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Abstract: Let A be a closed operator on a separable Hilbert space with the
spectrum in the open right half-plane and a bounded Hermitian component,
and let the resolvent of A be a Hilbert-Schmidt operator. The paper deals with
the function

hµ(A) =

∫ ∞

0
(A+ tI)−1dµ(t),

where µ is a nondecreasing function and I is the unit operator. We establish
norm estimates and perturbations results for hµ(A). As particular cases the
fractional powers and logarithm of A are considered.
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1. Introduction and statement of the main result

Let H be a separable complex Hilbert space with a scalar product 〈., .〉, the
norm ‖.‖ =

√

〈., .〉 and unit operator I. For a linear operator T , D(T ) is the
domain, σ(T ) denotes the spectrum, Rz(T ) = (T − zI)−1 (z 6∈ σ(T )) is the
resolvent, T ∗ is the adjoint operator. If T is bounded, then ‖T‖ is its operator
norm. By Sp (1 ≤ p < ∞) we denote the Schatten - von Neumann ideal of
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compact operators K with the finite norm Np(K) := [trace (KK∗)p/2]1/p. So
S2 is the Hilbert-Schmidt ideal.

Throughout the paper, A and Ã are closed linear operators on H. The
paper is devoted to the norm estimates for operator valued functions of the
form

hµ(A) =

∫ ∞

0
(A+ tI)−1dµ(t),

where µ(t) is a nondecreasing function defined on [0,∞) and satisfying the
condition

∫ ∞

0

dµ(t)

t+ 1
< ∞.

We also derive norm estimates for the difference hµ(A)− hµ(Ã).
The considered functions belong to the class of so called Hirsch functions

[9]. The important examples here are the operator fraction powers and operator
logarithm. The theories of the fraction powers and logarithm are well developed.
For the classical results, see [8, 9]. The recent investigations can be found in
[1, 2, 4, 5], [10]-[15] and the references given therein.

At the same time, to the best of our knowledge, the norm estimates and
perturbation results for these operator functions are derived mainly in the case
of self-adjoint operators, cf. [3]. Below we do not require that A and Ã are
self-adjoint.

Put AI := (A−A∗)/2i and AR(A+A∗)/2 and assume that

β(A) := inf Re σ(A) > 0. (1.1)

It is also supposed that

D(A∗) = D(A), AI is bounded, AR is invertible and A−1
R ∈ S2. (1.2)

Denote by ak the eigenvalues of A with their multiplicities taken into ac-
count and enumerated in the non-decreasing order of their absolute values:
|ak| ≤ |ak+1| (k = 1, 2, ...).

We will check that conditions (1.1), (1.2) yield that

τ(A) := [

∞
∑

k=1

1

|ak|2
]1/2 < ∞.

Put

φ(x) :=
∞
∑

k=0

xk√
k!

(x ≥ 0).

Now we are in a position to formulate the main result of this paper.
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Theorem 1. Let conditions (1.1), (1.2) hold. Then

‖hµ(A)‖ ≤ φ(2‖AI‖τ(A))J(A,µ), (1.3)

where

J(A,µ) :=

∫ ∞

0

dµ(t)

t+ β(A)
.

The proof of this theorem is divided into a series of lemmas, which are
presented in the next two sections.

If A is selfadjoint, then φ(2‖AI‖τ(A)) = φ(0) = 1 and by Theorem 1
‖hµ(A)‖ ≤ J(A,µ). Note that by the Schwarz inequality,

∞
∑

k=0

xk

(k!)1/2
=

∞
∑

k=0

(
√
2x)k

(
√
2)k(k!)1/2

≤ (

∞
∑

j=0

2jx2j

j!

∞
∑

k=0

1

2k
)1/2 =

√
2ex

2

.

Thus
φ(x) ≤

√
2ex

2

(x ≥ 0). (1.4)

In addition,

φ(x) = 1 + x
∞
∑

k=1

xk−1

√
k!

≤ 1 + x
∞
∑

k=1

xk−1

√

(k − 1)!
= 1 + xφ(x)

and consequently,
φ(x) ≤ 1 +

√
2xex

2

(x ≥ 0). (1.5)

For x ≤ 1− 1/
√
2, (1.5) is sharper than (1.4).

