International Journal of Applied Mathematics

Volume 34 No. 3 2021, 449-470

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
doi: http://dx.doi.org/10.12732/ijam.v34i3.3

ON THE PRODUCT AND RATIO OF PARETO
AND HYPEREXPONENTIAL RANDOM VARIABLES

Noura Obeid!, Seifedine Kadry?$

L2Department of Mathematics and Computer Science
Faculty of Science, Beirut Arab University
P.O. Box 11-5020, Beirut, LEBANON

Abstract: The distributions of products and ratios of random variables are
of interest in many areas of the sciences. In this paper, we find analytically the
probability distributions of the product XY and the ratio X/Y, when X and Y
are two independent random variables following Pareto and Hyperexponential
distributions, respectively. To the best of our knowledge, this is the first study
on the combination of these two distributions.
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1. Introduction

Applied sciences like Engineering, Physics, Economics, Order statistics, Classi-
fication, Ranking, Selection, Number theory, Genetics, Biology, Medicine, Hy-
drology, Psychology, these all employ the distribution of product and ratio of
random variables [1],[2]. As an example of the use of the product of random
variables in physics, Sornette [27] mentions: To mimic system size limitation,
Takayasu, Sato, and Takayasu introduced a threshold x. and found a stretched
exponential truncating the power-law pdf beyond x.. Frisch and Sornette re-
cently developed a theory of extreme deviations generalizing the central limit
theorem which, when applied to the multiplication of random variables, pre-
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dicts the generic presence of stretched exponential pdfs. The problem thus
boils down to determining the tail of the pdf for a product of random variables.
Several authors have studied the product distributions for independent random
variables that come from the same family or different families, see [21] for ¢ and
Rayleigh families, [4] for Pareto and Kumaraswamy families, [6] for the ¢ and
Bessel families, and [22] for the independent generalized Gamma-ratio family,
[28] for Pareto and Rayleigh families. As an example of the use of the ratio
of random variables include Mendelian inheritance ratios in genetics, mass to
energy ratios in nuclear physics, target to control precipitation in meteorol-
ogy, and inventory ratios in economics. Several authors have studied the ratio
distributions for independent random variables come from the same family or
different families. the historical review, see [9], [10] for the Normal family, [11]
for Students t family, [12] for the Weibull family, [13] for the noncentral Chi-
squared family, [14] for the Gamma family, [15] for the Beta family, [16] for the
Logistic family, [17] for the Frechet family, [3] for the inverted Gamma family,
[18] for Laplace family, [7] for the generalized-F family, [19] for the Hypoexpo-
nential family, [2] for the Gamma and Rayleigh families, and [20] for Gamma
and Exponential families, [28] for Pareto and Rayleigh families. In this paper,
the analytical probability distributions are derived of XY and X/Y, when X
and Y are two independent Pareto and Hyperexponential distributions respec-
tively, with probability density functions (p.d.f.s)

Ix@) = . (1)
k

fry) = pirje Y, (2)
j=1

respectively, for a <z < o0 ,a>0,¢c>0,y >0, >0, 0<p; <1, and

k
Y. pj=1
=1

Notations and Preliminaries

Recall some special mathematical functions, these will be used repeatedly through-
out this article.

e The upper incomplete Gamma function is defined by:

I(a,z) = /OO exp(—t)t* tdt; (3)
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e The lower incomplete Gamma function is defined by:
T
~v(a,x) = / exp(—t)t*Ldt, (4)
0

e The Generalized hypergeometric function is denoted by:

o (a1)r(a2)p(ap) 2F
Fy(ay,a9,...,a,;01,b9,...,b4; 2) = —, 5
D q( 1,42 py> Y1, Y2 q ) ;) (bl)k(bQ)k(bp)k k! ( )
where (a)g, (b)r represent Pochhammers symbols given by:
T k
(a)p = ala+D.(a+h—1) = (?Ti_)); (6)
e The Exponential integral is generalized, for n =0,1,2,...,x > 0, to
00 e—a:t
Enlx) = /1 —dr (7)

where n is the order of the integral.
The calculations of this paper involve several lemmas.

Lemma 1. For a>0,r € R, and b € RY,.

