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Abstract: In this paper first we prove Calderón-Zygmund-type integral in-
equalities for oscillatory integral operators and their commutators in the mod-
ified Morrey spaces with variable exponent Lp(·),λ(Ω), where Ω ⊂ Rn are un-
bounded sets.

After that we prove the boundedness of these operators on the spaces
Lp(·),λ(Ω).
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1. Introduction

The Morrey spaces in the classical version were introduced in [27] in relation
to studying of partial differential equations and the local behavior of solutions
to second order elliptic partial differential equations. For the properties and
applications of the classical Morrey spaces, we refer the readers to [13, 14,
27]. These spaces were widely investigated during the last decades, including
the study of classical operators of harmonic analysis, maximal, singular, and
potential operators and their generalizations were studied.

The variable exponent analysis is a popular topic which attract many re-
searchers. This topic is mainly focused on the Lebesgue and Sobelev spaces
with variable order of integrability and operator theory in these spaces. The
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study of these spaces has been stimulated by problems of various fields, influ-
enced by many applications, for instance, mechanics of the continuum medium,
elasticity, fluid dynamics, calculus of variations and differential equations with
non-standard growth conditions, see [8], [29], [34]. Recently some optimal con-
trol problem in variable Sobolev spaces is studied in [4]. In particular, various
results on non-weighted and weighted boundedness in Lebesgue spaces with
variable exponents p(x) have been proved for maximal, singular and fractional
type operators, we refer to surveying papers [10] and [31].

The variable exponent Morrey spaces Lp(·),λ(·)(Ω), were introduced and
studied in [2] in the Euclidean setting in case of bounded sets. The bound-
edness of the maximal operator in variable exponent Morrey spaces Lp(·),λ(·)(Ω)
under the log-condition on p(·), λ(·) was proved in [2]. Hästö in [19] used his
new “local-to-global” approach to extend the result of [2] on the maximal op-
erator to the case of the whole space Rn. The boundedness of the maximal
operator and the singular integral operator in variable exponent Morrey spaces
Lp(·),λ(·) in the general setting of metric measure spaces was proved in [21].

In the case of constant p and λ, the results on the boundedness of potential
operators and classical Calderón-Zygmund singular operators go back to [1]
and [28], respectively, while the boundedness of the maximal operator in the
Euclidean setting was proved in [7].

A distribution kernel K(x, y) is a “standard singular kernel”, that is, a
continuous function defined on {(x, y) ∈ Ω × Ω : x 6= y} and satisfying the
estimates

|K(x, y)| ≤ C|x− y|−n for all x 6= y,

|K(x, y)−K(x, z)| ≤ C
|y − z|σ

|x− y|n+σ
, σ > 0, if |x− y| > 2|y − z|,

|K(x, y)−K(ξ, y)| ≤ C
|x− ξ|σ

|x− y|n+σ
, σ > 0, if |x− y| > 2|x− ξ|.

The Calderón-Zygmund type singular operator and the oscillatory integral
operator are defined by

Tf(x) =

∫

Ω
K(x, y)f(y)dy, (1)

Sf(x) =

∫

Ω
eP (x,y)K(x, y)f(y)dy, (2)

where P (x, y) is a real valued polynomial defined on Ω×Ω. Lu and Zhang [26]
used L2-boundedness of T to get Lp-boundedness of S with 1 < p < ∞.
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The commutator generated by the operator S for a given measurable func-
tion b is formally defined by

[S, b]f = S(bf)− bS(f).

Let
T ∗f(x) = sup

ε>0
|Tεf(x)|

be the maximal singular operator, where Tεf(x) is the usual truncation

Tεf(x) =

∫

{y∈Ω:|x−y|≥ε}
K(x, y)f(y)dy.

In this paper first we prove Calderón-Zygmund-type integral inequalities
for oscillatory integral operators and their commutators in the modified Morrey
spaces with variable exponent Lp(·),λ(Ω), where Ω ⊂ Rn are unbounded sets.
After that we prove the boundedness of these operators on the spaces Lp(·),λ(Ω).

We use the following notations: Rn is the n-dimensional Euclidean space,
Ω ⊂ Rn is an open set, χE(x) is the characteristic function of a set E ⊆ Rn,
B(x, r) = {y ∈ Rn : |x − y| < r}), B̃(x, r) = B(x, r) ∩ Ω, by c,C, c1, c2 etc,
we denote various absolute positive constants, which may have different values
even in the same line.

