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Abstract: In this paper we study the problem of existence of fixed points for
weakly Hick contraction in b-Menger spaces. Some examples are furnished to
demonstrate the validity of the obtained results.
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1. Introduction and preliminaries

In 2017, Mbarki et al. [5] introduced a new notion called probabilistic b-metric
by generalizing the (probabilistic) triangle inequality axiom in the definition of
standard probabilistic metric. Then they obtained some important fixed point
results in a series of works (see [6], [7], [8], [9], [10]).
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Our aim is to continue the research on the fixed point in b-Menger spaces.
In this work, we study the problem of the existence of a fixed point for weak-
Hicks contraction maps. Some non-trivial examples have been presented to
illustrate the results.

Here, we state some basic definitions and expressions, necessary to use in
the main part of the paper.

Definition 1. A distance distribution function (briefly, a d.d.f.) is a
nondecreasing function F defined on R+ ∪ {∞} that satisfies f(0) = 0 and
f(∞) = 1, and is left continuous on (0,∞). The set of all d.d.f’s will be noted
by ∆+; and the set of all F in ∆+ for which lim

t→∞
f(t) = 1 by D+.

A simple example of distribution function is the Heaviside function in D+,

H(t) =

{

0 if t ≤ 0,
1 if t > 0.

A commutative, associative and nondecreasing mapping T : [0, 1] → [0, 1]
is called a t-norm, if and only if

1. T (a, 1) = a, for all a ∈ [0, 1],

2. T (0, 0) = 0.

As examples we mention the three typical examples of continuous t-norms
as follows:

Tp(a, b) = ab, TM (a, b) = min(a, b)andTL(a, b) = max{a+ b− 1, 0}.

Let T be a t-norm for the sake of brevity,

T 1(x, y) = T (x, y), T 2(x, y, z) = T (x, T 1(y, z))

and for every n ≥ 3,

T n(x1, x2, ..., xn+1) = T (x1, T (x2, x3, ..., xn+1)).

A t-norm T can be extended to a countable infinitely operation taking for any
{xn} in [0, 1] the values

T∞
i=1xi = lim

n→∞
T n(x1, ..., xn+1),

(this limit always exists since the sequence {T n(x1, ..., xn+1)} is nondecreasing
and bounded from below) and T∞

i=nxi = T∞
i=1xn+i.

We shall make use of the following definitions.
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Definition 2. ([1]) We say that a t-norm T is of H-type, if the family
{T n(t)} is equicontinuous at t = 1, that is,

∀ǫ ∈ (0, 1) ∃λ ∈ (0, 1) : t > 1− λ ⇒ T n(t) > 1− ǫ for all n ≥ 1.

Definition 3. ([2]) A t-norm T is geometrically convergent (g-convergent)
if, for all q ∈ (0, 1),

lim
n→∞

T∞
i=n(1− qi) = 1.

It should be noticed (see [2]), that if limn→∞ T∞
i=n(1 − q0

i) = 1 for some
q0 ∈ (0, 1), then T is g-convergent t-norm. Also, note that if T is g-convergent,
then supa<1 T (a, a) = 1. Some sufficient condition for T is given by Hadzic et
al. [2] to ensure that T is a g-convergent t-norm. Also, note that TL and the
t-norms of H-type are g-convergent t-norms.

Definition 4. ([5]) A b-Menger space is a quadruple (M,F, T, s) where M
is a nonempty set, F is a function from M ×M into ∆+, T is a t-norm, s ≥ 1
is a real number, and the following conditions are satisfied:

For all p, r, q ∈ M and x, y > 0,

1. Fpp = H,

2. Fpr = H ⇒ p = r,

3. Fpr = Frp,

4. Fpr(s(x+ y)) ≥ T (Fpq(x), Fqr(y)).

It should be noted that a Menger space is a b-Menger space with s = 1.

Definition 5. Let {xn} be a sequence in a probabilistic semimetric space
(M,F ) (i.e., (1), (2) and (3) of Definition 4).