> 1
(o, b) = / 27V = T (r 41, ba). ®)

Proof. Let u = bz, then

“+o00 u” w 1
I(a, 7, b) = . e du = WF(T + 1, ba). 9)
Lemma 2. Fort € R,

%I’(t,v(az)) = —v(z) e Zy(x). (10)
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Proof. J J J
v
—I'(t,v) = —I'(t,v)—
(1) = ST 0) 5
d
dUF(t,v) = vt tev,

Lemma 3. For a>0,r € R, and b € RY,

o 1
/ e Y+ 1 ba).
0

Proof. For u = bz,

Lemma 4. The Exponential integral (7)

[ee) efxt
Buw) = [ St
1

is closely related to the incomplete gamma function as follows:

En(z) = 2" 'T(1 — n,z),

Proof. For u = xt,

o0
Ep(z) = 2" ! / e Uy "y = 2" T (—n + 1).
T

2. Distribution of the Product XY

for n=0,1,2,..., = >0.

(11)
(12)

Theorem 5. Suppose X and Y are independent and distributed accord-
ing to (1) and (2), respectively. Then for z > 0, the cumulative distribution

function c.d.f. of Z = XY can be expressed as:
Fy(z) =
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0, if z <0,

‘ ko . (15)
1= 3 peife — ot 3o %[F(c—i— 1) =T(e+1,25)], ifz>0.
j=1 j=1"

Proof. The c.d.f. corresponding to (1) is Fix(z) = 1 — (%), Thus, one can
write the c.d.f. of XY as:

Pr(XY < 2z) = /Ooo Fx(g)fy(y)dy
z/a a
- /O (1= () fy )y (16)
z/a a‘ z/a
:/ fy(y)dy——c/ Y fy (y)dy.
0 = Jo

Let

z/a
n= [ rwa ()
and
ac z/a
Iy = — Y Iy (y)dy. (18)
Z=Jo
Then
Fz(Z) = Il - IQ.

Calculus of I

z/a kK
= / > pirjeNivdy
o 4

’ (19)
=1 ije_)‘]'z/a'
j=1
Calculus of I
; ac z/a . p
2= )Y fy(y)dy
(20)

at z/a k \
= z_/o ye Y _pidjedy.
j=1
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Using Lemma 3 in the integral above, then we get

= _Z];JC [Ple+1) - T(e+1,25)], (21)
then
FZ( ):II_IQ
_1—ij )\z/a__z/\c [F(C—I—l) F(C—I—l,%)}, (22)
O

Corollary 6. Let X and Y be independent and distributed according to
(1) and (2), respectively. Then for z > 0, the probability density function p.d.f.
of Z = XY can be expressed as:

0, if z <0,

fz(z) = k pjca’

. 23
siert |[D(e+1) =T(e+1,)\2/a)|, ifz>0. (23)
J

j=1

Proof. The probability density function fz(z) in (23) follows by differenti-
ation using Lemma 2. ]

Corollary 7. Let X and Y be independent and distributed according to
(1) and (2), respectively. Then for ¢ > r, the Moment of order r of Z = XY
can be expressed as:

k [pjca®|T'(c+1) —T(c+ 1, \ja/a)
E[Zr] = Z} [ |: acfr/\;f(c _ 7-) ]
= (24)
pjca"T'(r + 1, \ja/a)
/\g(c -r) '

(25)
L(c+1)—T(c+1, )\jz/a)dz” ,

“+o00
= lim _bjea ca”
a—0t )\CZC""1 r
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let
oo k p'cac
_ j
I = /a ; Wr(c +1)dz, (26)
and
o0 ica
I —/ Acpﬁﬂ _T(c+1,\;2/a)dz (27)
a 5T NF
Then
ElZ'] =1, - I
Calculus of I :
_ pjca’ B pjcaT(c+1)
h= / Z Neserrib e+ Ddz = s (e—) (28)

Calculus of I :
k
=Y M
j=1

Integration by parts of the integral above implies:

[

o)
/ 2T (e 4 1, A2 /a)dz. (29)
o

r—c et 00 /
J r_—Xjz/a
- CP(C +1,\ja/a) + sy — /a 2Z"e Nz, (30)

using Lemma 1, eq. (8), in the integral above then

p]caF c—l—l Aj a/a pjca’ T'(r+ 1, \ja/a)
I 31
e CEI

and finally,

pjca’ [F(c +1)—T(c+1, )\ja/a)]
[ a“ A (e —1)

IVAESY

J=1

pjca’T'(r 4+ 1, /a)
Ni(c—r) '
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Figure 1: Plots of the pdf (23) for k = 3, a =1, ¢ = 2, A\; = 1,
A2 :2’ >\3:3’p1 :1/3’ p2:1/3’ p3:1/3

