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1. Introduction

It is well known that the Human Immunodeficiency Virus (HIV) is a pathogen
that causes well-known Acquired Immunodeficiency Syndrome (AIDS). After
this resulted end-stage of the viral infection, the immune system fails to play its
role [1, 2]. Currently, there is no cure or vaccine for HIV [3]. However, antiretro-
viral (ART) treatment is used to treat HIV. For the antiretroviral, there are
two kinds which are medications licensed for the treatment of infected individ-
uals with HIV: reverse transcriptase inhibitors (RTIs) and protease inhibitors
(PIs) for more details see for example [4]. The reverse transcriptase inhibitors
(RTIs) oppose the conversion of RNA of the virus to DNA (reverse transcrip-
tion), consequently, the viral population will be minimum and the CD4+ T cells
count remains higher. The protease inhibitors (PIs) prevents the production
of viruses from the actively infected CD4+ T cells. Some general models and
their analysis have been established for the dynamics of HIV infection include
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

One of the earliest of these models was the basic virus infection model
introduced by Nowak and al. [6, 10] and Perelson and al. [7, 9]. Nowak et al.
[6] extended the basic model











ẋ(t) = λ− dx− β v x,

ẏ(t) = β v x− δ y,

v̇(t) = k y − µ v,

(1)

to include the population of CTL cells, and the model became as follows:



















ẋ(t) = λ− dx− β v x,

ẏ(t) = β v x− δ y − p y z,

v̇(t) = k y − µ v,

ż(t) = c y z − b z.

(2)

Here x, y, v, and z denote the uninfected cells, infected cells, free virus and
Cytotoxic T Lymphocytes(CTL) cells, respectively. The susceptible host cells
CD4+T cells are produced at a rate λ, die at a rate dx and become infected
by the virus at a rate βv x. Infected cells die at a rate δy and are killed by
the CTL response at a rate pyz. Free virus (v) is produced by infected cells at
a rate k y, decays at a rate µ v. CTLs expand in response to a viral antigen
derived from infected cells at a rate c y z and decay in the absence of antigenic
stimulation at a rate bz. The stability analysis of the model (2) is made by Liu
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in [8]. Ciupe et al. [11] assumed that the production of CTL depends only on
the concentration of infected cells, as presented in the following model:



















ẋ(t) = λ− dx− β v x,

ẏ(t) = β v x− δ y − p y z,

v̇(t) = Nδ y − µ v,

ż(t) = q y − b z,

(3)

where N is the number of virus particles produced by infected cells and q is
the proliferation rate of CTLs. K. Hattaf et al. [12] introduced two drugs in
the basic model, reverse transcriptase inhibitors (RTIs) and protease inhibitors
(PIs), and they introduced the cure rate of infected cells to the susceptible host
cells due to the noncytolytic processes [18, 19]. They included two types of virus
particles to model (1). The virus not being influenced by protease inhibitors
PIs, (vI), and the other, (vNI), being influenced by PIs. They obtained the
following model:



















ẋ(t) = λ− dx−
(

1− η
)

β vI x+ r y,

ẏ(t) =
(

1− η
)

β vI x−
(

δ + r
)

y,

v̇I(t) =
(

1− ǫ
)

ky − µ vI ,

v̇NI(t) = ǫ k y − µ vNI ,

(4)

where r is the cure rate of the infected cells y. The new parameters η and ǫ

measure the efficacy of reverse transcriptase inhibitor and protease inhibitor
respectively. El boukhari and al. [13] extended model (4) to include the popu-
lation of CTL cells, and they obtained the following model:































ẋ(t) = λ− dx−
(

1− η
)

β vI x+ r y,

ẏ(t) =
(

1− η
)

