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Abstract: This present work discusses existence and uniqueness of solutions
for the following discrete fractional antiperiodic boundary value problem of the
form

SASx(k)=f(k+a—1z(k+a—1)),

for k € [0, + 2|5, = {0,1,...,¢ + 2}, with boundary conditions z(a — 3) =
—z(a+/l), Ax(a—3) = —Ax(a+/l), A%z(a—3) = —A2x(a+{), where f : [a—
2,a+/]n, ,x R — Ris continuous and §A? is the Caputo fractional difference
operator with order 2 < a < 3. Finally, the main results are illustrated by
suitable examples.
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1. Introduction

The theory of fractional calculus is one of the branches of study which involves
integrals and derivatives of an arbitrary order. In the past few decades, frac-
tional calculus is one of the most novel types of tools applied to problems in
engineering, science and technology (see [16], [17]). It also played a key role for
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the improvement of the specialized research in mathematical modeling of several
phenomena such as enzyme kinetics, nonlinear oscillation of earthquake, blood
flow problems, aerodynamics, cancer modeling being among the popular ones,
control theory, electrical circuits, fluid-dynamic traffic model, regular variation
in thermodynamics, polymer rheology, arterial and heart disease modeling, etc
(see [13], [14]). In recent years, the theory of discrete fractional calculus has
been developed by a very few researchers (see [8], [9], [11], [15]) and they ob-
tained many important properties and interesting fruitful results.

Anti-periodic boundary value problems (classical and fractional), recently
have received great attention as they occur in the mathematical modeling of a
diversity of physical processes (see (2], [3], [4], [7]). As a matter of fact, many
numerical problems converge faster when anti-periodic boundary conditions are
used instead of periodic boundary conditions. However, the concept of non local
anti-periodic boundary conditions has not been addressed yet. In the last two
decades, many researchers have focused their attention on the study of stability
of solutions, existence and uniqueness, positive and multiplicity of solutions
of boundary value problems (BVP’s) for nonlinear fractional differential and
difference equations by using fixed point techniques such as Krasnoselskii fixed
point theorem, Brower fixed point theorem and contraction mapping principle
(see [1], [3], [5], [6], [11], [12], [15)).

Although the discrete boundary value problems with fractional order 0 <
a <land1 < a < 2 have been studied by researchers, very little is known in the
literature about discrete fractional equation with order 2 < o < 3. Motivated
by the aforesaid work, in this present work, we investigate the existence and
uniqueness of solutions for the following discrete fractional order antiperiodic
boundary value problem of the form

§ARz(k) = f(k+a—1ak+a-1)), (1)
for k € [0, + 2|5, = {0, 1, ..., £ + 2}, subject to the conditions

(i) z(a —3) = —z(a+¥), (ii) Az(a—3) = —-Az(a+{), and
(iil) A2z(a — 3) = —A%z(a + 1), (2)

where f : [0 — 2,a + {]n,_, X R — R is a continuous, §A¢ is the Caputo
fractional difference operator with order 2 < o < 3.

The plan of this paper is as follows. Some definitions and theorems needed
to prove the main results are provided in Section 2. In Section 3, a form of
solutions of boundary value problem (1)-(2) is obtained. In Section 4, existence
and uniqueness of a solution to equation (1)-(2) are established by using the
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contraction mapping principle and Brouwer fixed point theorem. In Section 5,
suitable examples to illustrate the main results are presented and the paper
ends with a conclusion.

2. Preliminaries

This section presents some required definitions and theorems which are needed
throughout this paper.

Definition 1. (see [8], [10]) Let @ > 0. The a'* fractional sum of f :
N, — R is defined by

k—a
ATF0) = gy (k=5 = D=L, Q

forall k € {a+o,a+a+1,...} =t Ngpq and k¢ := %

Definition 2. (see [8]) Let @ > 0 and set u = n — a. Then, the a'*
fractional Caputo difference operator is defined as

k—p
CAZF(k) = A (A"f(k)) = ﬁ > (ks = D A () (4)

forall ke {a+p,a+p+1,...} =t Nyyyand n —1 < a < n, where n = [a],
[.] is the ceiling function.

Theorem 3. (see [8]) Assume that o > 0 and f is defined on N,. Then

n—1 (]C o a)l )
FATATS(R) = f() = 3 A f()
3=0 '
— f(k) =+ Co + Clk + ...+ Cn—lkn—_lv (5)

for some ¢; € R, wherei=1,2,....,n — 1.

