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Abstract: In this paper, we consider the question on computation of eigenval-
ues and eigenfunctions of a third-order composite type equation in a rectangular
region D of the space W 3

2 (0, 1) satisfying the following boundary conditions

u|∂D = 0, ux (0, y) = ux (1, y) , uy (x, 0) = uy (x, 1) ,

where D = {x, y : 0 < x < 1, 0 < y < 1}. All eigenvalues and eigenfunctions of
the considered spectral problem are found, and the adjoint operator is con-
structed.
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1. Introduction

An extensive literature is devoted to study initial-boundary value problems for
various types of third-order partial differential equations. We note from several
later publications a series of works where the conjugation problem for a third-
order equation with multiple characteristics, with an alternating function at the
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highest derivative was studied in [15], and the question of solvability of some
nonlocal problems for a loaded third-order equation was investigated in [25].
In [21], questions of solvability of a nonlocal problem for a hyperbolic equation
with degenerate integral conditions were considered.

Solution of initial-boundary value problems for partial differential equations
by the Fourier method is almost always reduced to a problem on eigenvalues of
some ordinary differential operators [3], [4], [13], [18], [19], [23].

A number of spectral boundary value problems for the composite type equa-
tion

∂

∂x
(uxx + uyy) + λu = 0,

were investigated in [3], [4], where all eigenvalues and system of root vectors
were found.

The present paper is devoted to finding the eigenvalues and eigenfunctions
of one boundary value problem for the third order partial differential equation

Lu ≡ uxxx + uyyy + λu = 0, (1)

which is also a composite type equation [4], where the complex number λ is a
spectral parameter.

2. Formulation of the problem

In a rectangular region D of the space W 3
2 (0, 1) find eigenvalues and eigenfunc-

tions of the equation (1) satisfying the following boundary conditions

u|∂D = 0, ux (0, y) = ux (1, y) , uy (x, 0) = uy (x, 1) , (2)

where D = {x, y : 0 < x < 1, 0 < y < 1}.

3. Distribution of eigenvalues of the problem (1)-(2)

Looking for a solution of the problem (1) - (2) by the Fourier method in the
form

u (x, y) = X (x) · Y (y) ,

we come to the following spectral problems in the space W 3
2 (0, 1) for ordinary

differential operators:

L0X ≡ X ′′′ + µX = 0, X (0) = X (1) = 0, X ′ (0) = X ′ (1) , (3)
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L1Y ≡ Y ′′′ + νY = 0, Y (0) = Y (1) = 0, Y ′ (0) = Y ′ (1) , (4)

moreover, λ = µ+ ν.

The boundary value conditions in (3), (4) refer to regular boundary value
conditions by J.D. Birkhoff [2]. An important result, established by J.D.
Birkhoff, was to estimate resolvent of a regular differential operator and to
establish asymptotics of the spectrum. In the monography by M.A. Naimark
[20], a subclass of regular boundary value conditions is distinguished, where it
is noted that for an odd order of the equation all strongly regular conditions
are regular. In (3), (4) the boundary value conditions are periodic boundary
value conditions.

Let us solve the problem (3) (the problem (4) is solved similarly). The
general solution of the equation (3) has the form

X (x) = C1e
2ax +

(

C2 · cos
√
3ax+ C3 · sin

√
3ax

)

· e−ax, (5)

where C1, C2, C3 are arbitrary constants,

a =
3
√−µ
2

6= 0. (6)

According to results of [7], [8], characteristic determinant of the spectral
problems (3), (4) is an entire analytic function of a variable a, which coincides
with the exponential type quasi-polynomial with commensurable exponents:

∆ (a) =
(√

3 + 3i
)

e(1+i
√
3)a +

(√
3− 3i

)

e(1−i
√
3)a

+
(√

3 + 3i
)

e−(1+i
√
3)a +

(√
3− 3i

)

e−(1−i
√
3)a

−2
√
3e2a − 2

√
3e−2a.