1. A sequence {xn} in M is said to be convergent to x in M if, for every
ǫ > 0 and δ ∈ (0, 1), there exists a positive integer N(ǫ, δ) such that
Fxnx(ǫ) > 1− δ, whenever n ≥ N(ǫ, δ).

2. A sequence {xn} in M is called Cauchy sequence if, for every for every
ǫ > 0 and δ ∈ (0, 1), there exists a positive integer N(ǫ, δ) such that
Fxnxm

(ǫ) > 1− δ, whenever n, m ≥ N(ǫ, δ).
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3. (M,F ) is said to be complete if every Cauchy sequence has a limit.

2. Main result

The following type probabilistic contractions, intensively studied in the fixed
point theory in PM space (see e.g. [3], [11]), have been introduced by Hicks [4]:

Definition 6. A mapping f of a probabilistic semimetric space (M,F )
into itself is Hicks contraction (C-contraction for short) if there is a k in (0, 1)
such that the following implication holds for every p, q ∈ M and all t > 0:

(H) : Fpq(t) > 1− t =⇒ Ffpfq(kt) > 1− kt.

Mihet ([11]) considered a generalization of the C-contraction, known as
weak-Hicks contraction:

Definition 7. A mapping f of a probabilistic semimetric space (M,F )
into itself is is said to be a weak-Hicks contraction (w−H contraction for short)
if there exists k ∈ (0, 1) such that, for all p, q ∈ S,

(w −H) : t ∈ (0, 1), Fpq(t) > 1− t ⇒ Ff(p)f(q)(kt) > 1− kt.

Now, we can state and prove the main fixed point theorem of this paper.

Theorem 8. Let (M,F, T, s) be a complete b-Menger space such that T
is a g-convergent t-norm and f be a w-H contraction with k ∈ (0, 1

s
). Then f

has a fixed point iff there exists x ∈ M such that Fxfx(1) > 0.

Proof. Suppose that f has a fixed point x, then Fxfx(1) = Fxx(1) = 1 > 0.

For the converse implication: First, we show that there exists δ ∈ (0, 1) such
that Fxfx(δ) > 1−δ. Indeed, if we have Fxfx(δ) ≤ 1−δ for all δ ∈ (0, 1), letting
δ → 1 and using the fact that Fxfx is left continuous, we obtain Fxfx(1) ≤ 0,
which is a contradiction. Hence there exists δ ∈ (0, 1) such that Fxfx(δ) > 1−δ.
Now, using (w-H), we can prove by induction that

Ffnxfn+1x(k
nδ) > 1− knδ
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for every n ∈ N . We shall prove that the sequence {xn} is a Cauchy sequence,
i.e. that for every ǫ, γ > 0 there exists n”0 ∈ N such that

Fxnxn+m
(ǫ) > 1− γ

for every n ≥ n”0 and every m ∈ N . Since T is a g-convergent t-norm, then
exists n1 ∈ N such that

T∞
i=n(1− ki) > 1− γ

for all n ≥ n1. Let n0 ∈ N be such that
∑

i≥n0

(sk)iδ < ǫ.

Then for n ≥ n”0 = max{n0, n1}, we have

Fxnxn+m
(ǫ) ≥ Fxnxn+m

(
∑n+m−1

i=n (sk)iδ)

≥ T (Fxnxn+1
(sn−1knδ), Fxn+1xn+m

(
∑n+m−1

i=n+1 (si−1k)iδ))
.
.
.
≥ Tm−1(Fxnxn+1

(sn−1knδ), Fxn+1xn+2
(sn−1kn+1δ), ...,

Fxn+m−1xn+m
(sn−1kn+m−1δ))

≥ Tm−1(Fxnxn+1
(knδ), Fxn+1xn+2

(kn+1δ), ..., Fxn+m−1xn+m
(kn+m−1δ))

≥ Tm−1(1− knδ, ..., 1 − kn+m−1δ)
≥ Tm−1(1− kn, ..., 1 − kn+m−1)
≥ T∞

i=n(1− ki)
> 1− γ.
Hence {xn} is a Cauchy sequence in (M,F, T ). By completeness, xn → z for
some z in M . Now we show that xn → fz. Indeed, if ǫ > 0 and λ ∈ (0, 1) are
given, we choose σ ∈ (0, 1) such that 0 < kσ < min{ǫ, λ}. Then there exists
N for all n ≥ N that we have Fxnz(σ) > 1 − σ =⇒ Ffxnfz(kσ) > 1 − kσ =⇒
Ffxnfz(kσ) > 1− λ =⇒ Ffxnfz(ǫ) > 1− λ. Therefore, limn→∞ xn+1 = fz.

