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Abstract: Asymptotic analysis of problems in domains with fractal interfaces
or fractal limits is important for the study of phenomena related to heteroge-
neous materials and in particular to know the behavior of the faults in the
geological zones.

We consider a dense network of elastic materials modelled by a dense net-
work of elastic balls in the unit ball B(0; 1) of R

n; n = 3, obtained from
an 3-dimensional packing of elastic spherical balls. The purpose is to use Γ-
convergence methods in order to study the asymptotic behaviour of the struc-
ture and deriving contact laws on the residual fractal interface. The problem
considered here has other implications, such as the modeling of the behavior of
composite materials or the study of displacement of a geological fault causing
a generation of a new fractures.
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1. Introduction

The wall rocks in most geological fault zones contain a layer cataclastic rock
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called gouge commonly attributed to wear and attrition of the sliding walls,
or to implosive loading during earthquakes (see for example [23] and [24]).
The material around these complexities is subjected, during the continuous
deformations of the medium, to a concentration of great stresses, which leads
to a generation of new fractures with a change in the elasticity, the permeability
and the geometry of the medium [28]. The asymptotic analysis of mathematical
problems in domains with fractal interfaces or fractal edges is relatively new
and recent. It has been considered in the study of certain physical phenomena
in disordered media (see for example [30] and [32]).

For the main work, we consider here a packing of the unit ball Ω = B(0, 1).
The principle of construction of Apollonian spheres packing of the unit ball is
very similar to the construction of Apollonian circles packing of the unit disk.
This construction consists in considering three pairwise externally tangent balls
B1, B2, B3 of respective radius ρ1, ρ2; ρ3 < 1, which are internally tangent to
Ω, and then repeat the process by adding more balls Bi, of radii ρi; i > 3, in
B0 such that Bi ∩ Bj = ∅; j = 1, ..., i − 1 (see for instance [8]). We denote
{Bk}∞k=1 the network of isotropic and homogeneous linear elastic open balls
that are removed from Ω to obtain the residual set Λ defined in [1], which is a
fractal whose fractal dimension is d ∼ 2.47 (see for instance [5], [6] and [8]).

We consider the same problem as in the 2-dimensional case [1] replacing
discs by balls and lines by discs. For every h ∈ N

∗ , we define the space

V2,h (Ωh) =
{

v ∈ H1
(

Ωh,R
3
)

; [v]Th
= 0 and v = 0 on Γ0 ∩ Ω̄h

}

(1)

where, using the same notation as in the above section,

Ωh =

N(h)
⋃

k=1
N(h)nk(h)

B∗
k,h,

Th =
⋃

k=1

⋃

j=1

B
(

x∗j,k, rh
)

∩ Zj,k(h),

where B
(

x∗j,k, rh

)

is a ball centred at the contact point xj,k, of radius rh with

limh→∞
rh
ρǫd
h

= 0; d+1
2d < ǫ < 1, and Zj,k(h); j ∈ {1, . . . , nk(h)} is the thin contact

disk of radius ρǫdh centred at the contact point x∗j,k.

We define the energy functional F2,h on L2
(

Ω,R3
)

through

F2,h(u) =

{

∫

Ωh
σij(u)eij(u)dx, if u ∈ V2,h (Ωh) ,

+∞, otherwise.
(2)
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The equilibrium of the material is described through the minimization prob-
lem

min
u∈L2(Ω,R3)

{

F2,h(u)− 2

∫

Ωh

f.udx

}

. (3)

Performing some estimates as in the above tree-dimensional case, one can
prove that problem (3) has a unique solution uh ∈ V2,h (Ωh) such that

sup
h∈N∗

∥

∥

∥uh
∥

∥

∥

H1(Ωh)
< +∞ (4)

We use spherical coordinates (r, θ, φ) to define the map Υh
2 from

⋃N(h)
k=1 Bk

to the set Ωh by

Υh
2(r, θ, φ) =















(

(Rk − dk(h))
r
Rk

, θ, φ
)

in the cone of apex the point,

(r, θ, φ) ckand of base the disk Zj,k(h),

elsewhere,

(5)

for every k ∈ {1, 2, . . . , N(h)} and j ∈ {1, . . . , nk(h)}.
Let uh is the solution of problem (3). As in the 2-dimensional case [1], we

can prove that there exists a subsequence of the sequence
(

uh
)

h
, still denoted

in the same way, and u ∈ H1
Γ0

(

Ω\Σ,R3
)

, such that

∇
(

uh ◦Υh
2

)

µh →
h→∞

∇u1Ω\Σdx in Mb

(

Ω\Σ;R3
)

-weak ∗,
uh →

h→∞
u in L2

(

Ω;R3
)

-weak.
(6)

Accordingly, we consider the following topology τ2.

