 7,M8 = 5,M9 = 3,M10 = 2,M11 = 1 and M12 = 1.

This implies that

k(G) =
∑

k∈L

Mk

= M0 +M2 +M3 +M4 +M5 +M6 +M7 +M8 +M9

+M10 +M11 +M12

= 77.

Now, using Remark 8, one has:

P (G) =
k(G)

|G|
=

77

12!
=

1

6220800
.

The previous results can be used to find the number of order pairs (x, y) ∈

S12 × S12 such that xy = yx. That can be done using P (G) =
|A|

|G|2
, where

A = {(x, y) | xy = yx , x, y ∈ S12}. So, |A| = P (G) · |G|2 = 36883123200. This
large number can not be estimated using any of the usual counting principles.

3.3. Commutativity degree of p-groups

As, any p-group is nilpotent [7]. This allow us to use the next theorem to find
a bound for the commutativity degree of these groups.

Theorem 10. [1] Let G be a finite group of nilpotency class c, and Z(G)

be the center of G. Let u = |G|−r, where r =

⌊

|G| − |Z(G)|

c

⌋

. Then k(G) ≤ u.

Now, we will use Theorem 2 and Theorem 10 in the following remark.

Remark 11. Let G be a finite p-group of nilpotency class c and center

Z(G), let u = |G| − r, where r =

⌊

|G| − |Z(G)|

c

⌋

. Then

P (G) ≤
u

|G|
.

Proof. The proof is an immediate consequence of Theorem 2 and Theorem
10.
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Example 12. The group

G =
〈

a, b | a5
2

= b5 = [a, [b, a]] = [b, [b, a]] = [a, b]5 = e
〉

∼= (Z52 × Z5)⋊ Z5,

is a none abelian p-group (p = 5) of nilpotency class 2 and |Z(G)| = 52 = 25.
Using Remark 11, it follows that:

r =

⌊

|G| − |Z(G)|

c

⌋

=

⌊

625− 25

2

⌋

= 300.

Therefore,

P (G) ≤
u

|G|
=

625 − 300

625
=

325

625
=

13

25
.

Using Proposition 1, one obtains:

1249

15625
≤ P (G) ≤

13

25

4. Conclusion

In this paper, the commutativity degree of non-abelian 2-generators groups has
been computed. The investigated results can be used to find the commutativity
degree of such groups using explicit and elementary rules. Also, the commuta-
tivity degree of symmetric group has been obtained. The results were obtained
by the number of conjugacy classes of the symmetric group. The final results
show the significance of the conjugacy classes on the group structure. More-
over, the number of the conjugacy classes has been also used to obtain an upper
bound to the commutativity degree of p-groups.

Clearly, the considered groups in this paper are of the most important ones
to compute their P (G). Indeed, further considerations are needed to evaluate
the commutativity degree for other groups.
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[4] P. Erdős and P. Turán, On some problems of a statistical group theory,
IV, Acta Mathematica Hungarica, 19 (1968), 413–435.

[5] A. Erfanian, R. Rezaei and P. Lescot, On the relative commutativity degree
of a subgroup of a finite group, Communications in Algebra, 35, No 12
(2007), 4183–4197.

[6] S. Abdullah and B.N. Al-Hasanat, The conjugacy class of symmetric
groups, International Journal of Applied Mathematics, 25, No 5 (2012),
603–607.

[7] J. Rotman, An Introduction to the Theory of Groups, WCB/McGraw-Hill
(1988).