By inequality (4) in Definition 4, we have

Ffzz(t) ≥ T (Ffzxn+1
(
t

2s
), Fxn+1z(

t

2s
)))

for all t > 0, n ≥ 1.
Since supa<1 T (a, a) = 1, let σ ∈ (0, 1), there exists ρ ∈ (0, 1) such that

T (1− ρ, 1− ρ) > 1− σ

and using Ffzxn+1
( t
2s ) → 1 and Fxn+1z(

t
2s ) → 1, there exists N ∈ N such that
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Ffzxn+1
(
t

2s
) > 1− ρ, Fxn+1z(

t

2s
) > 1− ρ

for all n ≥ N , which implies that

Ffzz(t) ≥ T (Ffzxn+1
(
t

2s
), Fxn+1z(

t

2s
))

≥ T (1− ρ, 1− ρ)

≥ 1− σ.

Then

Ffzz(t) ≥ 1− σ,∀σ ∈ (0, 1).

Letting σ → 0 we get Ffzz(t) = 1, since this is for arbitrary t > 0, then
fz = z.

It should be noted unlike other previous works as [5]-[10], that in the proof
of Theorem 8 the conditions Range(F ) ⊂ D+, T is of H-type or continuous
t-norm on the b-Menger metric are not necessary.

Example 9. Here we illustrate our results from Theorem 8 by the follow-
ing example: let M = {a, b, c, d} and define Fpq(t) = 0 for all p, q ∈ M, p 6=
q and t > 0. It is easy to see that (M,F, TL, 1) is a complete b-Menger space.
Consider the mapping f : M → M, defined by f(a) = a, f(b) = b, f(c) =
d, f(d) = c. Since t ∈ (0, 1), Fpq(t) > 1− t =⇒ p = q =⇒ Ff(p)f(q)(kt) = 1, f
is a weak Hicks contraction. Note that this mapping has two fixed points :
a and b. But Fab /∈ D+ and TL is not a t-norme of type H.

By taking s = 1 in Theorem 8, we obtain the following result.

Corollary 10. ([11]) Let (M,F, T ) be a complete Menger space such that

T is a g-convergent t-norm and f be a w-H contraction. Then f has a fixed

point iff there exists x ∈ M such that Fxfx(1) > 0.

Example 11. Let M = [0,∞). Define F : M ×M → ∆+ by

Fpq(t) = H(t− |p− q|2).

We claim that (M,F, TL, 2) is a b-Menger space. Indeed, if

TL(Fpr(t), Frq(s)) = max{Fpr(t) + Frq(s)− 1, 0} > 0,
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this implies that H(t−|p− r|2) = H(s−|r− q|2) = 1, then t > |p− r|2 and s >
|r − q|2. So,

2(s + t) > 2(|p − r|2 + |r − q|2)

≥ |p− q|2.

Hence

Fpq(2(s + t)) ≥ H(2(s + t)− |p− q|2)

≥ 1

≥ TL(Fpr(t), Frq(s)),

which proves our claim. It is obvious that (M,F, TL, 2) is complete. Now

consider the function f : M → M given by f(x) =
√
2√
5
x. Clearly, all the

conditions of Theorem 8 are satisfied and 0 is a fixed point of f . But we cannot
apply the results of [11] here, since (M,F, TL) is not a standard probabilistic
metric space because it lacks the triangle inequality:

F13(3) = 0 < TL(F12(
3

2
), F23(

3

2
)) = 1.

In the same way we cannot apply the results of [5]-[10] since TL is not a t-norm
of type H.
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