Definition 1. We say that a sequence
(

uh
)

h
; uh ∈ V2,h (Ωh), τ2-converges

to u if suph∈N∗

∥

∥uh
∥

∥

H1(Ωh)
< +∞, and

∇
(

uh ◦Υh
2

)

µh →
h→∞

∇u1Ω\Σdx in Mb

(

Ω\Σ;R3
)

-weak*,

uh →
h→∞

u in L2
(

Ω;R3
)

− weak.
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2. The main result

Our main result in this section reads as follows.

Theorem 2. Let rh = cρdh, c being a positive constant. Then:

1. (lim sup ineguality) For every u ∈ H1
Γ0

(

Ω\Σ,R3
)

, there exists a sequence
(

uh
)

h
;uh ∈ V1,h (Ωh), such that

(

uh
)0

h
τ1-converges to u and

lim sup
h→∞

F2,h

(

uh
)

≤ F2,c(u),

2. (lim inf ineguality) For every sequence
(

uh
)0

h
; uh ∈ V1,h (Ωh), such that

(

uh
)0

h
τ1-converges to u, we have u ∈ H1

Γ0

(

Ω\Σ,R3
)

and

lim inf
h→∞

F2,h

(

uh
)

≥ F2,c(u)

the sequence (F2,h)h, defined in (1), Γ-converges, with respect o the topology
τ2 defined in Definition 1, to the functional F2,c defined in (2).

The boundary value problem associated to the limit functional (2) is given
in the following

Corollary 3. Under the hypothesis of Theorem 2, the sequence
(

uh
)

h
,

with uh the solution of problem (3), τ1-converges to the solution u of the prob-
lem















− div σ(u) = f in Ω\Σ,
u = 0 on Γ0,

σij(u)νj = − c

Hd(Λ)
Aij ([u]Σ)j Hd on Σ.

(7)

Moreover, the convergence of the energy functionals limh→∞ F2,h

(

uh
)

=
F2,c(u) holds true.



ANALYSIS OF INTERFACIAL FRACTAL... 321

2.1. Proof of Theorem 2

2.1.1. First step: Boundary layer problems

We consider the following auxiliary linear elasticity problems posed in the half
space y3 > 0 wich is denoted here R

3+:






















div σ (wm) = 0 in R
3+\D̄(0, 1); m = 1, 2, 3,

wm = em on D(0, 1); m = 1, 2, 3,

σi3 (w
m) = 0 on R

2\D̄(0, 1); i = 1, 2, 3,

wm(y) → 0 as |y| −→ +∞, y3 > 0,

(8)

where em = (δ1m, δ2m, δ3m) ;m = 1, 2, 3, D(0, 1) is the unit disc centred at
the origin, and σ (wm) = (σij (w

m))
i,j=1,2,3 with σij (w

m) = λ0ell (w
m) δij +

2µ0eij (w
m).

The solution wm of (8) is given (see [16]), for j,m = 1, 2, 3, through

wm
j (y) =

∫

D(0,1)
qm((ζ, ξ))Gmj (y1 − ζ, y2 − ξ, y3) dζdξ,∀y ∈ R

3+, (9)

where

qm(ζ, ξ) =







1D(0,1)(ζ, ξ)
3µ0(λ0+µ0)

π(2λ0+3µ0)
√

1−ζ2−ξ2
for m = 1, 2,

1D(0,1)(ζ, ξ)
2µ0(λ0+µ0)

π(λ0+2µ0)
√

1−ζ2−ξ2
for m = 3,

(10)

1D(0,1) being the characteristic function ofD(0, 1), and (Gij)i,j=1,2,3 is the Green
symmetric tensor for the half-space y3 > 0 occupied by an isotropic and ho-
mogenous elastic material of Lame’s constants λ0 and µ0. This tensor is given
(see [28]) by















































































G11(y) =
1

4πµ0(λ0+µ0)

{

(λ0+2µ0)r+(λ0+µ0)y3
r(r+y3)

+ y21
r(λ0r+y3(λ0+µ0))+y2

3
(λ0+µ0)

r3(r+y3)
2

}

,

G12(y) =
1

4πµ0(λ0+µ0)

{

r(λ0r+y3(λ0+µ0))+y23(λ0+µ0)

r3(r+y3)
2

}

y1y2,

G13(y) =
1

4πµ0(λ0+µ0)

{

y1y3(λ0+µ0)
r3

− µ0y1
r(r+y3)

}

,

G22(y) =
1

4πµ0(λ0+µ0)

{

(λ0+2µ0)r+(λ0+µ0)y3
r(r+y3)

+ y22
r(λ0r+y3(λ0+µ0))+y2

3
(λ0+µ0)

r3(r+y3)
2

}

,

G23(y) =
1

4πµ0(λ0+µ0)

{

y2y3(λ0+µ0)
r3

− µ0y2
r(r+y3)

