
International Journal of Applied Mathematics
————————————————————–
Volume 33 No. 2 2020, 305-311
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
doi: http://dx.doi.org/10.12732/ijam.v33i2.9

THE SIZE MULTIPARTITE RAMSEY NUMBERS mj(Pn,Kj×b)

Syafrizal Sy1 §, Effendi Effendi2

1Department of Mathematics
Faculty of Mathematical and Natural Science

Andalas University
Padang, 25163, INDONESIA
2 Department of Mathematics

Faculty of Mathematical and Natural Science
Andalas University

Padang - 20163, INDONESIA

Abstract: For given two graphs G1 and G2, the size Ramsey multipartite
numbers mj(G1, G2) is the smallest integer t such that every factorization of
graph Kj×t := F1 ⊕ F2 satisfies the following condition: either F1 contains G1

as a subgraph or F2 contains G2 as a subgraph. In this paper, we determine
for the size multipartite Ramsey numbers mj(Pn,Kj×b) with integers j, n ≥ 3
and b ≥ 2.
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1. Introduction

Let G = (V,E) be a graph with the vertex-set V (G) and edge-set E(G). All
graphs in this paper are finite and simple. For any set S ⊂ V (G), the induced
subgraph G[S] of G by S is the maximal subgraph of G with the vertex-set
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S. If e = uv ∈ E then u is called adjacent to v. A graph G is said to be
factorable into factors G1, · · · , Gn if these factors are pairwise edge-disjoint and
∪n
i=1E(Gi) = E(G). If G is factored into G1, · · · , Gn, then G := G1 ⊕ · · · ⊕Gn,

which is called a factorization of G.

For two given graphs G1 and G2, the Ramsey number r(G1, G2) is the
smallest positive integer n such that for any graph G of order n, the following
statement is always true: either G contains G1 or G contains G2, where G is
the complement of G. Burger and Vuuren [1] studied one of the generalizations
of this Ramsey number as follows. Let j, l, n, s and t be natural numbers with
n, s ≥ 2. Let Kn×l denote a complete, balanced, multipartite graph consisting
of n partite sets and l vertices in each partite set. The size multipartite Ramsey
number mj(Kn×l,Ks×t) is the smallest natural number ζ such that any red-
blue coloring of the edges of Kj×ζ forces either a red Kn×l or a blue Ks×t as a
subgraph.

In this paper, we consider a generalization of this concept by releasing
completeness requirement in the forbidden graphs as follows. Let j ≥ 2 be
a natural number. For graphs G1, · · · , Gk, the (generalized) size multipartite
Ramsey number mj(G1, · · · , Gk) is the smallest natural number m so that any
k-coloring of the edges of Kj×m will yield a copy of Gi in the ith color for some
i. Hattingh and Henning [3] determined the exact values of bipartite Ramsey
numbers b(Pm,K1,n). For the case of k = 2, with G1 and G2 are complete
balanced multipartite graphs, the numbers can be derived from result Burger
and van Vuuren [1]. Gyárfás et al. [2] studied the Ramsey-type problem in
directed and bipartite graphs. Furthermore, Syafrizal et al. [4] determined
Path-path size multipartite Ramsey numbers. For the combination path versus
complete, balanced, multipartite graphs, Syafrizal [5] showed lower bound of
mj(Pn,Kj×b) for integers j, n ≥ 3 and b ≥ 2.

Theorem 1. For integers j, n ≥ 3 and b ≥ 2,

mj(Pn,Kj×b) ≥























(n− 1)b, if 3 ≤ n ≤ j,

jb, if j < n < jb,

(j − 1)⌊n−2
2 ⌋+ b, if n ≥ jb.
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2. Main results

For any natural number j, clearly that mj(P2,Kj×1) ≥ 1. Consider the factor-
ization of Kj×1 = F1 ⊕ F2 such that F1 contains no P2. Thus, F1 consist of
independent vertices. This implies F2

∼= Kj×1.
The aim of this paper is to derive some upper bounds for the size multi-

partite Ramsey numbers mj(Pn,Kj×b). In this note, we prove the following
theorem.