2. Preliminaries on variable exponent

weighted Lebesgue and Morrey spaces

Let Ω be an unbounded set in Rn and p(·) be a measurable function on Ω with
values in (1,∞). We mainly suppose that

1 < p− ≤ p(x) ≤ p+ < ∞, (3)

where p− := ess infx∈Ω p(x), p+ := ess supx∈Ω p(x). By Lp(·)(Ω) we denote the
space of all measurable functions f(x) on Ω such that

Ip(·)(f) =

∫

Ω
|f(x)|p(x)dx < ∞.

Equipped with the norm

‖f‖p(·) = inf

{
η > 0 : Ip(·)

(
f

η

)
≤ 1

}
,
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this is a Banach function space. By p′(·) = p(x)
p(x)−1 , x ∈ Ω, we denote the

conjugate exponent. In the one-dimensional case n = 1 we deal with the interval
(0,∞] and the standart Lebesgue measure (see e.g. [11]). We refer to [5] for
definition and fundamental properties of Banach function spaces. The space
Lp(·)(Ω) coincides with the space{

f(x) :

∣∣∣∣
∫

Ω
f(y)g(y)dy

∣∣∣∣ < ∞ for all g ∈ Lp′(·)(Ω)

}
(4)

up to the equivalence of the norms

‖f‖Lp(·)(Ω) ≈ sup
‖g‖

Lp′(·)≤1

∣∣∣∣
∫

Ω
f(y)g(y)dy

∣∣∣∣ (5)

see [23, Theorem 2.3], or [30, Theorem 3.5].
Let P(Ω) be the set of bounded measurable functions p : Ω → [1,∞);
P log(Ω) be the set of exponents p ∈ P(Ω) satisfying the local log-condition

|p(x)− p(y)| ≤
A

− ln |x− y|
, |x− y| ≤

1

2
x, y ∈ Ω, (6)

where A = A(p) > 0 does not depend on x, y.
By Alog(Ω) we denote the set of bounded exponents p : Ω → Rn satisfying

the condition (6); by P log(Ω) we denote the set of exponents p ∈ P log(Ω)

with 1 < p− ≤ p+ < ∞; for Ω which may be unbounded, by P∞(Ω), P log
∞ (Ω),

P log
∞ (Ω), Alog

∞ (Ω) we denote the subsets of the above sets of exponents satisfying
the decay condition (when Ω is unbounded)

|p(x)− p(∞)| ≤
A∞

ln(2 + |x|)
, x ∈ Rn, (7)

where p∞ = lim
x→∞

p(x) > 1.

We will also make use of the estimate provided by the following lemma (see
[8], Corollary 4.5.9),

‖χ
B̃(x,r)

(·)‖p(·) ≤ Crθp(x,r), x ∈ Ω, p ∈ P log
∞ (Ω), (8)

where θp(x, r) =

{
n

p(x) , r ≤ 1,
n

p(∞) , r ≥ 1
.

A locally integrable function ω : Ω → (0,∞) is called a weight. We say that
ω ∈ Ap(Ω), 1 < p < ∞, if there is a constant C > 0 such that

(
1

|B̃(x, t)|

∫

B̃(x,t)
ω(x)dx

)(
1

|B̃(x, t)|

∫

B̃(x,t)
ω1−p′(x)dx

)p−1

≤ C,
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where 1/p+1/p′ = 1. We say that ω ∈ A1(Ω) if there is a constant C > 0 such
that Mω(x) ≤ Cω(x) almost everywhere.

The extrapolation theorems (Lemma 1 and Lemma 2 below) are originally
due to Cruz-Uribe, Fiorenza, Martell and Pérez [6]. Here we use the form in
[8], see Theorem 7.2.1 and Theorem 7.2.3 in [8].

Lemma 1. ([8]) Given a family F of ordered pairs of measurable functions,

suppose that for some fixed 0 < p0 < ∞, every (f, g) ∈ F and every ω ∈ A1,

∫

Ω
|f(x)|p0ω(x)dx ≤ C0

∫
Ω|g(x)|p0ω(x)dx.

