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Abstract: Intensive studies aiming to extend the beta function and to es-
tablish some properties for these extensions have been recently carried out. In
this article, we investigate some inequalities for a special extension of the beta
function. Based on some integral inequalities, we establish several inequali-
ties involving this extended beta function that generalize some results already
discussed in the literature.
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1. Introduction

The well-known beta function, also called the Euler’s integral of the first kind,
is defined for =,y > 0 by

Blx,y) = /01 11— )L g, (1)

The basic properties of this function as well as its application in various
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contexts can be found in the literature, see for example, [1, 2, 6].
In [3] Chaudhry et al. introduced an extension of the beta function as
follows: for any z,y > 0 and p > 0, they defined

Blz,y:p) :/Oltxl(l—t)ylexp <t(1_f’t)> dt. (2)

Other representations of this extended beta function and its connections
with some other special functions are discussed in [3] and [8]. The importance
of this last type of functions is highlighted in [4] by some of their applications.
It is worth mentioning to pay attention that the extension of the beta function
presented in the paper [3] is different from that given in [4].

The preceding extension process was continued by adding other parameters
to the beta function. For instance, a second extension of B(z,y) was introduced
by Choi et al. in [7] as follows: for any x,y > 0 and p,q > 0, they defined

B = [ #7010 o (-2-1%) a )

If p = 0, then (2) coincides with (1). If p = ¢ then (3) is reduced to (2). Making
the change of variables t = 1 —w in (3), it is not hard to check that the following
relationship

B(z,y;p,q) = B(y,x;q,p) (4)

holds for any x,y > 0 and p,q > 0. By the change of variables t = cos? § we
get the following integral representation

uy

B(x,y;p,q) = 2/2 cos?® 19 sin? ! fexp (—p sec? § — g csc? 9) do. (5)
0

Some algebraic properties of B(z,y; p, q) as well as various applications can
be found in [7]. In particular, the extended Gauss hypergeometric function,
the extended confluent hypergeometric function and the beta distribution were
investigated in [7].

The fundamental goal of this paper is to investigate some inequalities in-
volving the extended beta function B(x,y;p,q). Our inequalities obtained here
are of course generalizations of those discussed for B(z,y) and B(z,y;p) in [6]
and [11], respectively.
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2. Inequalities via Chebychev’s inequality

In the ongoing section we present some inequalities for B(x,y; p.q) by using the
so-called Chebychev’s integral inequality which we will recall below. We first
need to state the following definition.

Definition 1. Let f and g be two real functions defined on a nonempty
interval I of R. We say that f and g are synchronous (resp. asynchronous) on
I, if they are monotonic in the same sense (resp. in the opposite sense) on I.
That is, the following

holds for any =,y € I.

This class of functions plays an important place in mathematical analysis.
As an example, we mention the following result, known in the literature as the
Chebychev inequality [9, 10], which will be needed later.

Lemma 2. Let I be a nonempty interval of R and let f,g,h : I — R
be such that h(x) > 0 for all x € I. We assume that h,hfg,hf and hg are
integrable on I. If f and g are synchronous (resp. asynchronous) on I then the
following inequality holds:

eyt [ nosa a= <) [nose a [ oo a. o

1 1 1

The following lemma will be also needed in the sequel.

Lemma 3. Let ¢:[0,1] — R be the function defined by
vVt € 0,1] o(t) = (at +b)(c(1 —t) + d),

where a,b,c and d are four given real numbers. Then the following assertions
hold:
(i) If ac > 0 and min (b(c +d),d(a+ b)) >0 then ¢(t) > 0 for all t € [0,1].

(#i) If ac < 0 and max (b(c +d),d(a+ b)) < 0 then ¢(t) <0 for all t € [0,1].