β vI x−
(

δ + r
)

y − pyz,

v̇I(t) =
(

1− ǫ
)

ky − µ vI ,

v̇NI(t) = ǫ k y − µ vNI ,

ż(t) = c y z − b z,

(5)

with initial conditions x(0) = x0, y(0) = y0, vI(0) = vI0, vNI(0) = vNI0 and
z(0) = z0. Note that the rate of infection in Eq. (5) is assumed to be bilinear in
the virus vI and the uninfected target cells x, which is not reasonable to describe
the HIV infection. Hence, we replace this bilinear form with a saturated mass
action presented by Song and al. [20]. Furthermore, the proliferation of CTL
response in Eq. (5) is bilinear in y and z. However, in the presence of immune
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impairment effects caused by HIV infection, CTL proliferation is reduced (see
[21]). Moreover, in several works the constants η and ǫ are taken as variables,
see for examples [22, 23, 24, 25]. These reasons allow us to extend the model
Eq. (5) to the following model:



















































ẋ(t) = λ− dx(t)−
(

1− u1(t)
) β vI x

1 + a vI
+ r y,

ẏ(t) =
(

1− u1(t)
) β vI x

1 + a vI
−

(

δ + r
)

y − pyz,

v̇I(t) =
(

1− u2(t)
)

ky − µ vI ,

v̇NI(t) = u2(t) k y − µ vNI ,

ż(t) =
c y z

1 + αy
− b z,

(6)

where a is the saturation response of the infection rate and α describes the
immune impairment rate, and u = (u1(t), u2(t)) represents an antiviral therapy
time dependent. The first control u1(t) is the efficiency of drug therapy in
blocking new infection; while the second one u2(t) stands for the efficiency of
drug therapy in inhibiting viral production. The purpose of this paper is to
find an optimal control that will minimize the viral load and maximize healthy
cells using similar optimal control techniques.

The rest of the paper is organized as follows. In Section 2, we state and prove
the existence, positivity, and boundedness of solutions. An optimal control
problem introduced and analyzed based on the Pontryagin maximum principle
in Section 3. In Section 4, we construct an appropriate numerical algorithm,
we report computer simulation results that provide numerical evidence of the
numerical algorithm, and give a discussion of the results for the optimal control
problem.

2. Positivity and boundedness of solutions

In this section, we start by presenting our existence result of Eq. (6). We
recall that the model that we want to analyze describes the evolution of a cell
population. Hence, the cell densities should remain non-negative and bounded.
For biological reasons, we assume that the parameters x0, vI0, vNI0 and z0 are
larger than or equal to 0. Then, We have the following result.

Theorem 1. The problem (6) has at least one solution. Moreover, the
solutions of problem (6) are bounded, nonnegative and verify:
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(i) x1(t) ≤ x1(0) +
λ
δ1
,

(ii) vI(t) ≤ vI(0) +
k
µ
‖y‖L∞ ,

(iii) vNI(t) ≤ vNI(0) +
k
µ
‖y‖L∞ ,

(iv) z(t) ≤ z(0) + c
p
y(t)− c

p
y(0) + c

p

(

δ + r
)

‖y‖∞,

where x1(t) = x(t) + y(t) and δ1 = min(d; δ).

Proof. First, we show that the nonnegative orthant

R
5
+ = {(x, y, vI , vNI , z) ∈ R

5 : x ≥ 0, y ≥ 0, vI ≥ 0, vNI ≥ 0 and z ≥ 0}

is positively invariant. Indeed, for (x(t), y(t), vI (t), vNI(t), z(t)) ∈ R
5
+ we have,















































ẋ |x=0= λ+ ry ≥ 0 ,

ẏ |y=0=
(1− u1)βvIx

1 + avI
≥ 0,

v̇I |v=0= (1− u2)ky ≥ 0 ,

v̇NI |vNI=0= u2ky ≥ 0,

ż |z=0= 0 ≥ 0.

(7)

Therefore, all solutions initiating in R5
+ are positive.

Next, we will show that these solutions remain bounded. For that, we begin
by adding the first and second equations in (6), to get

ẋ1 = λ− dx− δy − pyz,

thus

x1(t) ≤ x1(0)e
−δ1t +

λ

δ1
(1− e−δ1t),

where δ1 = min(d; δ). Since 0 ≤ e−δ1t ≤ 1 and 1 − e−δ1t ≤ 1, we deduce (i).
This proves that x and y are bounded.

From the equation v̇I = (1− u2(t))ky(t)− µvI , we obtain

vI(t) = vI(0)e
−µt + k

∫ t

0
(1− u2(t))y(ξ)e

(ξ−t)µdξ.
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Since 0 ≤ (1− u2(t)) ≤ 1, then

vI(t) ≤ vI(0) +
k

µ
‖y‖∞ (1− e−µt).

