In this paper, some algebraic properties of Cesáro double ideal convergent sequence spaces are defined and proved. Those spaces are defined as and . Furthermore, this paper shows some inclusion relations on these spaces which are established and proved.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] M. Faisal, Some results on strongly Cesaro ideal convergent sequence
spaces, Journal of Mathematics, 2020 (2020), 1-4.
[2] G. Hardy and J. Littlewood, Sur la serie de fourier dune fonction a carre
sommable, Comptes rendus de l’Academie des Sciences, 156 (1913), 1307-
1309.
[3] V. Khan, H. Fatima, S. Addullah and K. Alshlool, On paranorm BVσ
I-convergence double sequence spaces defined by an Orlicz function, Analysis, 37, No 3 (2017), 157-167.
[4] H. Nakano, Concave modulars,Journal of the Mathematical Society of
Japan, 5, No 1 (1953), 29-49.
[5] T. Salat, B. C. Tripathy, and M. Ziman, On some properties of I-
convergence, Tatra Mountains Mathematical Publications, 28 (2004), 279-
286.
[6] H. Sengul, Some Cesaro-type summability spaces defined by a modulus
function of order (α, β), Communications Faculty of Sciences University
of Ankara Series A1-Mathematics and Statistics, 66, No 2 (2017), 80-90.
[7] I. Maddox, Sequence spaces defined by a modulus, Mathematical Proceedings of the Cambridge Philosophical Society, 100, No 1 (1986), 161-166.
[8] M. Et and H. Sengul, Some cesaro-type summability spaces of order α
and lacunary statistical convergence of order α, Filomat, 28, No 8 (2014),
1593-1602.
[9] W. Ruckle, FK spaces in which the sequence of coordinate vectors is
bounded, Canadian Journal of Mathematics, 25, No 5 (1973), 973-978.
[10] H. Fast, Sur la convergence statistique, Colloquium Mathematicum, 2, No
3-4 (1951), 241-244.
[11] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique,
Colloquium Mathematicum, 2, No 1 (1951), 73-74.
[12] J. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313.
[13] J. Fridy, Statistical limit points, Proceedings of the American Mathematical
Society, 118, No 4 (1993), 1187.
[14] P. Kostyrko, T.Wilczynski, andW.Wilczynski, I-conver-gence, Real Analysis Exchange, 26, No 2 (2000), 669-686.