Proof. (i) First assume that ac # 0. Then ¢(¢) is a quadratic function in ¢.
Computing the derivative ¢ of ¢ and solving the equation ¢ (t) = 0 in R we
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find as unique root tg € R such that

1 d b ac + ad + be)?
=1t (1+2-0) ) = et ad b
2 c a 4ac

Now, we should envisage the two cases to € [0,1] and ¢y ¢ [0,1]. Assume
that ac > 0.

o If ¢y ¢ [0,1], then ¢ is monotonic on [0,1] and we have teiﬁ)fu(p(t) =
min(¢(0),¢(1)). Since ¢(0) = b(c +d) and ¢(1) = d(a + b) then the condition
min (b(c +d),d(a+ b)) > 0 implies that ¢(t) > 0 for any ¢ € [0, 1].

o If {y € [0,1] then, by ac > 0, ¢(tp) > 0 is a maximal value of ¢ on [0, 1]
and hence, min(¢(0), (1)) > 0 implies that ¢(¢t) > 0 for any ¢ € [0, 1].

If ac = 0 then ¢ is an affine function. In this case, it is easy to check that
©(t) > 0 provided that the condition min (b(c+ d),d(a+ b)) > 0, when ac = 0,
is satisfied. The first part of the lemma is proved.

(ii) The case ac < 0 can be stated in a similar manner and we then conclude

the second part of the lemma. The details are simple and therefore omitted
here for the reader. O

Now, we are in the position to state our first main result which reads as
follows.

Theorem 4. Let z,2',y,y > 0 and p,p’,q,q > 0. Then the two following
assertions hold:

(i) If (2’ —x)(y—y") > 0 and min ((p’—p)(y—y”rq—c/), (q’—Q)(ﬂf—x’er—p’)) >0
then we have

B(z,y:p,q) x B« ;0. ¢) > B(x,y'sp.d') x Bz',y;0',q) (7)

(i1) If (' —x)(y—y') < 0 and max ((p’—p)(y—y”rq—q/), (q’—q)(fc—x’+p—p’)) <
0 then the inequality (7) is reversed.

Proof. (i) Let us consider the following three functions defined for any t €
(0,1) by

)= exp (25 gt = (1= Ve (421,

1-1¢

h(t) = 11 — )V Lexp (-i—? - &) .
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Let us remark first that h is positive and integrable on (0;1). In other hand,
we have for all ¢ € (0,1)

f1t) = [(ml —x)t+p — p} o' —z—2 exp <p —t p/>

and
— q—q
g0 =[y—v)1 -t +q—q](1 -1 T 2exp (1__t> |
According to Lemma 3, if the two following conditions

(' —2)(y—%') >0 and min ((p'—p)(y—y/+q—q/)7(Q' —Q)(w—w/ﬂ)—p')) >0

are fulfilled, then the functions f and g are synchronous on (0,1). This, with
(6), yields

1
0

1 1 1
/0 W) di x / Wt f(B)g(t) dt > (<) / F(t)h(t) dt / g(t)h(t) dt.

This, with the explicit expressions of f(t),g(t) and h(t), gives

Whence (7) follows.
(74) It is similar to () by utilizing Lemma 3,(ii). We omit the routine details
here. O

The previous theorem has many consequences. In particular, we cite the
following corollary.

Corollary 5. Letz,y > 0 andp,q > 0. Assume that (¢—p)(y—z+q—p) >
0. Then we have

(B(ﬂf,y;p, q))2 > B(z,2;p) B(y,y;9)- (8)
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In particular, the inequalities

(B.u:p)) > Bla.z:p) B(y.v:p).

2
(B(ﬂs,x;p, q)) > B(z,z;p) B(z,7;q),
hold true for any x,y > 0 and p,q > 0.
/

Proof. We apply the previous theorem with 2/ = gy, = x,p’ = ¢ and
¢ =p. We have (2/ —2)(y — ') = (y — z)? > 0 and

min ((p’—p)(y—y’+q—q')’(q’—q)(a«"—w”rp—p’))=(q—p)(y—w+q—p)-

Then (8) follows from Theorem 4 with the help of (4). The two other in-
equalities follow from (8) when considering the cases p = ¢ and = = y, respec-
tively. U

Remark 6. If p = p' = ¢ = ¢ = 0 then Theorem 4 and Corollary 5
are reduced to [6, Theorem 1] and [6, Corollary 1], respectively. If p = p’ and
q = ¢, then Theorem 4 coincides with [11, Theorem 1].

