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Abstract: Asymptotic analysis of problems in domains with fractal interfaces
or fractal limits is important for the study of phenomena related to heteroge-
neous materials and in particular to know the behavior of the faults in the
geological zones.

We consider a dense network of elastic materials modelled by a dense net-
work of elastic balls in the unit ball B(0;1) of R™; n = 3, obtained from
an 3-dimensional packing of elastic spherical balls. The purpose is to use I'-
convergence methods in order to study the asymptotic behaviour of the struc-
ture and deriving contact laws on the residual fractal interface. The problem
considered here has other implications, such as the modeling of the behavior of
composite materials or the study of displacement of a geological fault causing
a generation of a new fractures.
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1. Introduction

The wall rocks in most geological fault zones contain a layer cataclastic rock
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called gouge commonly attributed to wear and attrition of the sliding walls,
or to implosive loading during earthquakes (see for example [23] and [24]).
The material around these complexities is subjected, during the continuous
deformations of the medium, to a concentration of great stresses, which leads
to a generation of new fractures with a change in the elasticity, the permeability
and the geometry of the medium [28]. The asymptotic analysis of mathematical
problems in domains with fractal interfaces or fractal edges is relatively new
and recent. It has been considered in the study of certain physical phenomena
in disordered media (see for example [30] and [32]).

For the main work, we consider here a packing of the unit ball = B(0,1).
The principle of construction of Apollonian spheres packing of the unit ball is
very similar to the construction of Apollonian circles packing of the unit disk.
This construction consists in considering three pairwise externally tangent balls
By, By, B3 of respective radius p1, p2; p3 < 1, which are internally tangent to
), and then repeat the process by adding more balls B;, of radii p;;¢ > 3, in
By such that B;NB; =0; j=1,...,i — 1 (see for instance [8]). We denote
{By}r2, the network of isotropic and homogeneous linear elastic open balls
that are removed from  to obtain the residual set A defined in [1], which is a
fractal whose fractal dimension is d ~ 2.47 (see for instance [5], [6] and [8]).

We consider the same problem as in the 2-dimensional case [1] replacing
discs by balls and lines by discs. For every h € N* | we define the space

Vo () = {v e H' (Qh,R?’) ;[vln, =0and v =0o0n I'HN Qh} (1)

where, using the same notation as in the above section,

N(h)
Qh — U BZ,h?
k=1
N (h)n(h)
Ty = U U B (a:;k,rh) N ZjJC(h),
k=1j=1

where B (3:;" > rh) is a ball centred at the contact point x;x, of radius r, with
limp, o0 ;(—hd =0; d2id1 <e<l,and Z;i(h);j € {1,...,n,(h)} is the thin contact
h

disk of radius pfld centred at the contact point a:jk
We define the energy functional %), on L? (Q, }R3) through

— th Oij (u)elj (U)dl‘, if u € V2,h (Qh) )
Q,h(u) = .
00, otherwise.
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The equilibrium of the material is described through the minimization prob-

lem
i F -2 audx p 3
i (P =2 [ o) )

Performing some estimates as in the above tree-dimensional case, one can
prove that problem (3) has a unique solution u" € Vy, () such that

sup
heN*

UhHHl(Qh) < +oo (4)

We use spherical coordinates (7,6, ¢) to define the map Y% from Uivz(}ll) By,

to the set 2 by

((Rk. —di(h)) RLk’ 0, qﬁ) in the cone of apex the point,
Y5(r,0,9) =< (r,0,¢) crand of base the disk Z; x(h), (5)

elsewhere,

for every k € {1,2,...,N(h)} and j € {1,...,ni(h)}.

Let u” is the solution of problem (3). As in the 2-dimensional case [1], we
can prove that there exists a subsequence of the sequence (uh) e still denoted
in the same way, and u € H%O (Q\E,R?’), such that

\Y (uh o Tg) h h——>><>o Vulg\sdzr in My (Q\E; ]R3) -weak *,
u' = U in L? (Q; ]R3) -weak. (6)

h—00

Accordingly, we consider the following topology 7.

Definition 1. We say that a sequence (uh)h; ul € Vo, (), To-converges
< 400, and

to u if suppen- uhHHl(Qh)

v (uh o T%) 1 hjoo Vulg\sdzr in M, (Q\Z; }R?’) -weak™,

W = uw in L2 (Q;R3)— weak.
h—00
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2. The main result
Our main result in this section reads as follows.
Theorem 2. Letr, = cp;il, ¢ being a positive constant. Then:

1. (lim sup ineguality) For every u € H%O (Q\Z, R3), there exists a sequence
(uh)h cul e Vi (), such that (uh)z T1-converges to u and

limsup Fy p, (uh> < Fpe(u),

h—o0

2. (lim inf ineguality) For every sequence (uh)z; ul € V5, (), such that
(uh)?Z T1-converges to u, we have u € H%O (Q\Z,R3) and

liminf Fy (uh> > Fy(u)
h—00 ’ ’

the sequence (Fyp,),, defined in (1), I'-converges, with respect o the topology
T defined in Definition 1, to the functional F; . defined in (2).