(7)

In [7], [8], a conjugate indicator diagram of the function ∆ (a) is constructed,
which is a regular hexagon on the complex plane a, the sides consisting of
segments:

[

1− i
√
3; −1− i

√
3
]

,
[

−1 + i
√
3; 1 + i

√
3
]

,
[

−2; −1− i
√
3
]

,

[

−1 + i
√
3; −2

]

,
[

1 + i
√
3; 2

]

,
[

2; 1− i
√
3
]

,

where the bar means complex conjugation and the length of each segment is
equal to d = 2 which means commensurability of the exponents of each series.
The rays, which are perpendicular to the indicator diagram, are called critical.
According to [15], there are exactly six critical rays on the plane a, that is,
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arg 3
√
a = π

6 + πn
3 ,

n = 0, 1, 2, 3, 4, 5. Along the critical rays, zeros of each corresponding series ∆(a)
from (7) are located, and in [7], [8] all the zeros of ∆(a) are found explicitly:

- segment
[

2; 1− i
√
3
]

, 1-st series of zeros:

ak1 =
2ikπ

−1 + i
√
3
+

ln
∣

∣

∣

2
√
3√

3+3i

∣

∣

∣
+ iArg

(

2
√
3√

3+3i

)

−1 + i
√
3

, k = 1, 2, 3, ...,

where ln
∣

∣

∣

2
√
3√

3+3i

∣

∣

∣
+ iArg

(

2
√
3√

3+3i

)

= const;

- segment
[

−1− i
√
3; 1− i

√
3
]

, 2-nd series of zeros:

ak2 =
ikπ

1 + i
√
3
+

const

2
(

1 + i
√
3
) , k = 1, 2, 3, ...,

- segment
[

−1 + i
√
3; 1 + i

√
3
]

, 3-rd series of zeros:

ak3 = ikπ + const, k = 1, 2, 3, ...,

- segment
[

−2;−1− i
√
3
]

, 4-th series of zeros:

ak4 =
2ikπ

1 + i
√
3
+

const

1 + i
√
3
, k = 1, 2, 3, ...,

- segment
[

−2;−1− i
√
3
]

, 5-th series of zeros:

ak5 = − 2ikπ

1 + i
√
3
− const

1 + i
√
3
, k = 1, 2, 3, ...,

- segment
[

−1 + i
√
3;−2

]

, 6-th series of zeros:

ak6 =
2ikπ

1− i
√
3
+

const

1− i
√
3
, k = 1, 2, 3, ...,

Therefore, according to (6), for spectral boundary value problems (3) and
(4) we have 6 series of the corresponding eigenvalues of the operator L0:

µk1 = −
(

4ikπ

−1 + i
√
3
+

const

−1 + i
√
3

)3

, k = 1, 2, 3, ....
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µk2 = −
(

2ikπ

1 + i
√
3
+

const

1 + i
√
3

)3

, k = 1, 2, 3, ....

µk3 = −(2ikπ + const)3, k = 1, 2, 3, ....

µk4 = −
(

2ikπ

1 + i
√
3
+

const

1 + i
√
3

)3

, k = 1, 2, 3, ....

µk5 =

(

2ikπ

1 + i
√
3
+

const

1 + i
√
3

)3

, k = 1, 2, 3, ....

µk6 = −
(

4ikπ

1− i
√
3
+

const

1− i
√
3

)3

, k = 1, 2, 3, ...,

and the operator L1:

νl1 = −
(

4ilπ

−1 + i
√
3
+

const

−1 + i
√
3

)3

, l = 1, 2, 3, ....

νl2 = −
(

2ilπ

1 + i
√
3
+

const

1 + i
√
3

)3

, l = 1, 2, 3, ....

νl3 = −(2ilπ + const)3, l = 1, 2, 3, ....

νl4 = −
(

2ilπ

1 + i
√
3
+

const

1 + i
√
3

)3

, l = 1, 2, 3, ....

νl5 =

(

2ilπ

1 + i
√
3
+

const

1 + i
√
3

)3

, l = 1, 2, 3, ....