Let p(·) ∈ P (Ω) with p0 ≤ p−. If maximal operator is bounded on L

(
p(·)
p0

)
′

(Ω),
then there exists a constant C > 0 such that for all (f, g) ∈ F ,

‖f‖Lp(·)(Ω) ≤ C‖g‖Lp(·)(Ω).

Lemma 2. ([8]) Given a family F of ordered pairs of measurable functions,

suppose that for some fixed 0 < p0 < q0 < ∞, every (f, g) ∈ F and every

Ω ∈ A1,

(∫

Ω
|f(x)|q0ω(x)dx

) 1
q0

≤ C0

(∫

Ω
|g(x)|p0ω

p0
q0 (x)dx

) 1
p0

.

Let p(·) ∈ P (Ω) with p0 ≤ p− and 1
p0

− 1
q0

< 1
p+

, and define q(x) by

1

p(x)
−

1

q(x)
=

1

p0
−

1

q0
.

If maximal operator is bounded on L

(
q(·)
q0

)
′

(Ω), then there exists a constant

C > 0 such that for all (f, g) ∈ F ,

‖f‖Lq(·)(Ω) ≤ C‖g‖Lp(·)(Ω).

Singular operators within the framework of the spaces with variable expo-
nents were studied in [9]. From Theorem 4.8 and Remark 4.6 of [9] and the
known results on the boundedness of the maximal operator, we have the fol-
lowing statement, which is formulated below for our goals for a bounded Ω, but
valid for an arbitrary open set Ω under the corresponding condition in p(x) at
infinity.
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Theorem 1. ([9, Theorem 4.8]) Let Ω ⊂ Rn be a unbounded open set

and p ∈ P log(Ω). Then the singular integral operator T is bounded in Lp(·)(Ω).

Let λ(x) be a measurable function on Ω with values in [0, n]. The variable
Morrey space Lp(·),λ(·)(Ω) is defined as the set of integrable functions f on Ω
with the finite norms

‖f‖Lp(·),λ(·)(Ω) = sup
x∈Ω, t>0

t
λ(x)
p(x)

−θp(x,t)‖fχ
B̃(x,t)

‖Lp(·)(Ω),

respectively.

Definition 2. We define the BMO(Ω) space as the set of all locally
integrable functions f with finite norm

‖f‖BMO = sup
x∈Ω, r>0

|B(x, r)|−1

∫

B̃(x,r)
|f(y)− f

B̃(x,r)
|dy,

or

‖f‖BMO = inf
C

sup
x∈Ω, r>0

|B(x, r)|−1

∫

B̃(x,r)
|f(y)− C|dy <,

where f
B̃(x,t)(x) = |B̃(x, t)|−1

∫
B̃(x,t) f(y)dy.

Definition 3. We define the BMOp(·)(Ω) space as the set of all locally
integrable functions f with finite norm

‖f‖BMOp(·)
= sup

x∈Ω, r>0

‖(f(·) − f
B̃(x,r)

)χ
B̃(x,r)

‖Lp(·)(Ω)

‖χ
B̃(x,r)‖Lp(·)(Ω)

.

Theorem 4. ([24]) Let Ω ⊂ Rn be an open unbounded set and p ∈

P log
∞ (Ω). Then the norms ‖ · ‖BMOp(·)

and ‖ · ‖BMO are mutually equivalent.

Before proving the main theorems, we need the following lemma.

Lemma 3. ([18]) Let b ∈ BMO(Ω). Then there is a constant C > 0 such

that ∣∣∣bB̃(x,r)
− b

B̃(x,t)

∣∣∣ ≤ C‖b‖∗ ln
t

r
for 0 < 2r < t,

where C is independent of b, x, r, and t.
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We will use the following results on the boundedness of the weighted Hardy
operator

H∗
wg(t) :=

∫ ∞

t

g(s)w(s)ds, 0 < t < ∞,

where w is a weight.
The following theorem was proved in [15].

Theorem 5. Let v1, v2 and w be weights on (0,∞) and v1(t) be bounded
outside a neighborhood of the origin. The inequality

sup
t>0

v2(t)H
∗
wg(t) ≤ C sup

t>0
v1(t)g(t)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and
only if

B := sup
t>0

v2(t)

∫ ∞

t

w(s)ds

ess sups<τ<∞ v1(τ)
< ∞.