Corollary 8. Let X and Y be independent and distributed according to
(1) and (2), respectively. Then for ¢ > 1, the Expected value of Z = XY can
be expressed as: forr =1,

[pjcac [F(c +1) = T(c+1,\a/a) | pjeal’(2, \a/a)

Clcil)\ﬁ(c _ 1) )\j(c — 1) ] . (33)

E[Z]=)

Jj=1

Corollary 9. Let X and Y be independent and distributed according to
(1) and (2), respectively. Then for ¢ > 2, the Variance of Z = XY can be
expressed as:

i [pjcac {F(c +1)-T(c+1, )\ja/a)] pjca’T (3, )\ja/a)]

’ ac2X¢(c — 2) Ae—2)
j= (34)
k_[pjca’ [F(c +1) =T'(c+1, )\ja/a)] pjcal’(2,\ja/a) ’
jzl as= X (c — 1) + Aj(e—1)

Proof. The variance of Z = XY easy follows from:

o = E[Z*%] - E|Z)%, (35)
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Figure 2: Monte Carlo simulation of the product of Pareto and Hy-
perexponential random variables for £k = 3, a = 1, ¢ = 2, A} = 1,
A2 =2, A3=3,p1 =1/3, p2=1/3, p3 =1/3.

for ¢ > 2. O

Corollary 10. Let X and Y be independent and distributed according
to (1) and (2), respectively. Then for z > 0, the Survival function of Z = XY
can be expressed as:

1, if 2 <0,
Sz(z) =14 & Lk s (36)
S pje /e 4 8 S BT (e 1) — D(e+1,22) |, ifz > 0.
j=1 j=1"
Proof. By definition of the Survival function Sz(z) =1 — Fz(2). O

Corollary 11. Let X and Y be independent and distributed according to
(1) and (2), respectively. Then for z > 0, the Hazard function of Z = XY can
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be expressed as:

(0, if z <0,
hz(z)=q &,
Zl )\;;JZc+1 F(C + 1) - F(C + 1’ )\jz/a) le > 0
]:
( A ’
Here,
k a’ 2z i Ai#
A=Y prge D+ D =Tl 155+ 3 pye
J=1 =t

3. Distribution of the Ratio X/Y

Theorem 12. Suppose X and Y be independent and distributed accord-
ing to (1) and (2), respectively. Then for z > 0. the cumulative distribution

function c.d.f. of Z = X/Y can be expressed as:



ON THE PRODUCT AND RATIO OF PARETO... 459

0, if z <0,
k
ije—AjG/Z
=t L ifz>0,c<1,
aC
- ; ij)‘gr(_c +1, )‘ja/z)v
j=1
k
ijef)\ja/z
j=1 if z >0,
a k c=1,2,3,..
- > pidiEe(Na/z),
j=1
k
FZ(Z) = Z —\ja/z (38)
pje J —
j=1
a® &
— 2P
j=1
00 n—1 i ifz>0
—c| —t (_t) :| !
[/0 t [e Z; 7! dt —n<l-c<-—-n+1.
1=
Aa/z n—1 (_t)i
e[ —t
—/ tﬂe—z:ﬂ}ﬁ
0 i=0
nfl( 1)i (/\a/z)l cti
; (1 —c+1)!
L =0

Proof. The c.d.f. corresponding to (1) is Fix(z) =1 — (%)¢,

Fz(z) =pr(X/Y < z)

-/ " Fx(20) fr (w)dy
= / T 1= (S )y (39)
a/z Yz

00 at [
= h@@—j/ &@@-
a/z Z"Jajz Y

Let
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o k k
h= / d_pihje Ndy = pye e,
a/z =1 j=1
and

k
.Y
o X

a 7=
I =— —dy.
¢ a/z ye
Then we can write
Fz(Z) = .[1 - _[2.
Calculus of I :
Z pjAje” Ay

I2 = —/ dy
/z ye
a‘ —c —\;
=— ij)\j y e Vdy.
z j=1 a/z

Using Lemma 1 in the integral above, then we get

k
ac
L= > piXT(—c+1,\ja/2).
j=1

Finally we get
k 0 F
= ijef)‘ja/z e ij)\gl“(—c +1,)\ja/z),
j=1 J=1

for ¢ < 1.
For ¢ =1,2,3,..., using Lemma 4 we have

T(1—c \a/z) = (Aza)1 E.(\a/z),

and
k a k
= pje N - . > piNiEe(Na/2),
j=1 j=1

where c is the order of the integral.