Theorem 1, (1.4) and (1.5) imply

‖hµ(A)‖ ≤
√
2J(A,µ) exp[4‖AI‖2τ2(A)] (1.6)

and
‖hµ(A)‖ ≤ J(A,µ)(1 + 2

√
2‖AI‖τ(A) exp[4‖AI‖2τ2(A)]). (1.7)

2. Existence of the Schur basis

Recall the Keldysh theorem, cf. [7, Theorem V. 8.1].

Theorem 2. Let B = K0(I + K1), where K0 = K∗
0 ∈ Sr for some

r ∈ [1,∞) and K1 is compact. In addition, let from Bf = 0 (f ∈ H) it follows
that f = 0. Then B has a complete in H system of the root vectors.
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Note that due to (1.1), A is boundedly invertible.

Lemma 3. Under conditions (1.1) and (1.2) the operator A−1 has a
complete system of root vectors and A−1 ∈ S2.

Proof. Since A = AR+iAI = (I+iAIA
−1
R )AR, we have I+iAIA

−1
R = AA−1

R .
But

(AA−1
R )−1 = ARA

−1 = (A− iAI)A
−1 = I − iAIA

−1.

Since AI is bounded, operator I + iA−1
R AI is boundedly invertible. We have

A−1 = A−1
R (I + iAIA

−1
R )−1 ∈ S2.

In addition, (I + iAIA
−1
R )−1 = I +K2, where

K2 = (I + iAIA
−1
R )−1 − I = −iAIA

−1
R (I + iAIA

−1
R )−1 ∈ S2.

So A−1 = A−1
R (I+K2), and from A−1f = 0 (f ∈ H) it follows that f = 0. Now

the Keldysh theorem implies the required result. �

Lemma 4. Let an operator A on H have a compact resolvent, and for
some b 6∈ σ(A), (A− bI)−1 have a complete system of root vectors. Then there
is an orthogonal normal (Schur) basis {ek}∞k=1, in which A is representable by
a triangular matrix (ajk)1≤j≤k≤∞:

Aek =
k

∑

j=1

ajkej and 〈Aek, ek〉 = ak (k = 1, 2, ...), (2.1)

where ak (k = 1, 2, ...) are the eigenvalues of A.

Proof. Put M = A− bI. Due to [7, Lemma I.4.1], there is an orthonormal
basis {ek}∞k=1, in whichM−1 is represented by a triangular matrix (djk)1≤j≤k≤∞:

M−1ek =
k

∑

j=1

djkej (k = 1, 2, ...).

Due to the spectrum mapping theorem, dkk = 1/(ak − b) are the eigenvalues of
M−1. Denote

Pk =

k
∑

j=1

〈., ej〉ej (k = 1, 2, ...);P0 = 0.



ESTIMATES FOR FRACTIONAL POWERS AND LOGARITHM... 611

Then
M−1Pk = PkM

−1Pk (k = 1, 2, ...). (2.2)

Besides,

∆PkM
−1∆Pk =

1

ak − b
∆Pk (∆Pk = Pk − Pk−1; k = 1, 2, ...). (2.3)

Let us check that

MPkf = PkMPkf (k = 1, 2, ...; f ∈ D(A)). (2.4)

Indeed, M−1Pk is an invertible k×k matrix, and therefore, M−1PkH is dense in
PkH. Since ∆PjPk = 0 for j > k, we have 0 = ∆PjMM−1Pk = ∆PjMPkM

−1Pk.
Hence ∆PjMf = 0 for any f ∈ PkH. So (2.4) is valid and ∆PjMek = 0 for
k < j. Hence, ∆PjM = ∆PjM(I − Pj−1), and

∆Pj = ∆Pj∆Pj = ∆PjMM−1∆Pj = ∆PjM(I − Pj−1)PjM
−1∆Pj

= ∆PjM∆PjM
−1∆Pj = ∆PjM∆Pjdjj.