We now state another main result which concerns some inequalities involv-
ing the two previous extended beta functions, namely B(x,y;p) and B(x, y; p, q).

Theorem 7. For any x,y > 0 and p,q > 0 we have the following inequal-
ities
B(z,y;p,q) x B(z,y;q,p) = B(x,y;p) x B(z,y;9) (9)
and
B(z,y;p,q) x B(y,z;p.q) = B(x,y;p) x B(z,y;9). (10)

Proof. To establish (9), we apply (6) with the functions f,g and h de-
fined on (0,1) by f(t) = exp (57),g(t) = exp (%) and h(t) = t*~1(1 —

£)¥=1 exp (_% - %)

It can be easily verified that f and g are synchronous on (0, 1) and h satisfies
the required conditions in Lemma 6. Writing explicitly (6) we immediately
get (9). Otherwise, (10) follows from (9) with the help of (4). The proof is

finished. O
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Remark 8. Taking x = y in (9) we get again the last inequality of
Corollary 5.

We have the following main result as well.

Theorem 9. Letz,y > 0 andp,q > 0. Assume that (z—1)(y—1) < (>)0.
Then the following inequality

Bz +k,y+k;p,q) x B(k+1,k+1;p,q)
> ()B(x +k,k+1;p,q) x Blk+ 1,y + k;p,q) (11)

holds true for any real number k > 0.

Proof. For all t € (0,1), we set
F(t) = 571, gt) = (1— "1, h(t) = £5(1 — 1) exp (—f—’ - L)

Obviously, f/(t) = (z—1)t* 2 and ¢'(t) = —(y—1)(1—%)¥"2 and so f and g are
synchronous (resp. asynchronous) on (0, 1) provided that (z—1)(y—1) < (>)0.
Further, h is positive and integrable on (0, 1). Using the Chebyshev inequality
(6) with the previous functions f, g and h, we derive the inequality (11). O

The following remark is of interest.

Remark 10. Assume that (z —1)(y—1) < (>)0. If in (11) we take k =0
we then obtain the following inequality

B(z,y;p,q) x B(1,1;p,q) 2 (<)B(z,1;p,q) x By, 1;¢,p)- (12)
In particular, if moreover p = ¢ = 0 then (12) implies that B(z,y) > (<)=

=~ $_y7
which was established by Dragomir et al. in [6, Theorem 3].
It is worth mentioning that if (x — 1)(y — 1) < 0 then (12) implies that

B(x,y;p,q) > B(z,1;p,q) x B(y,1;¢,p).
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3. Inequalities via Holder’s inequality

In this section we will invest the classical Holder’s inequality to establish some
results related to the extended beta function B(z,y;p,q). The main result of
this section is recited as follows.

Theorem 11. B(z,y;p,q), as a function in four variables, is logarithmi-
cally convex on (0,00)? x [0,00)2. That is, for any x,y,2",y' > 0; p,q,p’,¢ >0
and a,b > 0 with a + b =1, we have

B[a(ﬂ«ny;p, q) +b(fc",y’;p’,q’)} < (B(fc‘,y;p, Q)>a X (B(w’,y’;p’,q’))b- (13)

Proof. For the sake of simplicity, we set
U= B[a(x,y;p, q) + b,y P, q’)]-
We have

U =283 |:((Il‘ + b2’ ay +by';ap +bp',aq + bq’)}

1
_ / taac—l—ba:’—l(l . t)ay-l—by’—l exp <_ ap + bp/ _aq + bq,) dt
0

t 1—1
1 / !
_ / ta$+ba:’—a—b(1 _ t)ay—l—by’—a—b exp <_ap "|t' bp . aql+ l;q ) dt
0 _