The fact that 0 ≤ 1− e−µt ≤ 1 implies that (ii) is verified.
Now, from the equation ˙vNI = u2(t)ky(t) − µvNI , we get

vNI(t) = vNI(0)e
−µt + k

∫ t

0
u2(t)y(ξ)e

(ξ−t)µdξ.

Since 0 ≤ u2(t)) ≤ 1, we have

vNI(t) ≤ vNI(0) +
k

µ
‖y‖∞ (1− e−µt).

Note that 0 ≤ 1− e−µt ≤ 1, then, we deduce (iii).

Next, we show (iv). The equation ż =
cyz

1 + αy
− bz implies that

ż − bz ≤ cyz.

Since cyz = c
p
[λ− (ẋ+ dx) + (ẏ + δy)], then

z(t) ≤ [
c

p
(x(0) + y(0)−

λ

b
) + z(0)]e−bt

+
c

p
{
λ

b
+

∫ t

0
[(b− d)x(ξ) + (b− δ)y(ξ)]eb(ξ−t)dξ − x(t)− y(t)}.

(8)

⋄ Case 1 : If b− d ≤ 0 and b− δ ≤ 0, we have

z(t) ≤ z(0) +
c

p

[λ

b
+ x(0) + y(0)

]

. (9)

⋄ Case 2 : If b− d ≤ 0 and b− δ ≥ 0, we have

z(t) ≤ z(0) +
c

p

[λ

b
+ x(0) + y(0) + (1−

δ

b
) ‖y‖∞

]

. (10)

⋄ Case 3 : If b− d ≥ 0 and b− δ ≤ 0, we have

z(t) ≤ z(0) +
c

p

[λ

d
+ (2−

d

b
)x(0) + y(0)

]

. (11)

⋄ Case 4 : If b− d ≥ 0 and b− δ ≥ 0, we have

z(t) ≤ z(0) +
c

p

[λ

d
+ (2−

d

b
)x(0) + y(0) + (1−

δ

b
) ‖y‖∞

]

. (12)

Therefore, we have proved that all the cases imply (iv).



OPTIMAL CONTROL OF AN HIV INFECTION MODEL WITH... 1099

3. The optimal control problem

We have seen in the previous section that for a given control function u =
(u1, u2) the problem has a solution. The optimization problem under consider-
ation is to maximize the following objective functional

J(u1, u2) =

∫ tf

0

{

x(t) + z(t)−
[A1

2
u21(t) +

A2

2
u22(t)

]}

dt, (13)

where tf is the time period of treatment and the positive constants A1 and A2

stand for the benefits and costs of the introduced treatment. The two control
functions, u1(t) and u2(t) are assumed to be bounded and Lebesgue integrable.
Let U be the control set defined by

U={(u1(t), u2(t)) : ui(t) measurable, 0 ≤ ui(t) ≤ 1, t∈ [0, tf ], i=1, 2}.

We consider the following optimal control problem: Find (u∗1, u
∗
2) ∈ U such

that,
J(u∗1, u

∗
2) = max{J(u1, u2) : (u1, u2) ∈ U}. (14)

We are now in a position to deliver an existence result for the optimal control
pair problem, which is a direct consequence of the results found in [27, 28].

Theorem 2. There exists an optimal control pair (u∗1, u
∗
2) ∈ U such that

J(u∗1, u
∗
2) = max

(u1,u2)∈U
J(u1, u2). (15)

Proof. In order to use the existence result proved in [27], we must check
the following properties:

(P1) The set of controls and corresponding state variables is nonempty.

(P2) The control U set is convex and closed.

(P3) The right hand side of the state system is bounded by a linear function
of the state and control variables.

(P4) The integrand of the objective functional is concave on U .