Theorem 2. For integers j, n ≥ 3 and b ≥ 2,

mj(Pn,Kj×b) =























(n− 1)b, if 3 ≤ n ≤ j,

jb, if j < n < jb,

(j − 1)⌊n−2
2 ⌋+ b, if n ≥ jb.

Proof. We consider three cases.
Case 1. For 3 ≤ n ≤ j.
By Theorem 1, we have mj(Pn,Kj×b) ≥ (n−1)b. To show that mj(Pn,Kj×b) ≤
(n − 1)b, consider F ∼= Kj×t. Let F1 ⊕ F2 be any factorization of F such that
F1 contains no Pn. To show that F2 contains Kj×b, we can do the following
process.

Let V1 = {v1,1, . . . , v1,(n−1)b}, · · · , Vj = {vj,1, . . . , vj,(n−1)b} be the partite
sets of F . Since F1 contains no Pn then the longest path in F1 is at most
(n− 1) vertices. Since |F1| = j(n− 1)b, then there are at most jb longest path
in F1. Without loss of generality, suppose

F1
∼= ∪j

l=1F [V ∗
l ] where V ∗

l
∼= ∪b

i=1Vl(K
i
n−1)

where l ∈ {1, 2, . . . , j} and Vl(K
i
n−1) = {u1,i, u2,i, . . . , u(n−1),i} is the set of

vertices of complete graph Ki
n−1 on (n − 1) vertices with i ∈ {1, 2, . . . , b}. Let

P i
l be the longest path in Vl(K

i
n−1) and let u∗li ∈ Vl(K

i
n−1) be the end vertex of

P i
l in F1 for every l = 1, 2, . . . , j and i = 1, 2, . . . , b. Since u∗li ∈ Vl(K

i
n−1) is a

end vertex of P i
l then u∗li is not adjacent to every other vertex in F2. Since the

number of complete graph Ki
n−1 is b, then we have the new partite sets V ∗

1 =
{u∗1,1, u

∗
1,2, . . . , u

∗
1,b}, V

∗
2 = {u∗2,1, u

∗
2,2, . . . , u

∗
2,b}, · · · , V

∗
j = {u∗j,1, u

∗
j,2, . . . , u

∗
j,b}

will be form Kj×b in F2. Therefore, mj(Pn,Kj×b) ≤ (n − 1)b. For example of
Case 1, we can see as follows.
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Example 1. m5(P5,K5×2) = 8.

Proof. By Theorem 1, we havem5(P5,K5×2) ≥ 8. To show thatm5(P5,K5×2)
≤ 8, consider F ∼= K5×8. Let F1 ⊕ F2 be any factorization of F such that
F1 contains no P5. We will show that F2 contains K5×2 as follows. Let
V1 = {v1,1, v1,2, . . . , v1,8}, . . . , V5 = {v5,1, v5,2, . . . , v5,8}, be the partite sets of F .
Since F1 contains no P5, without loss of generality, suppose F1

∼= 8K3 ∪ 2K3.
Now, we construct the new partite sets of F2 as follows

V ∗
l = Vl(K

1
4 ) ∪ Vl(K

2
4 ),

where l ∈ {1, 2, 3, 4, 5} and Vl(K
i
4) = {u1,i, u2,i, . . . , u4,i} is the set of vertices

of complete graph Ki
4 on 4 vertices with i ∈ {1, 2}. Next, we take one vertex

u∗li ∈ Vl(K
i
4) for every i = 1, 2 and l = 1, · · · , 5. Since 3 ≤ n ≤ j, then we have

the new partite sets V ∗
1 = {u∗1,1, u

∗
1,2}, · · · , V

∗
5 = {u∗5,1, u

∗
5,2} will be form K5×2

in F2. Therefore, m5(P5,K5×2) ≤ 8.

