A NOTE ON q-ANALOGUE OF POLY-GENOCCHI
NUMBERS AND POLYNOMIALS
Mohd Nadeem1, Waseem A. Khan2, Mohd Shadab3,4 1,3 Department of Natural and Applied Sciences
Global University, Saharanpur
Uttar Pradesh - 247121, INDIA 2 Department of Mathematics and Natural Sciences
Prince Mohammad Bin Fahd University
P.O. Box 1664, Al Khobar 31952, SAUDI ARABIA 4 Department of Mathematcs
School of Basic and Applied Sciences
Linggaya's Vidyapeeth University,
Fradidabad - 121002, Haryana, INDIA
In this paper, we introduce a q-analogue of the poly-Genocchi
numbers and polynomials which is a generalization of the poly-Genocchi numbers and polynomials including q-polylogarithm function. We also give the relation between generalized poly-Genocchi polynomials. We derive some relations that are connected with the Stirling numbers of the second kind. By using special functions, we investigate some symmetric identities involving q-poly-Genocchi polynomials.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J., 15
(1948), 9871000.
[2] M. Cenkci, M. Can, and V. Kurt, q-extensions of Genocchi numbers, J.
Korean Math. Soc., 43, No 1 (2006), 183-198.
[3] N.S. Jung, C.S. Ryoo, Symmetric identities for degenerate q-poly-Bernoulli
numbers and polynomials, J. Appl. Math. and Inform., 36, No 1-2 (2018),
29-38.
[4] M. Kaneko, Poly-Bernoulli numbers, J. de Theorie de Nombres 9 (1997),
221-228.
[5] W.A. Khan, H. Haroon, Some symmetric identities for the generalized
Bernoulli, Euler and Genocchi polynomials associated with Hermite polynomials, Springer Plus, 5 (2016), 1920; DOI 10.1186/s40064-016-3585-3.
[6] W.A. Khan, S. Araci, M. Acikgoz, H. Haroon, A new class of partially
degenerate Hermite-Genocchi polynomials, J. Nonlinear Sci. Appl., 10
(2017), 5072-5081.
[7] W.A. Khan, I.A. Khan, M. Ali, A note on q-analogue of Hermite-polyBernoulli numbers and polynomials, Mathematica Morvica, 23, No 2
(2019), 1-16.
[8] W.A. Khan and M. Ahmad, Partially degenerate poly-Bernoulli polynomials associated with Hermite polynomials, Adv. Stud. Contemp. Math.
(Kyungshang) 28, No 3 (2018), 487-496.
[9] W.A. Khan, A new class of degenerate Frobenius-Euler-Hermite polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 28, No 4 (2018), 567-576.
102 M. Nadeem, W.A. Khan, M. Shadab
[10] W.A. Khan, M. Acikgoz, U. Duran, Note on the type 2 degenerate multipoly-Euler polynomials, Symmetry, 12 (2020), 1-10.
[11] W.A. Khan, R. Ali, K.A.H. Alzobydi, N. Ahmed, A new family of degenerate poly-Genocchi polynomials with its certain properties, J. Function
Spaces, 2021 (2021), Art. ID 6660517, 8 pp.
[12] T. Kim, q-generalized Euler numbers and polynomials, Russ. J. Math.
Phys., 13, No 3 (2006), 293-298.
[13] T. Kim, On the q-extension of Euler and Genocchi numbers, J. Math.
Anal. Appl., 326, No 2 (2007), 1458-1465.
[14] T. Kim, A note on the q-Genocchi numbers and polynomials, J. Inequal.
Appl., 2007 (2007), Art. ID 71452, 8 pp.; doi:10.1155/2007/71452.
[15] T. Kim, Note on q-Genocchi numbers and polynomials,Adv. Stud. Contemp. Math., (Kyungshang) 17, No 1 (2008), 9-15.
[16] T. Kim, Y. S. Jang and J. J. Seo, A note on poly-Genocchi numbers and
polynomials, Appl. Math. Sci., 8 (2014), 4475-4781.
[17] Y. Simsek, I.N. Cangul, V. Kurt, and D. Kim, q-Genocchi numbers and
polynomials associated with q-Genocchi-type l-functions, Adv. Difference
Equ., 2008 (2008), Art. ID 815750, 12 pp.; doi:10.11555.2008/85750.
[18] H.M. Srivastava and A. Pinter, Remarks on some relationships between
the Bernoulli and Euler polynomials, Appl. Math. Lett., 17, No 4 (2004),
375-380.
[19] S.K. Sharma, A note on degenerate poly-Genocchi polynomials. Int. J.
Adv. Appl. Sci., 7, No 5(2020), 1-5.