3. Oscillatory integral operators in Lp(·),λ(Ω)

In this section we prove Calderón-Zygmund-type integral inequalities for os-
cillatory integral operators S and the commutators generated by S, [b, S], in
the modified Morrey spaces with variable exponent Lp(·),λ(Ω), where Ω ⊂ Rn

are unbounded sets. After that we prove the boundedness of the operators S
and [b, S] on the spaces Lp(·),λ(Ω) by the help of these Calderón-Zygmund-type
integral inequalities.

Lemma 4. ([25]) Let K be a standard Calderón-Zygmund kernel and

the Calderón-Zygmund singular integral operator T is of type (L2(Ω), L2(Ω)).
Then for any real polynomial P (x, y) and Ω ∈ Ap (1 < p < ∞), there exists

constants C > 0 independent of the coefficients of P such that

‖Sf‖Lp

Ω(Ω) ≤ C‖f‖Lp

Ω(Ω).

Theorem 1. Let Ω ⊂ Rn be an open unbounded set and p ∈ P log
∞ (Ω).

Then the operator S is bounded on the space Lp(·)(Ω).

Proof. From Lemmas 1 and 4, we obtain that the operator S is bounded
on the space Lp(·)(Ω).
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The following theorem gives the Calderón-Zygmund-type integral inequality
for oscillatory integral operators S.

Theorem 2. Let Ω ⊂ Rn be an open unbounded set, p ∈ P log
∞ (Ω) and

f ∈ Lp(·)(Ω). Then the following inequality

‖Sf‖
Lp(·)(B̃(x,t)) ≤ Ctθp(x,t)

∫ ∞

t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
(1)

holds, where C is independent of f , x ∈ Ω and t.

Proof. We represent f as f = f1 + f2,

f1(y) = f(y)χ
B̃(x,2t)

(y), f2(y) = f(y)χ
Ω\B̃(x,2t)

(y), t > 0, (2)

and have

‖Sf‖
Lp(·)(B̃(x,t))

≤ ‖Sf1‖Lp(·)(B̃(x,t))
+ ‖Sf2‖Lp(·)(B̃(x,t))

.

By Theorem 1 we obtain

‖Sf1‖Lp(·)(B̃(x,t)) ≤ ‖Sf1‖Lp(·)(Ω) ≤ C‖f1‖Lp(·)(Ω),

so

‖Sf1‖Lp(·)(B̃(x,t))
≤ C‖f‖

Lp(·)(B̃(x,2t))
.

Taking into account the inequality

‖f‖
Lp(·)(B̃(x,t))

≤ Ctθp(x,t)
∫ ∞

t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
,

we get

‖Sf1‖Lp(·)(B̃(x,t)) ≤ Ctθp(x,t)
∫ ∞

t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
. (3)

To estimate ‖Sf2‖Lp(·)(B̃(x,t))
, we observe that

|Sf2(z)| ≤ C

∫

Ω\B(x,2t)

|f(y)| dy

|y − z|n
,

where z ∈ B(x, t) and the inequalities |x− z| ≤ t, |z− y| ≥ 2t imply 1
2 |z − y| ≤

|x− y| ≤ 3
2 |z − y|. Therefore we get

|Sf2(z)| ≤ C

∫

Ω\B̃(x,2t)
|x− y|−n|f(y)|dy,
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To estimate Sf2, we first prove the following auxiliary inequality

∫

Ω\B̃(x,t)
|x− y|−n|f(y)|dy

≤ Ctθp(x,t)
∫ ∞

t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
. (4)

With this aim we choose δ > 0 and proceed as follows

∫

Ω\B̃(x,t)
|x− y|−n|f(y)|dy

≤ δ

∫

Ω\B̃(x,t)
|x− y|−n+δ|f(y)|dy

∫ ∞

|x−y|
s−δ−1ds

≤ C

∫ ∞

t

s−nds

s

∫

{y∈Ω:2t≤|x−y|≤s}
|f(y)|dy

≤ C

∫ ∞

t

s−n‖f‖
Lp(·)(B̃(x,s))

‖χ
B̃(x,s)

‖
Lp′(·)(Ω)

ds

s

≤ C

∫ ∞

t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
. (5)

Hence by inequality (5), we get

‖Sf2‖Lp(·)(B̃(x,t)) ≤ C‖χ
B̃(x,t)‖Lp(·)(Ω)

∫ ∞

t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s

= Ctθp(x,t)
∫ ∞

t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
. (6)

From (3) and (6) we arrive at (1).