}

,

G33(y) =
1

4πµ0(λ0+µ0)

{

y2
3
(λ0+µ0)
r3

+ (λ0+2µ0)
r

}

,

(11)
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where r = |y| =
(

y21 + y22 + y23
) 1

2 .
Observe that the solution of problem (8) posed in the half-space R

3:

R
3− =

{

y = (y1, y2, y3) ∈ R
3; y3 < 0

}

,

can be also expressed in terms of formula (9) with the Green symmetric tensor
(11) for the half-space y3 < 0. We still denote wm(y);m = 1, 2, 3, this solution.
Now, since

∫

R3±

σij (w
m) eij

(

wl
)

dy = δml

∫

D(0,1)
qm (y1, y2) dy1dy2,

we deduce, using (10), the following formula

∫

R3±

σij (w
m) eij

(

wl
)

dy =











6µ0

3+κ0
if m, l = 1, 2,

0 if m 6= l,
4µ0

1+κ0
if m = l = 3,

(12)

where κ0 =
λ0+3µ0

λ0+µ0
.

2.1.2. Second step: test-functions

Let h ∈ N
∗; k ∈ {1, 2, . . . , N(h)}, and j ∈ {1, . . . , nk(h)}. We define the rotation

matrix R
(

x∗j,k

)

=
(

αml

(

x∗j,k

))

m,l=1,2,3
through























α11 = cos θ1 cos θ2 − sin θ1 sin θ2 cos θ3, α23 = cos θ1 sin θ3,
α12 = cos θ1 sin θ2 + sin θ1 cos θ2 cos θ3, α31 = sin θ2 sin θ3,
α13 = sin θ1 sin θ3, α32 = − cos θ2 sin θ3,
α21 = − sin θ1 cos θ2 − cos θ1 sin θ2 cos θ3, α33 = cos θ3,
α22 = − sin θ1 sin θ2 + cos θ1 cos θ2 cos θ3,

(13)

where θm = θm

(

x∗j,k

)

; m = 1, 2, 3, are the Euler angles which define a new

system of coordinates of origin the point x∗j,k. The orientation is preserved by

the transformation R
(

x∗j,k

)

.

Let sh = (rh)
ǫ ; ǫ ∈

(

d+1
2d , 1

)

, and the unit normal νhj,k on the contact zone
Zj,k(h), with

νhj,k = R
(

x∗j,k
)





0
0
1



 =











sin θ1

(

x∗j,k

)

sin θ3

(

x∗j,k

)

cos θ1

(

x∗j,k

)

sin θ3

(

x∗j,k

)

cos θ3

(

x∗j,k











.
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Figure 1: Local system of coordinates of origin the point x∗k,j

We define

B+
(

x∗j,k, sh
)

= B
(

x∗j,k, sh
)

∩
{

x · νhj,k > 0
}

,

B−
(

x∗j,k, sh
)

= B
(

x∗j,k, sh
)

∩
{

x · νhj,k < 0
}

,

B±
h =

N(h)
⋃

k=1

nk(h)
⋃

j=1

B±
(

x∗j,k, sh
)

,

Bh = B+
h ∪B−

h ,

(14)

where B
(

x∗j,k, sh

)

is the ball of radius Sh centred at x∗j,k. We define the trun-

cation function ϕh
j,k;h ∈ N

∗, k ∈ {1, 2, . . . , N(h)}, j ∈ {1, . . . , nk(h)}, through

ϕh
j,k(x) =







1 in B
(

x∗j,k,
sh
2

)

,

0 in Ω\B
(

x∗j,k, sh

)

.
(15)

We build the local functions wm
h ,m = 1, 2, 3, defined on B

(

x∗j,k, sh

)

; h ∈
N
∗, k ∈ {1, 2, . . . , N(h)}, j ∈ {1, . . . , nk(h)}, through

wm
h (x) = ϕh

j,k(x)R
−1

(

x∗j,k
)



wm
h





R−1
(

x∗j,k

)(

x− x∗j,k

)

rh



− em



 . (16)

.
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Proposition 4. Let Φ ∈ C1
c

(

Ω,R3
)

. If rh = cρdh, c being a positive
constant, then

lim
h→∞

∫

Ωh

σij (w
m
h Φm) eij

(

wl
hΦl

)

dx =
2c

H(Λ)

∫

Σ
A(x)Φ(x).Φ(x)dHd(x),

where

A(x) = R−1(x)







3µ0

3+κ0
0 0

0 3µ0

3+κ0
0

0 0 2µ0

1+κ0






R(x), (17)

R(x) being the rotation matrix defined in (13) but here with angles θm(x);
m = 1, 2, 3, x ∈ Σ.