νl6 = −
(

4ilπ

1− i
√
3
+

const

1− i
√
3

)3

, l = 1, 2, 3, ....

Hence, it is easy to justify the following

Lemma 1. Let (7) be a characteristic polynomial of the problems (3),
(4), and (6) hold. Then zeros of the entire analytic function ∆(a) in (7) are
eigenvalues of the operators L0 and L1, which adequately determine eigenvalues
of the operator

L : λklj = ± (µkj + νlj) ,

where k = 1, 2, 3, ..., l = 1, 2, 3, ..., j =
(

1; 6
)

means each series.
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Remark 2. In the case when a =
3
√
−µ
2 = 0, the general solution (3),

representing in the form X (x) = ax2 + bx + c and satisfying the boundary
value conditions in (3), we have X (x) = 0, that is, µ0 = 0 is not an eigenvalue
of the operator L0. Similarly, ν0 = 0 is a regular point of the operator L1. So
λ0 = 0 is not an eigenvalue of the operator L.

The connection between the zeros of quasi-polynomials and spectral prob-
lems is reflected in [1], [6], [14], [16], [17], [24].

The works [11], [12], [26] are devoted to investigation of zeros of entire
functions having an integral representation, connected by spectral problems of
a third-order differential operator with nonlocal boundary value conditions.

In [9], [10], [22], characteristic determinant of the spectral problem for the
Sturm-Liouville operator with perturbed regular boundary value conditions was
calculated, which is an entire analytic function of the spectral parameter, where
stability of the basis property of systems of root functions was studied, and [5]
multiple solutions of a nonhomogeneous Sturm-Liouville equation with nonlocal
boundary conditions.

4. Calculation of eigenfunctions of the problem (1)-(2)

The fundamental difference of this paper from [7], [8] and [11], [12] is the deter-
mination of eigenfunctions of the operators L0 and L1. We present a scheme for
calculating the eigenfunctions of the operator L0 (eigenfunctions of the operator
L1 are calculated similarly).

Substituting in order the found eigenvalues of the operator L0 of each series
from Section 3 into (5) and satisfying the problem (3), we obtain the corre-
sponding eigenfunctions of the operator L0 of each series. We formulate this
fact in the following form.

Lemma 3. If all items of Lemma 1 are satisfied, which are defined all
eigenvalues of the operator L0 of each series in Section 3, then the system of
eigenfunctions of the operator L0 will be

Xk1(x) = C1e
2pk1xϕk1(x) + (C2ψk1(x) + C3τk1(x)) e

pk1x,

Xk2(x) = C1e
2pk2xϕk2(x) + (C2ψk2(x) + C3τk2(x)) e

pk2x,

Xk3(x) = C1ϕk3(x) + C2ψk3(x) + C3τk3(x),

Xk4(x) = C1e
2pk4xϕk4(x) + (C2ψk4(x) + C3τk4(x)) e

pk4x,
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Xk5(x) = C1e
2pk5xϕk5(x) + (C2ψk5(x)− C3τk5(x)) e