(P5) There exists constants c1, c2 > 0 , and β > 1 such that the integrand of
the objective functional satisfies

L(x, z, u1, u2) ≤ c2 − c1(| u1 |
2 + | u2 |

2)
β
2
. (16)
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Using the result proved by Lukes in [28], we show the existence of solutions
of system (6), which gives the condition (P1). It follows from the definition of
the control set that the set U satisfies (P2). Furthermore, we can easily see that
our state system is bilinear in u1, u2, using the boundedness of the solutions,
then the right hand side of the system (6) satisfies condition (P3). Moreover,
the integrand of our objective function is concave. Finally, we have

L(x, z, u1, u2) ≤ c2 − c1(| u1 |
2 + | u2 |

2), (17)

where c2 depends on the upper bound on T , W , Z, and c1 is positive constant
depends only on A1 > 0 and A2 > 0. Hence, we are in a position to apply the
result of existence in [28] to the optimal control (15). We deduce that exists an
optimal control pair (u∗1, u

∗
2) ∈ U such that

J(u∗1, u
∗
2) = max

(u1,u2)∈U
J(u1, u2).

Next, we will provide the necessary conditions for the optimal control prob-
lem. Recall that Pontryagin’s maximum principle given in [29] transforms (6),
(13) and (14) into a problem of maximizing a Hamiltonian, H, pointwisely with
respect to u1 and u2, formulated as follows,

H(t, x, y, vI , vNI , z, u1, u2, λ) = (
A1

2
u21 +

A2

2
u22)− x− z +

5
∑

i=1

λifi,

where fi is the right hand side of the differential equation of i-th state variable,
which is described as follows:























































f1 = λ(t)− dx(t)−
(

1− u1(t)
)β vI(t)x(t)

1 + a vI(t)
+ r y(t),

f2 =
(

1− u1(t)
) β vI x(t)

1 + a vI(t)
−
(

δ + r
)

y(t)− py(t)z(t),

f3 =
(

1− u2(t)
)

ky(t)− µ vI ,

f4 = u2(t) k y(t)− µ vNI(t),

f5 =
c y(t) z(t)

1 + αy(t)
− b z(t).

We complete Theorem 1 and Theorem 2 with the following result.
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Theorem 3. For any optimal control u∗1, u
∗
2 and solutions x∗, y∗, v∗I , v

∗
NI

and z∗ of the corresponding state system (6), there exist adjoint variables,
λ1, λ2, λ3, λ4 and λ5, satisfying the equations















































λ′
1(t) = 1 + λ1(t)d+ (λ1(t)− λ2(t))

(1−u∗

1(t))βv
∗

I (t)
1+av∗

I
(t) ,

λ′
2(t) = −λ1(t)r + λ2(t)(δ + r + pZ∗(t))

λ3(t)(1 − u∗2(t))k − λ4u
∗
2(t)k − λ5(t)

cZ∗(t)
(1+αy∗(t))2 ,

λ′
3(t) =

(

λ1(t)− λ2(t)
) (

1− u∗1(t)
) β x∗(t)
(

1+av∗
I
(t)
)2 + λ3(t)µ,

λ′
4(t) = λ4(t)µ,

λ′
5(t) = 1 + λ2(t)p y

∗(t)− λ5(t)
( c y∗(t)
1+αy∗(t) − b

)

with the transversality conditions

λi(tf ) = 0, i = 1, ..., 5.

Moreover, the optimal control is given by







u∗1(t) = min
(

1,max
(

0, 1
A1

(λ2 − λ1)
β v∗

I
(t) x∗(t)

1+a v∗
I
(t)

))

,

u∗2(t) = min
(

1,max
(

0, 1
A2

(

λ3 − λ4

)

k y∗(t)
))

.
(18)

Proof. The adjoint equations and transversality conditions can be obtained
by using Pontryagin’s Maximum Principal such that



























































λ′
1(t) = −∂H

∂x
(t), λ1(tf ) = 0,

λ′
2(t) = −∂H

∂y
(t), λ2(tf ) = 0,

λ′
3(t) = − ∂H

∂vI
(t), λ3(tf ) = 0,

λ′
4(t) = − ∂H

∂vNI
(t), λ4(tf ) = 0,

λ′
5(t) = −∂H

∂z
(t), λ5(tf ) = 0.

(19)

The two optimal controls u∗1 and u∗2 can be solved from the optimality conditions

∂H

∂u1
(t) = 0,

∂H

∂u2
(t) = 0.