1
:/ pala=D)b(a'=1) (] _ paly=1)+b(y' -1)
0

by’ bq'
xexp(—ap+ A q)dt

t 1-1¢

1 a
— t$—1 1—t¢ y—1 _2 _ L

/0< (1-1) eXp< P

r_q /1 p, q/ b
trTH 1 - )Y T - — dt.
<(rumoten (5 -5))

Let n = é and m = % for which % + % = 1. According to the Hélder integral
inequality applied for the following functions

F(t) = (twlu — W Lexp (-i—? - &))a




SOME INEQUALITIES FOR AN EXTENDED BETA FUNCTION 729

and

a'—1 1 I ¢ ’

- 11 _ )V~ _r_
o) = (F =0 e (<2 - L))
we obtain
1 1 1 1

(o) < ([ (oe)")

Hence the inequality (13) follows. O

Remark 12. As it is well known, every logarithmically convex function
is convex and hence B(z,y;p,q) is convex. This can be also deduced from (13)
when using the standard Young’s inequality.

The previous result has many consequences. The following corollary is
immediate.

Corollary 13. For any x,y,z’',yy’ > 0 and p,q,p’, ¢ > 0, the next inequal-
ity holds true

e+ y+y prp g+d\\
<B( R R e ) < B(x,y;p,q) x Bz, y":0', q).

The second corollary is as follows.

Corollary 14. Let z,y > 0, m,n > 0 and let k, k' be two real numbers
such that |k| < m and |k'| <n. Then we have

2
(B(% y;m, n)) < B(x,y;m —k,n— k) x Blx,y;m+kn+k). (14
Proof. Making in (13) the following choices
a=b=1/22" =z, =y;p=m—k,p=m+kiq=n—-k,d/ =n+F,

we immediately get (14). O

Now, let us observe the following remark.
Remark 15. If in (14) we choose k = m and k' = n, we get

2
(Ba.ysm.m))” < Blw,y) x Bz, y;2m, 2n).
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By a mathematical induction we can deduce that, for any integer r > 0, we
have

T

2T
(B(ﬂﬁyy; mm)) < (B(z,y))* "' x B(x,y;2"m,2"n).

4. Inequalities via Griiss inequality

In 1935, Griiss proved an integral inequality which gives an approximation for
the integral of a product of two functions in terms of the product of integrals
of the two functions, see [9, 10] for instance. This inequality reads as follows.

Lemma 16. Let f and g be two functions defined and integrable over
(a,b). Assume that, for all x € (a,b), we have

o< flz)<® and y<g(x)<T,

where ¢, ®,~ and I' are fixed real numbers. Then,

b b b
s [ s a2 [ [
@) ). (15

<

|

Further, the constant 1/4 is the best possible.

The following lemma gives some approximations that will be needed in the
sequel.

Lemma 17. Let a and b be two positive real numbers. We consider the
functions fop, gap and hgyp defined on (0,1) by,

Fanlt) = exp (—% - %t)  guplt) = %1 — 1)°, hap(t) = cos® tsind .
a®b®
Then we have, sup fq(t) = exp (—(\/E—i— \/5)2> ; SUp gap(t) = — g
t€(0,1) t€(0,1) (a+b)*
a b
oy
and sup hgp(t) = a ;

te(0,1) (a+0b)2
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Proof. By studying the variations of fg 4, gap and hep on (0, 1), it can be
shown that their maximums are attained, respectively, at tg,¢; and ¢, such that

Vva a < Vva >
tg = ——=, t1 = ——, t9 = arccos .
T arvs e T Va+b

Computing fq5(t0), gap(t1) and hgep(t2) we get the desired results after simple
algebraic operations. O

The first main result of this section reads as follows.

Theorem 18. Let z,y,2’,y > 0 and p,q,p’,¢' > 0. Then the following
inequality holds:

Blz+2' +1Ly+y +Lp+p.q+¢)—Blx+1,y+1,pq)

1
X B(JL‘/ + 1,9/ + 1§p/>q/) < ZUx,y Ux’,y/ V}),q VZD/,q/a

where we set
. I.:ny and V =:ex (_(\/_ + \/_)2) (16)
[/ac,y - (3: y)g;+y p,q —- €XP p q .