pk5x,

Xk6(x) = C1e
2pk6xϕk6(x) + (C2ψk6(x) + C3τk6(x)) e

pk6x,

where

ϕk1(x) = cos 2qk1x− i sin 2qk1x,

ψk1(x) = cos qk1x · cos
√
3pk1x · ch

√
3qk1x

− sin
√
3pk1x · sh

√
3qk1x · sin qk1x

−i(cos
√
3pk1x · ch

√
3qk1x · sin qk1x

+cos qk1x · sin
√
3pk1x · sh

√
3qk1x),

τk1(x) = cos qk1x · sin
√
3pk1x · ch

√
3qk1x

− sin qk1x · cos
√
3pk1x · sh

√
3qk1x

−i(sin qk1x · sin
√
3pk1x · ch

√
3qk1x

+cos qk1x · cos
√
3pk1x · sh

√
3qk1x),

pk1 = −kπ
√
3

2
+

π

4
√
3
, qk1 =

kπ

2
− π

6
,

ϕk2(x) = cos 2qk2x+ i sin 2qk2x,

ψk2(x) = cos qk2x · cos
√
3pk2x · ch

√
3qk2x

+sin
√
3pk2x · sh

√
3qk2x · sin qk2x

−i(sin
√
3pk2x · sh

√
3qk2x · cos qk2x

− sin qk2x · cos
√
3pk2x · ch

√
3qk2x),

τk2(x) = cos qk2x · sin
√
3pk2x · ch

√
3qk2x

+sin qk2x · cos
√
3pk2x · sh

√
3qk2x

−i(cos qk2x · cos
√
3pk2x · sh

√
3qk2x

+sin qk2x · sin
√
3pk2x · ch

√
3qk2x),

pk2 = −kπ
√
3

2
− π

4
, qk2 =

kπ

2
− π

12
,

ϕk3(x) = cos 2qk3x− i sin 2qk3x,

ψk3(x) = cos qk3x · ch
√
3qk3x− ich

√
3qk3x · sinqk3x,

τk3(x) = sin qk3x · sh
√
3qk3x− i sin qk3x · ch

√
3qk3x,

qk3 =
kπ

2
− π

3
,

ϕk4(x) = cos2qk4x+ isin2qk4x,
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ψk4(x) = cos qk4x · cos
√
3pk4x · ch

√
3qk4x

+sin
√
3pk4x · sh

√
3qk4x · sin qk4x

−i(sin
√
3pk4x · sh

√
3qk4x · cos qk4x−

− sin qk4x · cos
√
3pk4x · ch

√
3qk4x),

τk4(x) = cos qk4x · sin
√
3pk4x · ch

√
3qk4x

+sin qk4x · cos
√
3pk4x · sh

√
3qk4x

−i(cos qk4x · cos
√
3pk4x · sh

√
3qk4x

+sin qk4x · sin
√
3pk4x · ch

√
3qk4x),

pk4 = −kπ
√
3

2
− π

12
, qk4 =

kπ

2
+

π

12
,

ϕk5(x) = cos 2qk5x+ i sin 2qk5x,

ψk5(x) = cos qk5x · cos
√
3pk5x · ch

√
3qk5x

+sin
√
3pk5x · sinqk5x · sh

√
3qk5x

+i(sin qk5x · cos
√
3pk5x · ch

√
3qk5x

− cos qk5x · sin
√
3pk5x · ch

√
3qk5x),

τk5(x) = cos qk5x · sin
√
3pk5x · ch

√
3qk5x

+sin qk5x · cos
√
3pk5x · sh

√
3qk5x

+i(sin qk5x · sin
√
3pk5x · ch

√
3qk5x

− cos qk5x · cos
√
3pk5x · sh

√
3qk5x),

pk5 = −kπ
√
3

2
+

π

12
, qk5 =

kπ

2
+
π
√
3

12
,

ϕk6(x) = cos 2qk6x+ i sin 2qk6x,

ψk6(x) = cos qk6x · cos
√
3pk6x · ch

√
3qk6x

+sin
√
3pk6x · sh

√
3qk6x · sin qk6x

+i(sin
√
3pk6x · sh

√
3qk6x · cos qk6x

− sin qk6x · cos
√
3pk6x · ch

√
3qk6x),

τk6(x) = cos qk6x · sin
√
3pk6x · ch

√
3qk6x

+sin qk6x · cos
√
3pk6x · sh

√
3qk6x

+i(sin qk6x · sin
√
3pk6x · ch

√
3qk6x

− cos qk6x · cos
√
3pk6x · sh

√
3qk6x),

pk6 =
kπ

2
− π

12
, qk6 =

kπ
√
3

2
− π

√
3

3
, k = 1, 2, 3, ....
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Repeating all the process of obtaining formulas of eigenfunctions for the
operator L0 for the problem (4), we obtain a similar system of eigenfunctions
Ylj (y), l = 1, 2, 3, ..., j =

(

1; 6
)

of the operator L1 of each series.
Thus, we come to the main result of this work:

Theorem 4. The system of eigenfunctions of the operator L, that is, of the
spectral problem (1) - (2), corresponding to its eigenvalues λklj = ± (µkj + νlj) ,
from Section 3, Lemma 1, according to u (x, y) = X (x) · Y (y) , has the form

uklj(x, y) = Xkj(x) · Ylj(y), k = 1, 2, 3, ..., l = 1, 2, 3, ..., j =
(

1; 6
)

,

where Xkj (x) and Ylj (y) are defined by the formulas of Lemma 2.