That is,
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∂H

∂u1
(t) =A1u1(t) + (λ∗

1 − λ∗
2)
β v∗I (t)x

∗(t)

1 + a v∗I (t)
= 0,

∂H

∂u2
(t) =A2u2(t)− (λ∗

3 − λ∗
4) k y

∗(t) = 0.

(20)

Finally, using the fact that (u∗1, u
∗
2) ∈ U , we find that u∗1 and u∗2 have the form

(18).

The optimality system consists of the state system coupled with the adjoint
system with the initial conditions, the transversality conditions, and the char-
acterization of the optimal control. We substitute the forms of u∗1 and u∗2 in the
system (6), to obtain the following optimality system:

dx∗(t)

dt
= λ(t)− dx∗(t)−

(

1− u1
)β v∗I (t)x

∗(t)

1 + a v∗I (t)
+ r y∗(t),

dy∗(t)

dt
=

(

1− u1
) β v∗I x(t)

1 + a v∗I (t)
−

(

δ + r
)

y∗(t)− py∗(t)z∗(t),

dv∗I (t)

dt
=

(

1− u2
)

ky∗(t)− µ v∗I ,

dv∗NI(t)

dt
= u2 k y

∗(t)− µ v∗NI(t),

dz∗(t)

dt
=

c y∗(t) z∗(t)

1 + α y∗(t)
− b z∗(t),

dλ1(t)

dt
= 1 + λ1(t)d+ (λ1(t)− λ2(t))

(1 − u∗1(t))βv
∗
I (t)

1 + av∗I (t)
,

dλ2(t)

dt
= −λ1(t)r + λ2(t)(δ + r + pZ∗(t))

−λ3(t)(1 − u∗2(t))k − λ4u
∗
2(t)k − λ5(t)

cZ∗(t)

(1 + αy∗(t))2
,

dλ3(t)

dt
=

(

λ1(t)− λ∗
2(t)

) (

1− u∗1(t)
) β x∗(t)
(

1 + av∗I (t)
)2 + λ∗

3(t)µ,

dλ4(t)

dt
= λ∗

4(t)µ,
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dλ5(t)

dt
= 1 + λ∗

2(t)p y
∗(t)− λ∗

5(t)
( c y∗(t)

1 + λ y∗(t)
− b

)

,

u∗1 = min

(

1,max

(

0,
1

A1
(λ∗

2 − λ∗
1)
β v∗I (t)x

∗(t)

1 + a v∗I (t)

))

,

u∗2 = min

(

1,max

(

0,
1

A2

(

λ∗
3 − λ∗

4) k y
∗(t)

)

))

,

λi(tf ) = 0, i = 1, . . . , 5.

4. Numerical simulations

In order to solve numerically our optimization system, we propose a numerical
scheme based on forward and backward finite difference approximation. Then,
we obtain the following algorithm.

Numerical Algorithm.

Initialization : x0, vI0 , vNI0 , y0 and z0 are given. u01 = 0, u02 = 0
α1
N = 0, α2

N = 0, α3
N = 0, α4

N = 0, α5
N = 0.

Iteration : Using the following steps, to compute solution:

step 1. For i = 0, · · · , N − 1, do:

xi+1 = xi +∆h

[

λ− dxi −
(

1− ui1
) β vIi xi

1 + a vIi
+ r yi

]

,

yi+1 = yi +∆h

[

(

1− ui1
) β vIi xi

1 + a vIi
−
(

δ + r
)

yi − pyizi

]

,

vIi+1
= vIi +∆h

[(

1− ui2
)

kyi − µ vIi
]

,

vNIi+1
= vNIi +∆h

[

ui2 k yi − µ vNIi

]

,

zi+1 = zi +∆h

[

c yi zi

1 + α yi
− b z(i)

]

.
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step 2. Update the Lagrange multipliers:

α1
N−i−1 = α1

N−i −∆h[1 + α1
N−i d

+
(

α1
N−i − α2

N−i

)(

1− ui1
) β vIi+1

1 + avIi+1

],

α2
N−i−1 = α2

N−i −∆h[−α1
N−i r + α2

N−i

(

δ + r + p zi+1

)