Case 2. For j < n < jb.
By Theorem 1, we have mj(Pn,Kj×b) ≥ jb. We will show that mj(Pn,Kj×b) ≤
jb, consider F ∼= Kj×jb. Let F1 ⊕ F2 be any factorization of F such that F1

contains no Pn. We will to show that F2 contains Kj×b.
Suppose t = jb. Let V1 = {v1,1, v1,2, . . . , v1,t}, · · · , Vj = {vj,1, vj,2, . . . , vj,t}

be the partite sets of F . Since F1 contains no Pn, without loss of generality,
suppose F1

∼= (n − 1)bKn−1 ∪ (b(j − 1) − n + 1)Kn−1. Now, we construct the
new partite sets of F2 as follows

V ∗
l = ∪b

i=1Vl(K
i
n−1),

where l ∈ {1, 2, . . . , j} and Vl(K
i
n−1) = {u1,i, u2,i, . . . , u(n−1),i} is the set of ver-

tices of complete graph Ki
n−1 on (n−1) vertices with i ∈ {1, 2, . . . , b}. Next, we

take one vertex u∗li ∈ Vl(K
i
n−1) for every i = 1, 2, . . . , b and l = 1, 2, . . . , j. Since

j ≤ n ≤ jb, then we have the new partite sets V ∗
1 = {u∗1,1, u

∗
1,2, . . . , u

∗
1,b}, · · · ,

V ∗
j = {u∗j,1, u

∗
j,2, . . . , u

∗
j,b} will be form Kj×b in F2. Therefore, mj(Pn,Kj×b)

≤ jb. For example of Case 2, we can see as follows.

Example 2. m5(P7,K5×2) = 10.

Proof. By Theorem 1, we have m5(P7,K5×2) ≥ 10. To show that
m5(P7,K5×2) ≤ 10, consider F ∼= K5×10. Let F1 ⊕ F2 be any factorization
of F such that F1 contains no P7. We will show that F2 contains K5×2 as
follows.
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Let V1 = {v1,1, v1,2, . . . , v1,10}, . . . , V5 = {v5,1, v5,2, . . . , v5,10} be the partite
sets of F . Since F1 contains no P7, without loss of generality, suppose F1

∼=
8K3 ∪ 2K3. Now, we construct the new partite sets of F2 thats is

V ∗
l = Vl(K

1
4 ) ∪ Vl(K

2
4 ),

where l ∈ {1, 2, 3, 4, 5} and Vl(K
i
4) = {u1,i, u2,i, . . . , u4,i} is the set of vertices

of complete graph Ki
4 on 4 vertices with i ∈ {1, 2}. Next, we take one vertex

u∗li ∈ Vl(K
i
4) for every i = 1, 2 and l = 1, · · · , 5. Thus, we have the new partite

sets V ∗
1 = {u∗1,1, u

∗
1,2}, V

∗
2 = {u∗2,1, u

∗
2,2}, · · · , V

∗
5 = {u∗5,1, u

∗
5,2} will be form

K5×2 in F2. Therefore, m5(P5,K5×2) ≤ 10.

Case 3. For n ≥ jb.
Let t = (j − 1)⌊n−2

2 ⌋ + b, by Theorem 1, we have mj(Pn,Kj×b) ≥ t. To show
that mj(Pn,Kj×b) ≤ t, consider F ∼= Kj×t. Let F1 ⊕F2 be any factorization of
F such that F1 contains no Pn. To show that F2 contains Kj×b, we can do the
following process.