Proof. For all t € (0,1) we define the following functions

F(8) = £7(1 = £)Y exp <_B _ L)

and

It is obvious that f and g are defined and integrable on (0,1). By Lemma 17
we have, for any t € (0,1),

x"yY

010 < Ty

exXp (_(\/1'7 + \/5)2) =: Uy Vpg

and

0<g(t) < @)W (VP +VO)?) = Usy V,
=g = (Q;/ n y,)xury/ €Xp P q = Ugly" Vo' q -

Substituting these in (15), with the previous explicit expressions of f and g, we
get the desired result. O
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Remark 19. We note that the previous theorem is a generalization of [6,
Theorem 8§].

From Theorem 18 we immediately deduce the following corollary.

Corollary 20. Let xz,y > 0 and p,q > 0. Then one has

. . 2 2
B(2x+1,2y+1,2p,2q)—(B(m—i—l,y—l—Lp, )(< —UZ V2,

The following result may be stated as well.

Theorem 21. Let x,y > 1 and p,q > 0. Then the following inequality
holds:

e~ (Pta) (17)

==

(B(ﬂf,y;p, q) — B(z,1;p,0) x By, 1; ¢, 0)‘ <
Proof. Consider the functions f and g defined on (0,1) by
f(t) =t""Lexp (_]%) and g(t) = (1 —t)Y Ltexp (—L> .
Since x,y > 1 then for any ¢ € (0, 1), we have that

0<f(t)<e™® and 0<g(t)<e 9.

According to (15) we then obtain

‘ (@, 1:p,q /f dt/ (t)dt'<

It is obvious that

/01 f(t) dt =: /01 t*Lexp (—%) dt =: B(z,1;p,0)

and by a change of variables u = 1 — ¢, one has

/Olg(t) dt =: /01(1 — 1) exp <_1L—t> o B L)

Substituting these in (18) we get (17), so completing the proof. O

e~ (PFa) (18)

|
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Remark 22. (i) The inequality (17) is an extension of [6, Theorem 9].
That is, if p = ¢ = 0 then (17) is reduced to:

1

Va,y > 1 ‘B(az,y) < (19)

1
4
(ii) By (3) with Lemma 17 we easily deduce that the inequality

B(z,y;p,q) < B(z,y)exp (—(vp + va)?)

holds for any x,y > 0 and p,q > 0. This, when combined with (19), implies
that the inequality

1 1

B(z,y;p,q) < (x—y + 1) exp (—(vP+ va)?)
holds true for any x,y > 1 and p,q > 0.
We have the following result as well.

Theorem 23. Let z,y,2',y > 0 and p,q,p’,q" > 0. The following in-
equality holds

1 1
‘B<x+x/+§,y+y’+§;p+p/,q+q’)

1 1 1 1
+—>y+§aP>Q) XB(.I‘/—FE,:I/—F 27p q)

1
— Bl

T
4 Uz x,y Ux’,y/ V}Lq V}?Cq/v
(20)

where Uy, and V), 4, as Uy v and Vyy o, are defined by (16).

Proof. Let us rewrite (5), for the sake of clearness,

uy

B(x,y;p,q) = 2/ cos?® 1 fsin?Y ! fexp ( —psec? 0 — gcsc? 9) db.
0
Consider the following functions defined on (0, §) by
£(8) = cos® #sin®Y § exp (—p sec? 0 — g csc? 9)

and
9(0) = cos® @sin® fexp (—p'sec® 6 — ¢’ csc?0) .
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By Lemma 17 we can write,

xyY

0O < e

exXp (_(\/23 + \/5)2) = Uy Vg

and

nz' (Y
0< 9(9) < —( (T—’)_ (,:;/x)ury/ exXp (—(\/}74- \/?)2> =: Ux/y/ Vp/7q/.
r Ty

Applying the Griiss inequality (15) we get

2 [P swow - (2) [F sy [ g0y

™

1
< ZUx,y Ust oy Vg Vi o'+

This latter inequality is equivalent to the following one

1 1 1
‘;B(m+x’+—,y+y’+—;p+p’,q+q')

2 2
1 1 1 1 1 1
- ﬁB(fb‘ T YT 5D q) x B(z' + 572// + §;p',q') < ZU:B,y Uy Vg Voo
and hence (20). The proof is finished. O

If in (20) we take x = o',y = ¢/,p = p' and ¢ = ¢/, we immediately obtain
the following corollary.