So

∆PjM∆Pj =
1

djj
∆Pj = (aj − b)∆Pj . (2.5)

From (2.4) and (2.5) it follows

APkf = PkAPkf (k = 1, 2, ...; f ∈ D(A)) (2.6)

and
∆PjA∆Pj = aj∆Pj (j = 1, 2, ...). (2.7)

This implies the required result. �

From Lemmas 3 and 4 it follows

Corollary 5. Let conditions (1.1) and (1.2) hold. Then there is an orthog-
onal normal basis {ek}∞k=1, such that (2.1) is valid, and therefore, A = S +W ,
where Sek = akek (k = 1, 2, ...) (the diagonal part of A) and W is defined by

Wek =

k−1
∑

j=1

ejajk (k = 2, 3, ...),

Therefore, σ(S) = σ(A) = {ak} and by the Weyl inequalities [7, Section II.3]

∞
∑

k=1

1

|ak|2
≤ N2

2 (A
−1),

and consequently, S−1 ∈ S2.
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3. Proof of Theorem 1

Put

SI := (S − S∗)/2i =
∞
∑

j=1

( Im aj)∆Pj

and WI = AI − SI = (W −W ∗)/2i. Since Pk−1WPk = WPk, it is not hard to
check that 〈Wek, ek〉 = 0. In addition, 〈Aek, ek〉 = 〈Sek, ek〉 = ak, and we have
〈AIek, ek〉 = 〈SIek, ek〉 = Im ak. So | Im ak| ≤ ‖AI‖ and ‖SI‖= supk | Im ak|
≤ ‖AI‖.

Furthermore, note that Pk−1W
∗Pk = 0 and thus Pk−1W

∗ek = 0, and

‖Wek‖ = ‖Pk−1Wek‖ = ‖Pk−1(W −W ∗)ek‖ ≤ ‖(W −W ∗)ek‖

= 2‖WIek‖.
With ck = Im ak we have

〈AIek, AIek〉 = 〈(WI + ck)ek, (WI + ck)ek〉 = 〈WIek,WIek〉

+ck〈WIek, ek〉+ ck〈ek,WIek〉.
But 〈WIek, ek〉 = 0 and therefore 〈AIek, AIek〉 =〉WIek,WIek〉 + c2k. Conse-
quently,

‖Wek‖2 ≤ 4‖WIek‖2 ≤ 4(‖AIek‖2 − | Im ak|2). (3.1)

Hence,

N2
2 (WS−1) =

∞
∑

k=1

‖WS−1ek‖2 =
∞
∑

k=1

1

|ak|2
‖Wek‖2

≤
∞
∑

k=1

1

|ak|2
sup
k

‖Wek‖2 ≤ 4‖AI‖2N2
2 (S

−1). (3.2)

Lemma 6. Let conditions (1.1) and (1.2) hold. Then

‖(A− zI)−1‖ ≤ 1

d(A, z)
φ(2‖AI‖N2((S − zI)−1)) (z 6∈ σ(A)),

where d(A, z) = infk |ak − z|.

Proof. Making use of Corollary 5, we obtain A − Z = S + W − zI =
(I − Bz)(S − zI), where Bz := −W (S − Iz)−1 (z 6∈ σ(S) = σ(A)). Since W is
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bounded and (S − z)−1 ∈ S@, we have Bz ∈ S2. Take into that Pk−1BzPk =
BzPk, and thus Bz is the triangular compact matrix with the zero diagonal.
Therefore it is the limit of nilpotent matrices in the operator norm. Hence, due
to [7, Theorem I.4.1], Bz is quasi-nilpotent, and we can write

(I −Bz)
−1 =

∞
∑

k=0

Bk
z

So,

‖(Iz −A)−1‖ ≤ ‖(S − Iz)−1‖‖(I −Bz)
−1‖ ≤ ‖(S − Iz)−1‖

∞
∑

k=0

‖Bk
z ‖. (3.3)

Due to [6, Corollary 7.4], for any K ∈ S2.

‖Kk‖ ≤ Nk
2 (K)

(k!)1/2
(k = 1, 2, ...).

Making use of this inequality, we get

‖Bk
z ‖ ≤ Nk

2 (Bz)

(k!)1/2
(k = 1, 2, ...).

But by (3.2)

N2
2 (Bz) = N2

2 (W (S − zI)−1) =

∞
∑

k=1

‖W (S − z)−1ek‖2

=
∞
∑

k=1

1

|ak − z|2 ‖Wek‖2

≤
∞
∑

k=1

1

|ak − z|2 supk
‖Wek‖2 ≤ 4‖AI‖2N2

2 ((S − zI)−1).