The boundary value problem associated to the limit functional (2) is given
in the following

Corollary 3. Under the hypothesis of Theorem 2, the sequence (uh)h,
with u" the solution of problem (3), Ti-converges to the solution u of the prob-
lem

—divo(u) = f in O\,
u=0 on I'y, (7)
oi(u)vy = — ° Aij ([u]s); HY on X.

HA(A)

Moreover, the convergence of the energy functionals limy_,oo F (uh) =
F5 .(u) holds true.
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2.1. Proof of Theorem 2
2.1.1. First step: Boundary layer problems

We consider the following auxiliary linear elasticity problems posed in the half
space y3 > 0 wich is denoted here R3*:

dive (w™) = 0 in R¥*\D(0,1); m = 1,2,3,
w™ =e, on D(0,1); m=1,2,3,
o3 (w™) =0 on R:\D(0,1); i=1,2,3,
w™(y) = 0 as |y — 400, y3 >0,

(®)

where e, = (01m,02m,03m);m = 1,2,3, D(0,1) is the unit disc centred at
the origin, and o (w™) = (o5 (W™)), ;_; 53 With oi; (w™) = Aoey (W™) 6i; +
2#061‘]' (wm)

The solution w™ of (8) is given (see [16]), for j,m = 1,2, 3, through

W (y) = /D o 87 E)Gony = G = ) e Yy <R (9

where
3p0(Ao—+4o) _
I S () ) /12 orm =L (10)
9 0 1 (C 5) 2#0 )\O+,U«O) fOI’ m = 3’

m(Ao+2p0)/1-¢2—€2
1p(0,1) being the characteristic function of D(0,1), and (Gij); ;_; 5 3 s the Green

symmetric tensor for the half-space y3 > 0 occupied by an 1sotroplc and ho-
mogenous elastic material of Lame’s constants Ay and pg. This tensor is given

(see [28]) by

( _ 1 (Mo+2p0)r+(Xo+po)ys
CG11(Y) = Trtor) { r(r+ys)
4 2 7(Aor+y3(Xo+p0))+y3 (Mo+po)
o ta O,
_ 1 r(Aor+y3(Ao+po))+y5(Ao+ro
G12(Y) = Tmoerio) { Brtys)? }913/27
— 1 y1y3(Ao+tpo)
Crs() = iy | PG — s ) "
_ 1 (Mo+2p0)r+(Xo+po)ys
Gaa(y) = Ao (MotHo) r(r+ys)
4 2T(/\or+ys(>\o+uo))+y§(/\o+uo)}
2 ( v (r-+ya)’ ’
_ 1 y2y3(Ao+po)
Gas(y) = 4mpo(Ao+ro) = T‘g’) - T(ﬁgryzjs)}’
_ 1 y3(Moturo) | (Not+2p0)
\ Gas(y) = 4mpo(Mo+po) . 73 + = r ; }’
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1
Where r = ‘y| —= (’y% —|— y% + y%) 2.
Observe that the solution of problem (8) posed in the half-space R3:
R*™ = {y = (y1,y2.y3) € R?; y3 <0},

can be also expressed in terms of formula (9) with the Green symmetric tensor
(11) for the half-space y3 < 0. We still denote w™(y); m = 1,2, 3, this solution.
Now, since

/ o (™) eij (wl) dy = 6 / qm (Y1, y2) dyrdys,
R3+ D(0,1)

we deduce, using (10), the following formula

o if 1 =1, 2,

3+ko
/ oij (W™) eij (wl) dy=1<0 if m#1, (12)
R3* 4 .
1f£0 ifm=1=3,
where kg = —)‘)?01%0.

2.1.2. Second step: test-functions

Let h e N;k € {1,2,...,N(h)},and j € {1,...,nk(h)}. We define the rotation

matrix R (a:;‘k> = (aml (x;’k>>m,l:1,2,3 through
11 = cos 01 cos Oy — sin 04 sin 05 cos O3, o3 = cos B sin b3,
12 = cos 0 sin Oy + sin 01 cos 65 cos O3, a3; = sinfysinfs,
13 = sin 64 sin 03, Q39 = — cos By sin O3, (13)
a1 = —sin 6y cos Oy — cos By sin By cos B3, g3 = cos b,
(ro9 = — sin @7 sin Oy + cos 01 cos O cos O3,

where 6,, = 0,, (a:;"’k> ;m = 1,2,3, are the Euler angles which define a new

system of coordinates of origin the point xjk The orientation is preserved by
the transformation R (a:;‘k>
Let sy, = (1) ;€ € (d%dl, 1), and the unit normal V;.fk on the contact zone
Z; 1(h), with
0 sin 6 (a:;"k) sin 03 (:1:;‘ k;)
V;-fk =R(z5,) | 0 | =] costy (m;‘k> sin 03 (a:;k>
1