Let

V1 = {v1,1, v1,2, . . . , v1,t}, V2 = {v2,1, v2,2, . . . , v2,t}, · · · , Vj = {vj,1, vj,2, . . . , vj,t}

be the partite sets of F . Since F1 contains no Pn then the longest path in F1

is at most (n − 1) vertices. Since |F1| = jt, then there are at most jt/(n − 1)
longest path in F1. Without loss of generality, suppose

F1
∼= ∪j

l=1F [V ∗
l ] where V ∗

l
∼= ∪b

i=1Vl(K
i
n−1),

where l ∈ {1, 2, . . . , j} and Vl(K
i
n−1) = {u1,i, u2,i, . . . , u(n−1),i} is the set of

vertices of complete graph Ki
n−1 on (n − 1) vertices with i ∈ {1, 2, . . . , b}. Let

P i
l be the longest path in Vl(K

i
n−1) and let u∗li ∈ Vl(K

i
n−1) be the end vertex

of P i
l for every i = 1, 2, . . . , b and l = 1, 2, . . . , j. Since u∗li ∈ Vl(K

i
n−1) is a

end vertex of P i
l then u∗li is not adjacent to every other vertex in F2. Since

the number of complete graph Ki
n−1 is b, then we have the new partite sets

V ∗
1 = {u∗1,1, u

∗
1,2, . . . , u

∗
1,b}, · · · , V

∗
j = {u∗j,1, u

∗
j,2, . . . , u

∗
j,b} will be form Kj×b in

F2. Therefore, mj(Pn,Kj×b) ≤ t. For example of Case 3, we can see as follows.

Example 3. m5(P10,K5×2) = 18.

Proof. By Theorem 1, we have m5(P10,K5×2) ≥ 18. To show that
m5(P10,K5×2) ≤ 18, consider F ∼= K5×18. Let F1⊕F2 be any factorization of F
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such that F1 contains no P10. We will to show that F2 contains K5×2. Let V1 =
{v1,1, v1,2, . . . , v1,18}, V2 = {v2,1, v2,2, . . . , v2,18}, · · · , V5 = {v5,1, v5,2, . . . , v5,18}
be the partite sets of F . Since F1 contains no P18 then the longest path in
F1 is at most 17 vertices on every path. Since |F1| = 5(18), then there are at
most 10 longest path in F1. Without loss of generality, suppose (u∗1,1, u1,2)

∗,
(u∗2,1, u

∗
2,2), (u

∗
3,1, u

∗
3,2), (u

∗
4,1, u

∗
4,2), and (u∗5,1, u

∗
5,2) are end vertices of longest

path in V ∗
1 , V

∗
2 , V

∗
3 , V

∗
4 , and V ∗

5 respectively. All these vertices (u∗1,1, u1,2)
∗,

(u∗2,1, u
∗
2,2), (u

∗
3,1, u

∗
3,2), (u

∗
4,1, u

∗
4,2), and (u∗5,1, u

∗
5,2) will form K5×2 in F2. There-

fore m5(P10,K5×2) ≤ 18.

This completes the proof of Theorem 2.

As a consequence of this theorem, we have a corollary as follows.

Corollary 3. For integers n ≥ 3 and j, b ≥ 2,

mj(Cn,Kj×b) =























(n− 1)b, if 3 ≤ n ≤ j,

jb, if j < n < jb,

(j − 1)⌊n−2
2 ⌋+ b, if n ≥ jb.

Proof. Let F ∼= Kj×r with r are (n−1)b (for 3 ≤ n ≤ j), jb (for j < n < jb),
and (j − 1)⌊n−2

2 ⌋ + b (for n ≥ jb). Let F ∼= F1 ⊕ F2 such that F1 contains no
Kj×b. We will show that F1 contains path Pn. For j = 2, since F is bipartite
graph then F contains no odd cycle. Hence, m2(Cn,Kj×b) = ∞ for any odd
n ≥ 5.

Next, for j = 2 and n is even, and for j ≥ 3. Let uPv be the final path
obtained in the proof of Theorem 1. This path consists of at least n vertices.
Since uv is a edge F1 then by joining the two vertices u and v, we have a cycle
Cn in F1 with at least n vertices.
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