Thus

‖Bk
z ‖ ≤ 2‖AI‖kNk

2 ((S − zI)−1)

(k!)1/2
(k = 1, 2, ...).

Moreover,

‖(S − zI)−1‖ =
1

d(A, z)
,

Now (3.3) implies the required result. �
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If A is self-adjoint, then by Lemma 6

‖(A− zI)−1‖ ≤ 1

d(A, z)

(z 6∈ σ(A)).

Furthermore, since 1
ak−z are the eigenvalues of (A − zI)−1, making use of

the Weyl inequalities, we have

N2
2 ((S − zI)−1) =

∞
∑

k=1

1

|ak − z|2 ≤ N2
2 ((A− zI)−1) (z 6∈ σ(A)). (3.4)

Let Re ak = bk and Im ak = ck. Then for any t ≥ 0, d(A,−t) ≥ β(A) + t
and

|ak + t|2 = (bk + t)2 + c2k =≥ (b2k + 2bkt+ t2 + c2k = |ak|2 + 2bkt+ t2.

Hence, N2((S + t)−1) = τ(A, t), where

τ(A, t) := (
∞
∑

k=1

1

|ak|2 + 2bkt+ t2
)1/2 ≤ τ(A, 0) = τ(A). (3.5)

Thus Lemma 6 yields

Corollary 7. Let conditions (1.1), (1.2) hold. Then

‖(A+ tI)−1‖ ≤ 1

(t+ β(A))
φ(2‖AI‖τ(A, t))

≤ 1

(t+ β(A))
φ(2‖AI‖τ(A)) (t ≥ 0).

and therefore,

‖hµ(A)‖ ≤
∫ ∞

0

φ(2‖AI‖τ(A, t))
t+ β(A)

dµ(t).

Proof of Theorem 1. The assertion of the theorem follows from Corollary 7
and (3.5). �



ESTIMATES FOR FRACTIONAL POWERS AND LOGARITHM... 615

4. Perturbations of the Hirsch type

functions

Let Ã and A be linear operators on H with the same dense domain:

D(Ã) = D(A) and q := ‖A− Ã‖ < ∞. (4.1)

Lemma 8. Let the conditions (4.1),

‖(A+ t)−1‖ ≤ m1

1 + t
(m1 = const, t ≥ 0), (4.2)

and
qm1 < 1 (4.3)

hold. Then

‖hµ(Ã)‖ ≤ m1

1− qm1

∫ ∞

0

dµ(t)

1 + t

and

‖hµ(Ã)− hµ(A)‖ ≤ qm2
1

1− qm1

∫ ∞

0

dµ(t)

(1 + t)2
.

Proof. Since ‖(A+ It)−1‖ ≤ m1 (t ≥ 0), by the Hilbert identity

(Ã+ It)−1 − (Ã+ It)−1 = (Ã+ It)−1(Ã+ It)−1(A− Ã)(Ã+ It)−1 (4.4)

and (4.3) we get

‖(Ã+ It)−1‖ ≤ ‖(A+ It)−1‖
1− q‖(A+ It)−1‖ ≤ ‖(A+ It)−1‖

1− qm1
(t ≥ 0).

Hence, condition (4.2) implies

‖(Ã+ It)−1‖ ≤ m1

(1− qm1)(1 + t)
.

Moreover, by (4.4)

‖(Ã+ It)−1 − (A+ It)−1‖ ≤ qm2
1

(1− qm1)(1 + t)2
.

Consequently,

‖hµ(Ã)‖ ≤
∫ ∞

0
‖(Ã+ it)−1‖dµ(t) ≤ m1

∫ ∞

0

dµ(t)

(1− qm1)(1 + t)

and

‖hµ(Ã)− hµ(A)‖ ≤
∫ ∞

0
‖(A+ it)−1 − (Ã+ it)−1‖dµ(t)
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≤ qm2
1

1− qm1

∫ ∞

0

dµ(t)

(1 + t)2
,

as claimed. �

Let conditions (1.1), (1.2) hold. Then from Corollary 7 it follows that

‖(A+ It)−1‖ ≤ φ(2‖AI‖τ(A))
1

β(A) + t
≤ m0(A)

1 + t
,

where

m0(A) = φ(2‖AI‖τ(A)) sup
t≥0

1 + t

β(A) + t
.