Corollary 24. Let x,y > 0 and p,q > 0. Then we have

1 1 1 1 2
7115’(23:+—,2y+—;2p,2q) — (B(az+—,y+—;p7q)) (21)
2 2 2 2
2
7T 2
< Z Uﬂc,y Vp,q'

In order to give more inequalities involving B(x, y; p, ¢) we need to state the
following lemma [5, 6] which gives a weighted version of the Griiss inequality
(15).
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Lemma 25. Let f and g be two functions defined and integrable over
(a,b) and satisfying that

¢< f(z)<® and y<g(x)<T

for all x € (a,b), where ¢, ®,v and I" are fixed real constants. If h is a non-

negative function defined and integrable on (a,b), then we have the following
inequality

b b b b
/ h(t) dt x / F(O)g()h(t) di — / FIOR() dt x / oG, dt‘

<

(@ - g)(T —v)(/abhoe) )

o |

Now, the following result may be stated.

Theorem 26. Let z,2',y,y > 0, p,p',p",q.¢,¢" > 0 and z",y" > —1.
Then the following inequality holds,

‘B(l‘//—i-l,y”—i-l;p”,q”)XB(l‘—i-l‘/—i-l‘”-i-l,y+y/+y//+1;p+p/+p//,q+q/+q”)

—B(l‘+f£”+1,y+y”+1;p+p”,q+q”)><B(.’El-l-x”-i-l,y/+y”+1;p/+p”,q/-l-q”)

1
< Uny Usy Voo Virg B2 (2" + 19" + 10", ¢"),
where Ua:,y and V};,q, as Ux/,y’ and VZD/,q/; are defined by (16)

Proof. Consider the following functions defined on (0,1) by

Applying Lemma 25 to the previous functions, and with the help of Lemma 17,
we immediately get the desired inequality. O

The following result holds as well.
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Theorem 27. Let x,y > 0 and p,q > 0. Then the following inequality

B(z,y;p,q) x Blx+ 2",y +ysp+p,q9+¢)
— B+, ysp+p',q) x Blz,y+v'sp.qa+ )

< ZemPHIB2 (2 Y, q)

|

holds true for any x’,y',p’,q' such that x +2' >0, y+3y >0, p+p' > 0 and
qg+q >0.

Proof. Let us consider the functions defined on (0,1) by

Ft) = exp(— %) g(t) = (1 -t exp(— 1q/ t) and h(t) = t*1(1 —

£)v=1 exp (_g - 1%)
It is clear that for all ¢ € (0,1) we have

0< f(t)<e™® and 0<g(t) <e 7.

By similar way as previous, we obtain the desired result when applying Lemma
25 with the above functions. The details are immediate and therefore omitted
here. O

Remark 28. (i) Theorem 26 and Theorem 27 are generalizations of The-
orem 18 and Theorem 21, respectively.

(ii) If in Theorem 26 and Theorem 27 we take p =¢ =0, p' = ¢ = 0 and
p =q =0, we get [6, Proposition 1] and [6, Proposition 2], respectively.

5. Inequalities via Ostrowski’s inequality

In this section we will apply the Ostrowski inequality [9, 10], recalled below,
in the aim to establish more inequalities involving the extended beta function

B(x,y;p,q).

Lemma 29. Let f be a differentiable function on (a,b). Assume that, for
all x € (a,b), we have |f'(x)] < M for some fixed real number M > 0. Then,
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for any z € (a,b), we have

b 5 atb
‘f(x)—bia/ £(1) dt‘ < (i+ﬁ> b-a)M.  (22)

Further the constant 1/4 is the best possible.