(41)
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For -n<l—c<-n+1,1—c# -1 , we have
00 n—1 (—t)z
(1 - ¢, \ja/2) / et -3 S
0 i—0 1.
Aja/z n=1l 1\
_ / et 5 5y (43)
0 i—0 Z!
<_Ezf(_1)£§jﬂfgi:ii
: (1—c+a)!’
=0
and
k
Fz(z) :Zpae_/\ﬂ/z
j=1
k n—1
a“ c > —c| —t (_t)z
-~ pj/\j[/ ¢ [e - . ]dt
7j=1 0 =0
SRR e R PR D VU750 b
- ¢ [e - k }dt— (~1)i
0 i! (I —c+i)
=0 =0
]
Corollary 13.

Let X and Y be independent and distributed according
to (1) and (2), respectively. Then for z > 0, the probability density function
p.d.f. of Z = X/Y can be expressed as

7

0

, if z <0,
k pic(ar;)
E T (1 = ¢ a);/2),

ij)‘ A e N ja/z

ifz>0, c<1,

fz(2)

(44)
p;(ar;)? ;
+ z; TEc—l(/\ja/Z) ifz>0, c=1,2,3
=

k pa)\
-3 BN (vaf),

. J=1
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Proof. The probability density function fz(z) in (44) follows by differenti-
ation using Lemma 2, eq. (10), and

d

%En(z) = _En—l('z)v (45)

forn=1,2,3,... ]

Corollary 14. Let X and Y be independent and distributed according to
(1) and (2), respectively. Then for z > 0, the Survival function of Z = XY
can be expressed as:

(1, if 2 <0,
k

1_ ije—)\ja/z

jzl ifz>0, c<1,

C

+— Zp]/\cf —c+1,)a/z),

k
1 — pje —Aja/z
Z if z >0,
a k c=1,2,3,..
+ - > piXiEe(Na/z),
j=1
k
SZ(Z) = 1— ije—)\ja/z (46)

[

k
a (&
+ 2 2P
j=1
1

o n- i ifz>0
—c| _—t (_t) ’
/0 t [6 _Z; il ]dt n<l-c<-n+l.

1=

/[ e

L[]

i=0
/\a/z 1 c+i
+Z (I —c+a)i

Proof. By definition of the Survival function,

Sz(z) =1—Fz(2).



ON THE PRODUCT AND RATIO OF PARETO... 463

O

Corollary 15. Let X and Y be independent and distributed according
to (1) and (2), respectively. Then for z > 0, the Hazard function of Z = XY
can be expressed as:

;

0, if 2 <0,
k
> pic(ad;)T(1—c,aX;/z)
j=1 B ) l.f,?,’>076<17
k
z Z pj)\jaef)\ja/z
j=1
hz(z) = . C )
. 32 .
ngpj(a)\J) Ec_1()\]a/z)’ ifz>0,c=1,2,..
" C
k
z Y pjarjEe()\ja/z)
j=1
\ C
Here
" k
B =23 z(aX)pT(1—c,ak;/z) + 27 (1 =) pje /%)
Jj=1 =
and
k k
C=2"=2 ZPJ'@*A”/Z - ZQQij)\jEc()\jG/Z)
j:l jil
Proof. By definition of the Hazard function hz(z) = g z (é)) 0O

4. Applications
4.1. Electric circuit

In several applications, it is necessary to know the properties of the product of
random variables: this occurs in particular when the random variables involved
have dimensions of a ratio like fuel consumption per mile, cost of a structure
per 1 1b. of payload, amplification ratio, tolerances expressed in percentages
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Figure 3: Monte Carlo simulation of the ratio of Pareto and Hyper-

exponential for k = 2, a =1, ¢ =05, A\ =1, Ay = 2, p1 = %,
1
P2 = 3.
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Figure 4: Plots of the pdf (44) for k = 2, a =1, ¢ = 2, A\; = 1,

)\2:2’p1:%7p2:%'

of the desired value, etc. Thus, for instance, if the number of accidents in a
period can be regarded as a random variable and if the same applies to the
number of days spent in hospital by an accident victim and to the total cost
per one day-patient then the total cost is a product of these three random
variables. Another application occurs, for instance, in the case when amplifiers
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Figure 5: Monte Carlo simulation of the ratio of Pareto and Hyper-

exponential (44) for k =2, a=1,c=2, A\ =1, \y =2, p; = %,
1

P2 = 3.
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Figure 6: Plots of the pdf (44) for k =2, a=1,2,3, c = 0.5, \; = 1,
Aa=2,p1 =13 pr=3.