5. Conjugate problems

L0X ≡ l0 (X) = X ′′′ (x). By applying integration by parts, we get the Lagrange
formula:

1
∫

0

l0 (X) υ (x)dx+
1
∫

0

X (x) l∗0 (υ)dx =X ′′ (1) υ (1)−X ′′ (0) υ (0)

−
[

υ′ (0)− υ′ (1)
]

·X ′ (0) +X (1) · υ′′ (1)−X (0) · υ′′ (0).

Here l∗0 (υ) is a conjugate differential expression:

l∗0 (υ) = −υ′′′ (x) , 0 < x < 1. (8)

Consequently, the operator L∗
0, which is conjugate to the operator L0 is

given by the differential expression (8) and boundary value conditions:

υ (1) = υ (0) = 0, υ′ (0)− υ′ (1) = 0. (9)

Similarly, for the operator L1 there is a conjugate operator

L1Y ≡ l1 (Y ) = Y ′′′ (y) , L∗
1 : l

∗
1 (υ) = −υ′′′ (y) , 0 < y < 1,

with the boundary value conditions (9).
Therefore, in the region D, conjugate problem to the problem (1) - (2) will

be
L∗V = Vxxx + Vyyy − λV = 0,

satisfying the boundary value conditions:

V |∂D = 0, Vx (1, y) = Vx (0, y) , Vy (x, 0) = Vy (x, 1) .



690 N.S. Imanbaev, Y. Kurmysh

Acknowledgements

This research is funded by the Science Committee of the Ministry of Education
and Science of the Republic of Kazakhstan (Grant No AP09260752)

References

[1] R. Bellman and K. Cook, Differential-Difference Equations, Academic
Press, New York (1963).

[2] G.D. Birkhoff, On the asymptotic chapacter of the certain linear differ-
ential equations containing a parameter, Transactions of the American

Mathematical Society, 9, No 2 (1908), 219-231.

[3] T.D. Dzhuraev, B.V. Loginov and I.A. Malyugina, Calculation of eigen-
values and eigenfunctions of some differential operators of the third and
fourth orders, In: Differ. Equations. Math. Phyz. and Their Appl., Fan,
Tashkent, (1989), 24-36 (in Russian).

[4] T.D. Dzhuraev and Ya. Popelek, On classification and reduction to the
canonical form of third-order partial differential equations, Differ. Equa-

tions, 27, No 10 (1991), 1734-1745.

[5] A.M.A. El-Sayed, M.Sh. Mohamed and R.E.M. Embia, On the multiple
solutions of a nonhomogeneous Sturm-Liouville equation with nonlocal
boundary conditions, International Journal of Applied Mathematics, 32,
No 1 (2019), 35-44; doi: 10.12732/ijam.v32i1.3.

[6] O.H. Hald, Discontinuous inverse eigen value problems, Communications

on Pure Applied Mathematics, 37, No 5 (1984), 539-577.

[7] N.S. Imanbaev, Distribution of eigen values of a third-order differential
operator with strongly regular non local boundary conditions, In: AIP

Conf. Proc., 1997, Art. No 020027 (2018), 1-5; doi: 10.1063/1.5049021.

[8] N.S. Imanbaev, On zeros of a quasi-polynomial of exponential type con-
nected with a regular third-order differential operator, Mathematical Jour-

nal, 18, No 2 (2018), 124-132.