*
cos 03 (:L‘jk
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Figure 1: Local system of coordinates of origin the point z7, j
We define
BT (1:;7,6,8;,) =B (a:;,k,sh) N {az . V;fk > 0} )

B™ (@}, sn) = B (], sn) N {3: : V]}-fk, < 0} ,

N(h) i (h) (14)
B,jf = U U B* (l’;,k,Sh),

k=1 j=1
B, =B;fUB,,

where B (xjk, sh) is the ball of radius S}, centred at :C;‘ - We define the trun-
cation function goé?,k; he N ke{l,2,....N(h)},j €{l,...,ni(h)}, through
1 inB (x]k, Th) ,

0 inQ\B (a:;'f’k,sh) ) (15)

@?,k(l’) =

We build the local functions w}y*,m = 1,2,3, defined on B (:c;f7k,sh); h €
N* ke {1,2,...,N(h)},7 € {1,...,nk(h)}, through
Jk J:k

—1 I — 2"
wi (@) = @i (@) R (25) | wil ! ( 2h< ) —e™ . (16)
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Proposition 4. Let ® € C! (Q,R3). If rp = cpz, ¢ being a positive
constant, then

2c
1i i (WD, e (w @ = A(z)®(z).® d
fim [ o o) ey (wher) dr = 75 /E (2)®(2).0(a)dH (),
where
B0 0
KO
A@z)=R'(x)| 0 L 2o R(z), (17)

00 2

R(z) being the rotation matrix defined in (13) but here with angles 6,,(x);
m=1,2,3,x €.

R~ (Ij,k)(x xj,k)

Th

Proof. Introducing the change of variables y =
check, using the definition of wy}", that

/ Oij (w}f@m) eij <w§L<I>1> dx
Qpn
N(h)n;C

- Z/ UZJ (wy' P) €4 (wﬁl@l) dx (18)
x k,sh

=1

, one can

Ah+Bh+O(sh)

iS85 [ (R G) # (e), (R () @ (520),

oz o) 8 () 0 ()

g RO e (), (R () @ (o),
s (

122 ,)B (* )J”(wm)eijw

k= Lk’rh

,_.

-
Il

—

According to (12), we have

Buo_ it 1 =1, 2,

3+ko
/ . Oij (wm) €ij ( ) dy ~ 0 if m #l,
R (a7, ) B (7,20 ) el e ifm=1=3.

Since A is invariant under some iterative inversions (see for instance [8]),
each point of tangency z,, between the touching balls Bj and B, ;; k €
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{1,2,...,N(h)},¢v € {1,...,nk(h)}, is an iterate of some fixed tangent point
x € A. Hence, as N(h) ~ sp_00 p;d, (see [8], [9], [10] and [11]), and ), = cpd,
we have, according to [18, Theorem 6.1],

N(h) ng(h)

i 303 ot {(R ) @ ), (R @ (20, )
N(h)nk( c
= lim R (z6) @ (21)),, (R (200) @ (z01)), }
k=1 =1

- /Z (R(2)®(2))m (R(x) D () )1dH" ().

We thus obtain

2c
i 4y = lim By = 2 /E A)®(2). () dH (x)
and, using (18),
hlLIgO o, oij (W' Pr,) €35 (wﬁl@l) dr = HQ(j\) /EA(x)@(x).@(l‘)de(x).

2.1.3. Third step: I'-convergence

Let u € Nen C! (Be, R?) ,u = 0 on 9Q. We denote by rx ([u]s) a 1mage of
[u]s; through the continuous map ry, from B2 (£,R?) into H! (Q\X,R?). Wi

define the sequence (ug)h as follows:

u(l=gi ) +wprs (glumly) i BT (2f,80) NQ,
h . p—
U ul(l— @Zk +wi'rs (=% [up]g)  in B :c;.ﬁk, sp) NQ, (19)
u in Q\Bh,

where B* (m;‘ s sh), By, are defined in (14), and goé?’k the test-function wj" are,
respectively, defined in (15) and (16).
Then, using the same method as in [1] , we conclude that the sequence

(F,n), I-converges, with respect to the topology 7o to the functional Fy . de-
fined in (2).
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3. Conclusion

Our asymptotic analysis showed that the contact on the fractal interface be-
tween the granular materials can be modeled by a 3-dimensional macroscopic
contact law which describes the functional energy of field studied. The results
obtained can be interpreted as part of the process of erosion of a gouge during
the nucleation phase of an earthquake where the concentration of stresses on
the interface inside the gouge exceeds its capacities causing a rupture or even a
generation of new fractures. Also, the results here has other implications, such
as the modeling of the behavior of composite materials or the study of certain
industrial processes (see for example [20] and [21]).

Concerning a next study on the problem, we hope to extend it to the prop-
agation of elastic waves in an Apollonian stack of discs or spheres with for
essential motivation applications to seismic.
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