In the following theorem we prove the boundedness of the operators S on
the spaces Lp(·),λ(Ω).

Theorem 3. Let Ω ⊂ Rn be an open unbounded set, p ∈ P log
∞ (Ω) and

0 ≤ λ(x) < n. Then the singular integral operator S is bounded from the space

Lp(·),λ(Ω) to the space Lp(·),λ(Ω).
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Proof. Let f ∈ Lp(·),λ(Ω). Then the following equality

‖Sf‖Lp(·),λ(Ω) = sup
x∈Ω, t>0

[t]
λ(x)
p(x)

1 t−θp(x,t)‖Sfχ
B̃(x,t)

‖Lp(·)(Ω) (7)

holds. We estimate ‖Sfχ
B̃(x,t)‖Lp(·)(Ω) in (7) by means of Theorems 2, 5 and

obtain

‖Sf‖Lp(·),λ(Ω)

≤ C sup
x∈Ω, t>0

[t]
λ(x)
p(x)

1 t−θp(x,t)tθp(x,t)
∫ ∞

t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s

≤ C sup
x∈Ω, t>0

[t]
λ(x)
p(x)

1 t−θp(x,t)‖f‖
Lp(·)(B̃(x,t)) = C‖f‖Lp(·),λ(Ω).

The following theorem gives the Calderón-Zygmund-type integral inequality
for the commutators [b, S].

Theorem 4. Let Ω ⊂ Rn be an open unbounded set, p ∈ P log
∞ (Ω) and

b ∈ BMO(Ω). Then the following inequality

‖[b, S]f‖
Lp(·)(B̃(x,t))

≤ C‖b‖∗‖t
θp(x,t)

∫ ∞

t

s−θp(x,s)
(
1 + ln

s

t

)
‖f‖

Lp(·)(B̃(x,s))

ds

s
(8)

holds for every f ∈ Lp(·)(Ω), where C does not depend on f, x ∈ Ω and t.

Proof. We represent function f as in (2) and have

‖[b, S]f‖
Lp(·)(B̃(x,t)) ≤ ‖[b, S]f1‖Lp(·)(B̃(x,t)) + ‖[b, S]f2‖Lp(·)(B̃(x,t)).

Since [b, S] is bounded on the space Lp(·)(Ω), we obtain

‖[b, S]f1‖Lp(·)(B̃(x,t)) ≤ ‖[b, S]f1‖Lp(·)(Ω)

≤ C‖b‖∗‖f1‖Lp(·)(Ω) = C‖b‖∗‖f‖Lp(·)(B̃(x,2t))
, (9)

where C does not depend on f . From (9) we easily obtain

‖[b, S]f1‖Lp(·)(B̃(x,t))
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≤ C‖b‖∗t
θp(x,t)

∫ ∞

t

s−θp(x,s)
(
1 + ln

s

t

)
‖f‖

Lp(·)(B̃(x,s))

ds

s
(10)

from the fact that ‖f‖
Lp(·)(B̃(x,2t))

is non-decreasing in t, so that ‖f‖
Lp(·)(B̃(x,2t))

on the right-hand side of (9) is dominated by the right-hand side of (10). To
estimate ‖[b, S]f2‖Lp(·)(B̃(x,t)), we observe that

|[b, S]f2(z)| ≤ C

∫

Ω\B(x,2t)
|b(z)− b(y)|

|f(y)| dy

|y − z|n
,

where z ∈ B(x, t) and the inequalities |x− z| ≤ t, |z− y| ≥ 2t imply 1
2 |z − y| ≤

|x− y| ≤ 3
2 |z − y|. Therefore

|[b, S]f2(z)| ≤ C

∫

Ω\B̃(x,2t)
|x− y|−n|b(z)− b(y)| |f(y)|dy.