[9] N.S. Imanbaev, On stability of the basis property of root vectors system
of the Sturm-Liouville operator with an integral perturbation of condi-
tions in nonstrongly regular Samarskii-Ionkin type problems, International



ON COMPUTATION OF EIGENFUNCTIONS OF... 691

Journal of Differential Equations, 2015 (2015), Art. No 641481, 1-6; doi:
10.1155/2015/641481.

[10] N.S. Imanbaev, Stability of the basis property of eigenvalue systems of
Sturm-Liouville operators with integral perturbation of the boundary con-
dition, Electronic Journal of Differential Equations, 2016 (2016), Art. No
87, 1-8.

[11] N.S. Imanbaev and B.E. Kanguzhin, On zeros of entire functions having an
integral representation, News of the National Academy of Sciences of the

Republic of Kazakhstan, Ser. Phys.-Math., No 3 (1995), 47-52 (in Russian).

[12] N.S. Imanbaev, B.E. Kanguzhin, and B.T. Kalimbetov, On zeros the char-
acteristic determinant of the spectral problem for a third-order differential
operator on a segment with nonlocal boundary conditions, Advances in

Difference Equations, 2013 (2013), No 110; doi: 10.1186/1687-1847-2013-
110.

[13] T.Sh. Kalmenov, On spectrum of the Tricomi problem for the Lavrent’ev-
Bitsadze equation, Differ. Equations, 13, No 8 (1977), 1418-1425.

[14] B.E. Kanguzhin and M.A. Sadybekov, Differential Operators on a Seg-

ment. Distribution of Eigenvalues, Gylym, Shymkent (1996) (in Russian).

[15] A.I. Kozhanov and S.V. Potapova, Conjugation problem for a third-order
equation with multiple characteristics, with an alternating function at the
highest derivative, Vestnik NGU, Ser. Math., Mech., Informat., 15, No 2
(2015), 51-59 (in Russian).

[16] A.F. Leont’ev, Entire Functions and Exponential Problems, Nauka,
Moscow (1983) (in Russian).

[17] V.B. Lidskiy, V.A. Sadovnichy, Regularized sums of roots of one class of
entire functions, Functional Analysis, 1, No 2 (1967), 52-59.

[18] E.I. Moiseev, Mixed Type Equations With a Spectral Parameter, MGU,
Moscow (1988) (in Russian).

[19] A.M. Nakhushev, Problems with Shift for Partial Differential Equations,
Nauka, Moscow (2006) (in Russian).

[20] M.A. Naimark, Linear Differential Operators, Nauka, Moscow (1969) (in
Russian).



692 N.S. Imanbaev, Y. Kurmysh

[21] L.S. Pulkina and V.A. Kirichek, Solvability of a nonlocal problem for a hy-
perbolic equation with degenerate integral conditions, Vestnik Sam. gos.

Tehn. Univer., Ser. Fiz.-Math. Nauki, 23, No 2 (2019), 229-245 (in Ris-
sian).

[22] M.A.Sadybekov and N.S. Imanbaev, Characteristic determinant of a
boundary value problem, which does not have the basis property, Eurasian
Mathematical Journal, 8, No 2 (2017), 40-46.

[23] M.A. Sadybekov and E.M. Orynbasarov, Basis property of system of root
functions of a boundary value problem with shift for the Lavrent’ev-
Bitsadze equation, Dokl. A.N. USSR, 324, No 6 (1992), 1152-1154.

[24] A.M. Sedletsky, When all zeros of an entire function of exponential type
lie in a curvilinear half-plane (necessary condition), Matem. Sbornik, 186,
No 9 (1995), 125-134 (in Russian).

[25] O.S. Zikirov and D.K. Kholikov, Solvability of some nonlocal problems
for a loaded third-order equation, Sib. Elektron. Matem. Izv., 17 (2020),
77-88; doi: 10.33048/semi.2020.17.007.

[26] A.A. Shkalikov, On the basis property of eigenfunctions of ordinary differ-
ential operators with integral boundary value conditions, Vestnik MGU,

Ser. Math. Mech., No 6 (1982), 12-21 (in Russian).