− α3
N−i

(

1− u2i ) k − α4
N−i u

2
i k − α5

N−i

c zi+1
(

1 + αyi+1

)2 ],

α3
N−i−1 = α3

N−i −∆h[
(

α1
N−i − α2

N−i

) (

1− u1i
) β xi+1
(

1 + avIi+1

)2 + α3
N−iµ],

α4
N−i−1 = α4

N−i −∆hα4
N−iµ

α5
N−i−1 = α5

N−i −∆h[1 + α2
N−ip yi+1 − α5

N−i

( c yi+1

1 + α yi+1
− b

)

]

step 3. Calculate u1i+1 and u2i+1:

u1i+1 = min
(

1,max
(

0, 1
A1

(α2
N−i−1 − α1

N−i−1)
β vIi+1

xi+1

1+a vIi+1

))

,

u2i+1 = min
(

1,max
(

0, 1
A2

(

α3
N−i−1 − α4

N−i−1) k yi+1)
)

))

end for

step 4. For i = 0, · · · , N , write

x∗(i) = xi, y∗(i) = yi, v∗I (i) = vIi , v∗NI(i) = vNIi , z∗(i) = zi,

u∗1(i) = u1i , u∗2(i) = u2i .

end for

For our numerical simulations, we will choose the following parameters:
d = 0.02 day−1, β = 0.000024mm3 day−1, α = 0.001, λ = 5day−1 mm−1, a =
0.001 day−1, p = 0.001 mm3 day−1, µ = 3, k = 330day−1, c = 0.03mm3 day−1,
b = 0.2 day−1, A1 = 250, A2 = 2500 and r = 0.01 day−1.

Moreover, besides the parameters we use the following initial conditions:

x0 = 190, vI0 = 1000, vNI0 = 100, y0 = 2, z0 = 10.

This complete data set was taken from [11, 30, 12, 31, 32] and references therein.



OPTIMAL CONTROL OF AN HIV INFECTION MODEL WITH... 1105

0 50 100 150 200 250
170

180

190

200

210

220

230

240

250

Time(days)

x

 

 

With control

Without Control

Figure 1: The evolution of the uninfected cells during time.
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Figure 2: The evolution of the infected cells during time.

The graphs from simulating the model, given above, help to understand
the effect of treatments with controls over the uninfected cells (x), the infected
cells (y), the viral load (v). In Figure 1, we notice that in the absence of
treatment the x cell count increases slowly the first ten days with considerable
decrease. Whereas, in the presence of treatment, the (x) population grows
significantly, which improves the quality of life of the patient. In Figure 2, we
remark that before the treatment, the infected cells increase quickly during the
first ten days with light decrease. While on the contrary, after the treatment,
the number of infected cells dropped importantly. The curve representing the
infected cells under control converges toward 0.52, nevertheless, without control,
it converges towards 4.85. This proves the role of control in reducing the number
of infected cells, which contributes to curing the disease. In figure 3, we show
that after introducing therapy, the viral load declines towards zero, whereas,
without control, it stays equal to 585.11. Finally, figure 4 represents the optimal
controls u1 and u2 in blocking new infection and inhibiting viral production.
The plots show that a patient should take the two treatments during the first
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Figure 3: The evolution of the HIV virus ( v = vI + vNI) during
time.

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time(days)

T
h

e
 c

o
n

tr
o

l u
1

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

Time(days)

T
h

e
 c

o
n

tr
o

l u
2

Figure 4: The behaviour of the optimal controls.

days of therapy in an increasing manner and both of the two treatments should
be administrated for the lifetime period in a constant way.

Summary and conclusion

In this work, we have studied a new mathematical model that describes the hu-
man immunodeficiency virus with the CTL response, two saturated rate with
inclusion of two drug combinations. Optimal control theory is applied to deter-
mine the optimal treatment regime. The study applied Pontryagins Maximum
Principle in deriving the conditions for optimal control, which maximizes the
objective function. The systems of ODEs, the state system and the adjoint
system were solved numerically. The numerical results show that the optimal
treatment strategies reduce viral load and increase the uninfected cell count
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after some days of therapy. In the future, it is important to study the dynamics
of such model.
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