Simple calculations show that

m0(A) = φµ(2‖AI‖τ(A))
{

1 if β(A) > 1,
1

β(A) if β(A) ≤ 1.

Now Lemma 8 implies

Corollary 9. Let the conditions (1.1), (1.2), (4.1) and qm0(A) < 1 hold.
Then,

‖hµ(Ã)‖ ≤ m0(A)

1− qm0(A)

∫ ∞

0

dµ(t)

1 + t

and

‖hµ(Ã)− hµ(A)‖ ≤ qm2
0(A)

1− qm0(A)

∫ ∞

0

dµ(t)

(1 + t)2
.

5. Fractional powers

Recall that a closed densely defined operator A is called a non-negative one, if
(−∞, 0) is included in the resolvent set and
supt>0 ‖t(A + t)−1‖ < ∞, cf. [9, p. 1]. For a closed non-negative operator
A, the negative fractional power can be a defined by the formula

A−ν =
sin (πν)

π

∫ ∞

0
t−ν(A+ It)−1dt (0 < ν < 1), (5.1)

cf. [9]. Under condition (4.2) A is non-negative.
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If conditions (1.1), (1.2) hold, then due to Corollary 3.2, A is non-negative
and by Theorem 1

‖A−ν‖ ≤ sin (πν)

π
φ(2‖AI‖τ(A))

∫ ∞

0

t−νdt

t+ β(A)

≤ m0(A)
sin (πν)

π

∫ ∞

0

t−νdt

1 + t
. (5.2)

If, in addition, the conditions (4.1) and qm0(A) < 1 are fulfilled, then by
Corollary 4.2,

‖Ã−ν‖ ≤ m0(A)

1− qm0(A)

∫ ∞

0

t−νdt

1 + t
(5.3)

and

‖Ã−ν −A−ν‖ ≤ qm2
0(A)

1− qm0(A)

∫ ∞

0

t−νdt

(1 + t)2
. (5.4)

6. Logarithm

By [9, formula (10.3), p. 245] for a non-negative operator with a dense range
R(A), we can define the logarithm by

log(A)y =

∫ ∞

0
(t+A)−1(Ay − y)

dt

t+ 1
(y ∈ D(A) ∩R(A)) (6.1)

(see also [9, p. 246, line -7]).

Let conditions (1.1), (1.2) hold. Then by Theorem 1

‖
∫ ∞

0
(t+A)−1 dt

t+ 1
‖ ≤ φ(2‖AI‖τ(A))Jl,

where

Jl(A) :=

∫ ∞

0

dt

(t+ β(A))(t + 1)
≤ m0(A)

∫ ∞

0

dt

(t+ 1)2
= m0(A).

Since A is boundedly invertible we have R(A) = H. Now (6.1) implies

‖ log(A)y‖ ≤ φ(2‖AI‖τ(A))Jl‖Ay − y‖ ≤ m0(A)‖Ay − y‖

(y ∈ D(A)), (6.2)
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provided conditions (1.1), (1.2) hold. Furthermore, according to (6.1),

log(Ã)y − log(A)y =

∫ ∞

0
[(t+ Ã)−1(Ãy − y)− (t+A)−1(Ãy − y)]

dt

t+ 1

=

∫ ∞

0
[(t+ Ã)−1 − (t+A)−1]

dt

t+ 1
(Ãy − y) +

∫ ∞

0
(t+A)−1 dt

t+ 1
(Ã−A)y.

So

‖ log(Ã)y − log(A)y‖ ≤ ‖
∫ ∞

0
[(t+ Ã)−1 − (t+A)−1]

dt

t+ 1
‖‖Ãy − y)‖

+‖
∫ ∞

0
(t+A)−1 dt

t+ 1
‖‖(A − Ã)y‖.

Making use of Corollary 4.2, we can assert that

‖ log(Ã)y − log(A)y‖ ≤ qm2
0(A)

(1− qm0(A))

∫ ∞

0

dt

(t+ 1)3
‖Ãy − y‖

+qm0(A)‖y‖ =
qm2

0(A)

2(1− qm0(A))
‖Ãy − y‖+ qm0(A)‖y‖, (6.3)

provided the conditions (1.1), (1.2), (4.1) and qm0(A) < 1 hold.
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