As previously, U, , and V, , are defined by (16). Our main result in this
section reads as follows.

Theorem 30. Let p,q >0 andt € (0,1). Then the inequality

‘B(w,y;p, @)t 1 - )" e <_£ - L)‘

1 1
< { max (:L‘—l, y—l) Up—2,4—2 + max(p,q) Ug;_g,y_?)} <Z+ (t— 5)2> Vg

holds for any x,y > 3. For p = q = 0, the inequality

B(x,y) — t* (1=t | < {max (z—1,y-1) Uw_Q,y_Q} GJr(t_%)z)

holds true for any x,y > 2.
Proof. For all t € (0,1) we set
)=t 11—ty Lexp (-2 - L)
olt) = 511 — 1) wp(t .
Elementary computation leads to

P =t (1= 1) (& = Dl = 1)* = (y = DP(L — 1) +p(L —1)° — qtﬂ

It is not hard to check that we have
W] < {20 -0 @ -0 -0 - -1

+ 773 (1 — t)y73‘(1 —t)*p — th‘} exp (—% - &) .
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One can easily see that

D=t = (y—1t] = —1,y—1
s [(z = 1)(1 = 8) ~ (y = ] = max(e ~ Ly - )

and

1—1t)%p—t?%q| = .q).
trer%gf)\( )’p — t*q| = max(p, q)

According to Lemma 17 and then to the Ostrowski inequality (22), we get the
desired inequalities, thus completing the proof. ]

The previous theorem has many consequences. In particular, taking ¢t =
cos? § with 6 € (0,7/2) we obtain the following corollary.

Corollary 31. For any z,y > 3, p,q > 0 and 0 € (0,7/2) we have the
following estimation

!B(az, yip, q) — cos? 2 fsin® 2 fexp (—p sec? 0 — g esc? 9) !

< i{max (:1:—17 y—l) Up—2,y—2 + max(p, q) Ux,g,y,g} (1 + 0052(20)> Vi.q-
If p=q =0, then for any x,y > 2 we have

|B(x,y) — cos?*=2 9 sin?¥ 2 0|

< i{ max (z — 1,y — 1) Ux,gy,g} (1 + cos2(29)).

Taking ¢ = 1/2 in (23), or § = w/4 in the above corollary, we immediately
obtain the following result.

Corollary 32. For any z,y > 3 and p,q > 0 one has

exp (—2p — 2q
B(x,y;p,q) — (QHyQ )

< Ua:—2,y—2 + max(p, Q) U:v—3,y—3} ‘/;7,11'

If p = q = 0, the inequality
1 1
‘ < 1 max (x —1l,y— 1) Uz—2y—2

B(z,y) — ety—2

holds for any x,y > 2.
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Remark 33. If p = ¢ = 0, then Theorem 30 and Corollary 32 coincide
with [6, Theorem 14] and [6, Corollary 8|, respectively.

We have the following result as well.

Theorem 34. Let z,y >2,p,q >0 and 6 € (0,%). Then we have

1
‘—B(m, y:p,q) — cos?® 1 fsin®Y 1 fexp (—p sec? 0 — g csc? 9)‘
T

x (1 46— Ty
<3 (Z + T4 My pq Vogr (24)

where My yp.q = (max(2x— 1,2y—1) Up—1,y—1+2max(p,q) Ug3_2,y_2) and Uy
and V), , are defined by (16).

If p = q =0, then the inequality

1

—B(x,y) — cos** 1 sin? "1 9
™

1 40— %)?
<3 <ﬂ+l——é—>Imex—lﬂy—lﬂ@1y1
holds true for all x,y > 1.