Proof. Introducing the change of variables y =
R−1(x∗

j,k)(x−x∗
j,k)

rh
, one can

check, using the definition of wm
h , that

∫

Ωh

σij (w
m
h Φm) eij

(

wl
hΦl

)

dx

=

N(h)nk(h)
∑

k=1

∑

l=1

∫

B(xh
ι,k

,sh)
σij (w

m
h Φm) eij

(

wl
hΦl

)

dx

= Ah +Bh +O
(

sdh

)

(18)

where

Ah =

N(h)nk(h)
∑

k=1

∑

ι=1

rh







(

R
(

x∗ι,k

)

Φ
(

x∗ι,k

))

m

(

R
(

x∗ι,k

)

Φ
(

x∗ι,k

))

l

×
∫

R−1(x∗
ω,k)B+

(

x∗
ωk

,
sh
rr

) σij (w
m) eij

(

wl
)

dy







,

Bh =

N(h)nk(h)
∑

k=1

k=1
∑

ι=1

rh







(

R
(

x∗ι,k

)

Φ
(

x∗ι,k

))

m

(

R
(

x∗ι,k

)

Φ
(

x∗ι,k

))

l

×
∫

R−1(x∗
ι,k)B−

(

x∗
ι,k

,
sh
rh

) σij (w
m) eij

(

wl
)

dy







.

According to (12), we have

∫

R−1(x∗
ι,k)B±

(

x∗
ι,k

,
sh
rh

)

σij (w
m) eij

(

wl
)

dy ∼
h→∞







6µ0

3+κ0
if m, l = 1, 2,

0 if m 6= l,
4µ0

1+κ0
if m = l = 3.

Since Λ is invariant under some iterative inversions (see for instance [8]),
each point of tangency xι,n between the touching balls Bk and Bι,k; k ∈
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{1, 2, . . . , N(h)}, ι ∈ {1, . . . , nk(h)}, is an iterate of some fixed tangent point
x ∈ Λ. Hence, as N(h)∼ sh→∞ ρ−d

h , (see [8], [9], [10] and [11]), and rh = cρdh,
we have, according to [18, Theorem 6.1],

lim
h→∞

N(h)
∑

k=1

nk(h)
∑

ι=1

cρdh

{

(

R
(

x∗ι,k
)

Φ
(

x∗ι,k
))

m

(

R
(

x∗ι,k
)

Φ
(

x∗ι,k
))

l

}

= lim
h→∞

N(h)nk(h)
∑

k=1

c
∑

ι=1

c

N(h)

{

(R (xι,k)Φ (xι,k))m (R (xι,k)Φ (xι,k))l
}

=
c

Hd(Λ)

∫

Σ
(R(x)Φ(x))m(R(x)Φ(x))ldHd(x).

We thus obtain

lim
h→∞

Ah = lim
h→∞

Bh =
2c

H(Λ)

∫

Σ
A(x)Φ(x).Φ(x)dHd(x)

and, using (18),

lim
h→∞

∫

Ωh

σij (w
m
h Φm) eij

(

wl
hΦl

)

dx =
2c

H(Λ)

∫

Σ
A(x)Φ(x).Φ(x)dHd(x).

2.1.3. Third step: Γ-convergence

Let u ∈ ⋂

k∈NC1
(

Bk,R
3
)

, u = 0 on ∂Ω. We denote by rΣ ([u]Σ) a image of
[u]Σ through the continuous map rΣ from B

2
α

(

Σ,R3
)

into H1
(

Ω\Σ,R3
)

. We
define the sequence

(

uh0
)

h
as follows:

uh0 =















u
(

1− ϕh
j,k

)

+ wm
h rΣ

(

1
2 [um]Σ

)

in B+
(

xhj,k, sh

)

∩ Ω,

u
(

1− ϕh
j,k

)

+ wm
h rΣ

(

−1
2 [um]Σ

)

in B−
(

xhj,k, sh

)

∩ Ω,

u in Ω\Bh,

(19)

where B±
(

x∗j,k, sh

)

, Bh are defined in (14), and ϕh
j,k the test-function wm

h are,

respectively, defined in (15) and (16).
Then, using the same method as in [1] , we conclude that the sequence

(F2,h)h Γ-converges, with respect to the topology τ2 to the functional F2,c de-
fined in (2).
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3. Conclusion

Our asymptotic analysis showed that the contact on the fractal interface be-
tween the granular materials can be modeled by a 3-dimensional macroscopic
contact law which describes the functional energy of field studied. The results
obtained can be interpreted as part of the process of erosion of a gouge during
the nucleation phase of an earthquake where the concentration of stresses on
the interface inside the gouge exceeds its capacities causing a rupture or even a
generation of new fractures. Also, the results here has other implications, such
as the modeling of the behavior of composite materials or the study of certain
industrial processes (see for example [20] and [21]).

Concerning a next study on the problem, we hope to extend it to the prop-
agation of elastic waves in an Apollonian stack of discs or spheres with for
essential motivation applications to seismic.
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