To estimate [b, S]f2, first we need to prove the following auxiliary inequality

∫

Ω\B̃(x,t)
|x− y|−n|b(z)− b(y)||f(y)|dy

≤ C‖b‖∗

∫ ∞

t

s−θp(x,s)
(
1 + ln

s

t

)
‖f‖

Lp(·)(B̃(x,s))

ds

s
. (11)

For z ∈ B̃(x, t) we have

∫

Ω\B̃(x,t)
|x− y|−n|b(z)− b(y)||f(y)|dy

≤

∫

Ω\B̃(x,t)
|x− y|−n|b(y)− b

B̃(x,t)||f(y)|dy

+

∫

Ω\B̃(x,t)
|x− y|−n|b(z)− b

B̃(x,t)||f(y)|dy = J1 + J2.

With this aim we choose δ > 0 and from Theorem 4 and Lemma 3 we obtain

J1 =

∫

Ω\B̃(x,t)
|x− y|−n|b(y)− b

B̃(x,t)||f(y)|dy

≤ δ

∫

Ω\B̃(x,t)
|x− y|−n+δ|b(y)− b

B̃(x,t)||f(y)|dy

∫ ∞

|x−y|
s−δ−1ds

≤ C

∫ ∞

t

s−n−1

∫

{y∈Ω:2t≤|x−y|≤s}
|b(y)− b

B̃(x,t)
||f(y)|dyds
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≤ C

∫ ∞

t

s−n−1‖b(·) − b
B̃(x,s)‖Lp′(·)(B̃(x,s))‖f‖Lp(·)(B̃(x,s))ds

+C

∫ ∞

t

s−n−1|b
B̃(x,t) − b

B̃(x,s)|

∫

B̃(x,s)
|f(y)|dyds

≤ C‖b‖∗

∫ ∞

t

s−θp(x,s)−n−1‖f‖
Lp(·)(B̃(x,s))

ds

+C‖b‖∗

∫ ∞

t

s−θp(x,s)−n−1 ln
s

t
‖f‖

Lp(·)(B̃(x,s))
ds

≤ C‖b‖∗

∫ ∞

t

s−θp(x,s)
(
1 + ln

s

t

)
‖f‖

Lp(·)(B̃(x,s))

ds

s
.

To estimate J2, from (4) we have

J2 = |b(z)− b
B̃(x,t)|

∫

Ω\B̃(x,t)
|x− y|−n|f(y)|dy

≤ C|B(x, t)|−1

∫

B̃(x,t)
|b(z) − b(y)|dy

∫ ∞

t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s

≤ CMbχB(x,t)(z)

∫ ∞

t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
,

where C does not depend on x, t.

Hence by inequality (11), we get

‖[b, S]f2‖Lp(·)(B̃(x,t)) ≤ C‖χ
B̃(x,t)‖Lp(·)(Ω)‖b‖∗

×

∫ ∞

t

(
1 + ln

s

t

)
s−θp(x,s)‖f‖

Lp(·)(B̃(x,s))

ds

s

= ‖b‖∗t
θp(x,t)

∫ ∞

t

s−θp(x,s)
(
1 + ln

s

t

)
‖f‖

Lp(·)(B̃(x,s))

ds

s
. (12)

From (10) and (12) we arrive at (8).

In the following theorem we prove the boundedness of the operators [b, S]
on the spaces Lp(·),λ(Ω).

Theorem 5. Let Ω ⊂ Rn be an open unbounded set, p ∈ P log
∞ (Ω),

b ∈ BMO(Ω) and 0 ≤ λ(x) < n. Then the singular integral operator [b, S] is
bounded from the space Lp(·),λ(Ω) to the space Lp(·),λ(Ω).
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Proof. Let f ∈ Lp(·),λ(Ω). We have

‖[b, S]f‖Lp(·),λ(Ω) = sup
x∈Ω, t>0

[t]
λ(x)
p(x)

1 t−θp(x,t)‖[b, S]f‖
Lp(·)(B̃(x,t))

.

By Theorems 5 and 4 we obtain

‖[b, S]f‖Lp(·),λ(Ω)

≤ C‖b‖∗ sup
x∈Ω, t>0

[t]
λ(x)
p(x)

1 t−θp(x,t)tθp(x,t)

∫ ∞

t

s−θp(x,s)
(
1 + ln

s

t

)
‖f‖

Lp(·)(B̃(x,s))

ds

s

≤ C‖b‖∗ sup
x∈Ω, t>0

[t]
λ(x)
p(x)

1 t−θp(x,t)‖f‖
Lp(·)(B̃(x,t)) = C‖b‖∗‖f‖Lp(·),λ(Ω)

which completes the proof.
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