Proof. First, we mention that following (5) we have

72
Beyia) =2 [ Papal0) 0.
where, for fixed x,y;p, q, we set
Dy yipg(0) = ®(0) =: cos™ 1 Osin® " exp (—psec® § — gesc? 0) .
We have, for all § € (0, 5),

C%‘I)(H) = —exp (—psec2 0 — qcsc? 0) X

[cosQ’”_2 6 sin?/ 2 9( — (22 — 1)sin? 0 + (2y — 1) cos? 6))

+ cos*™ 9 sin* 4 0 (2¢ cos* O — 2psin 0) ] :
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By Lemma 17, with the help of (16), we can write

‘d%@(e)( <V, [UH,H max

o |—(2z — 1)sin?0 + (2y — 1) cos? 0|

+2U, 5,5 max |qgcos*® — sin49].
r—2,y 206(07%)@ p |

It is not hard to check that

max | — (22 — 1)sin® 6 + (2y — 1) cos? 9‘ = max(2x — 1,2y — 1)
0€(0,3)

and

max
0<(0.3)

gcos* 0 — psin? 9‘ = max(p, q).
In summary, we have shown that the following inequality
d
‘EQ%H)‘ < V;w(max@x — 1,2y — 1) Up—1,4y—1 + 2max(p, q) Ux_g,y_g)

holds true for all 6 € (0,7/2). Now, if we apply the Ostrowski inequality (22)
to the function 6 — ®(6) we get (24), so completing the proof. O

Setting 6 = w/4 in (24) we obtain the following result.
Corollary 35. For any z,y > 2 and p,q > 0 we have

e—2(p+q)
B(z,y;p.q) — T orry—1

2
T
< §<max(2x — 1,2y — 1) Up—1 y—1 + 2max(p, q) U$_27y_2> Vp.g-
For p = ¢ = 0, the inequality
v w2
B@y) — gy | < T max(2e = 1,2 = 1) Uso1ya

holds for all x,y > 1.

In order to give more inequalities about B(z,y;p,q) we need to recall the
following lemma, see [6, Corollary 11].
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Lemma 36. Let ¢ be a continuous and differentiable function on (a,b).
Assume that ¢ is integrable on (a,b) and ¢ is continuous on (a,b) with ||¢'| =:
f; |/ (t)|dt < co. Then the following inequality

[ ettt o0 < (30 -+ e~ 252 ) 1o
holds for all = € (a,b).

Now, another main result can be stated as follows.

Theorem 37. Let z,y > 2, p,q > 0 and t € (0,1). Then following
inequality holds true,

B(.’E,y;p, Q) - txil(]. — t)yil exp <_B _ q )‘
= {max (- Ly—1)Blz—1,y—1p,q)

+ max(p, q) B(l’_Q’y—Q;p’Q)} <%+ " %D

Further, if p = g = 0, then the inequality

‘B(a:,y) _ txfl(l—t)yﬂ‘ <max(z—-1,y—1) Bz —1,y—1) (% + t_%‘)

holds for any x,y > 1.

Proof. For all t € (0,1) we set

o(t) = 11 — t)¥ L exp (-% - &) .

As in the proof of Theorem 30, we have

and
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' (t)| < [max(z — 1,y — 1)e2(1 — ¢)v=2

+max(p, q)t" (1 — )V ] exp (—% - %) .

Integrating both sides of this latter inequality with respect to t € (0,1), we find
l¢'[l < max (z — 1,y — 1) B(z — 1,y — L;p,q)
+max(p,q) B(x — 2,y — 2;p,q) < oo.

So, we can apply Lemma 36 for the function ¢ on the interval (0,1). This
concludes the proof. O

Taking ¢t = 1/2 in the previous theorem we obtain the following result.

Corollary 38. For xz,y > 2 and p,q > 0 we have

exp(—2p — 2q)
'3(9372/;297 q) — T owty—2

1
< 5{ max (z—1,y—1) B(z — 1,y — 1;p,q) + max(p, q) B(x—2,y—2; p, q)}'
If p = q = 0, the inequality

1

< 5 max (x—l,y—l) B(x -1,y —1)

1
‘B(fﬁ,y) T Quty—2

holds for all z,y > 1.

Remark 39. For p = ¢ =0, Theorem 37 and Corollary 38 coincide with
[6, Theorem 18] and [6, Corollary 13|, respectively.
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