are connected in series. If x, is the random variable describing the amplification
of the ith amplifier then the total amplification x = x1xs...z, is also a random
variable and it is important to know the distribution of this product. Example,
suppose an electric circuit with two amplifiers in series, X7 is a random variable
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Input signal @ ’;rar:ﬁ]lilirl @ g:}ﬁhile;z :> QOutput signal

Overall gain = X1.X2

Figure 7: An electric circuit with two amplifiers in series.

follows Pareto distribution with parameter ¢ = 3 and a = 1, and X5 is a random
variable follows Hyperexponential distribution with parameter p; = %, po = %,
A1 =1, Ay = 1, then the total amplification gain is Z = X;.X9, and by using
our result their pdf is

_Jo, ) 48
fz(2) {&4)2{(4_2)], if z > 0. -

4.2. Selection of a space workhorse booster

Many experts agree that all long-range space explorations to be attempted in
the intermediate future will best be initiated from an earth or parking orbit. In
this respect, the success of such space missions will then greatly depend upon
the successful completion of a very important logistics operation. This oper-
ation will involve the transportation of all necessary equipment and supplies
into the earth’s orbit and the assembly of it there. The selection of a suitable
“workhorse” booster for this phase of the project represents only one of the myr-
iad of complex decisions facing the project planners. But, since this decision
must be made years ahead of most others and will involve great expenditures of
money, manpower, and time, it perhaps represents the most important present-
day space industry problem. Let us assume that, at present, the choice of a
workhorse booster is restricted to typical systems such as the Nova, Saturn
0-5, and the Titan III systems. The concepts of these boosters differ consid-
erably, and any operational boosters forthcoming from thee projects will most
assuredly differ in respect to payload capacity, costs, velocities, reliability, date
of assembly of the first operational booster, etc. Thus the problem of an “Opti-
mal” selection of one booster system for the transportation job must be based
on a very realistic evaluation model. One meaningful index for an evaluation
model of this type is the “dollar” cost per pound of equipment placed in orbit.
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This index would be obtained, of course, by dividing the total system cost,
Csystem, by “the payload weight placed in orbit, Wpayioad, or

I = Csystem ’ (49)
WPayload

a closer investigation of Ciystern and Wyayi0aq Teveals that these components are
functions of variable components. For example, total system costs include both
research and development costs and operational costs estimates of which are
highly uncertain. Uncertainties in R & D cost estimates intervene in the form of
unanticipated differences in estimated costs of parts and increased expenditures
caused by modifications in the design to meet new or revised performance spec-
ifications. Operational costs are highly susceptible to the failure rates of the
parts and, more generally, to the level of ”Sophistication” in the supporting lo-
gistics system. The weight and space of payload placed in orbit are functionally
dependent upon various characteristics of the missile such as Specific Impulse,
Isp, the weight-to-stage weight ratio, A\; and other aerodynamic characteristics,
Ai. It becomes apparent from these considerations that equation (49) represents
a complex random variable and would be better represented by
_ costgep + COperational
 f(Isp, A1, Ay )

additionally, each component of Cyystem and Wygyioaq is random in respect to
measurement or estimate error. For instance, experimental data collected from
operational booster systems to date show that the Isp of an ”average” missile of
the system varies from the parameter value the designer had intended. Without
the knowledge of how to combine the functional forms of the components of I,
only a point estimate of I will be possible. On this basis, the choice of a
booster system would be greatly influenced by the relative differences in the
point estimates of I for these systems. On the other hand, the c.d.f.’s of I,
F(I), for each booster may be obtained with knowledge of random variable
techniques. For instance, if the total system cost Csystem is a random variable
follows Pareto distribution with parameter ¢ = 0.5 and a = 3, and the payload
weight placed in orbit Wp,yi0qq is @ random variable follows Hyperexponential
distribution with parameter p; = %, po = A1 =1, X9 = 1. then by using
our result their pdf is

0’ ifZ<0,
z) = . !
fz(2) {% if 2> 0. o

(50)

1
29
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5. Conclusion

This paper has derived the analytical expressions of the PDF, CDF, the rth
moment function, the variance, the survival function, and the hazard func-
tion, for the distributions of XY and X/Y when X and Y are Pareto and
Hyper-exponential random variables distributed independently of each other.
we illustrate our results with some graphics of the pdf for the distributions
of product and ratio. Finally, we have discussed two examples of engineering
applications for the distribution of the product and ratio, and we assured our
results using Monte Carlo simulation.
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