Theorem 4. (see [8]) Let f: Nyto X No — R be given. Then

k—a k—a
A (Z f(k,s)) =Y Apfks)+ fk+1k+1—a), (6)

forallk € {a+o,a+a+1,...} = Nyjq.
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3. Solution for antiperiodic BVP

In order to discuss the main results, now we state and prove important theorems
which will aid to obtain a form of the solution of (1)-(2), provided the solution
exists.

Theorem 5. Let2<a<3andf:[a—2,---,a+nN, , — R begiven. A
function x(k) is a solution of a discrete fractional antiperiodic boundary value
problem

§ ARz (k) = f(k+a—1),
r(a—3)=—z(a+/¥), Az(a—3) = —Azx(a+ ), (7)
Az(a—3) = —A%z(a+ 1),

where k € [0,0+ 2|y, , if and only if x(k), for k € [a« —3,a+{]n, _, has the form

(k) = ——3 (k—s—12"f(s+a—1)

=0
l
- ! Z(a—l—f—s—l)o‘—*lf(s—l-oz—l)

5=0
1+1
+ %;(a—kﬂ—s—l)a—?ﬂs—ka—l)
B(k £+2 -
+ ﬁ;(a—l—f—s—l)“ﬂs—l—a—l), (8)

where A(k) = [(2a —3) + (¢ — 2k)] and B(k) = [2(¢k — k?) + 4k(a — 1) — 20 +
0—2) + (50 + 3)).

Proof. Suppose that z(k) defined on [a — 3, + ], _, is a solution of (7).
From Theorem 3, we obtain a general solution for (7) as

o(k) =Af(k4+a—1)—cy— c1k — cok?
k

:ﬁ (k—s—1)2Lf(s+a—1) —cy — c1k — cok?, v

V)
o
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for some cq, ¢1, co € R. Using Theorem 4, we obtain

1 k—oa+1
Azx(k) = — (k—s—12=2f(s+a—1)—c — 23k,
MNa—1) ;
1 k—a+2
2 _ -3
In view of z(a — 3) = —x(a + ¢), Ax(a — 3) = —Azx(a + /) and A?z(a — 3) =
—A2%z(a + ¢), the value of cg, c¢; and ¢y as follows:

1 .
g & e by
0 — +1
(i?‘(tg — 1?) Z(O‘+£_ s—1)22f(s+a—1)
s=0
200+ £~ 2) — (50 + 3)] 2
8T (o — 2) z%(a+f—8—1)f(s+a—1),
1 (41
Clsz(a—Ff—s—l)ﬁf(s_i_a_l)
s=0
200+ 40 — 3 H2
_ﬁz(a”—s—l)“ﬂsw—l), and
s=0
1 042
C2:mz(a+€—s—1)ﬁf(s+a—1).
s=0

Substituting the values of ¢g, ¢; and ¢z into (9), we obtain (8). This shows that
if (7) is a solution, then it can be represented by (8).

Conversely, every function of the form (8) is a solution of (7). The proof is
completed. O

Theorem 6. If«a and k are any numbers then

gy T'(k+1)

k—s—1)t = .
SZ:;( oY ol(k—a+1)

Proof. For uw > m, u,m € R, m > —1, u > —1, we have
Fu+1) B Iu+2) Fu+1)

Fm+1)T(u—m+1) Tm+2)T(u—m+1) T(m+2)(u—m)
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That is Fu+1) _ 1 Plu+2)  DPlut+1) .
FNu—m+1) m+1|[T(u—m+1) T(u—m)
Then,
k—a k—a—1
S (k—s—1)== (k—s—1)2"+T(a). (10)
s=0 5=0
Now we find
o 1[ T(k+1)  T(a+1)
st = — . 11
2 (k=s=1) a [F(k —a+l) T (11)
Substituting equation (11) in (10), we get
= 1 T(k+1)
B
— (k=s-1) al(k—a+1)
O

Corollary 7. The following results are immediate consequences of Theo-
rem 6:

d a1 Tla+0+1)

1. S;O(aw—s—n—l_iar(gﬂ)
e ao  Dlatl(+1)
2. SZ:O(OH_K_S_D—_(oz—l)I‘(E—i—Z)'
2 a—3 __ F(a+€+1)
3. Sgo(a—i—é—s—l)——(a_2)r(£+3).

4. Existence and uniqueness of solution

In this section, we prove that under certain conditions, discrete fractional an-
tiperiodic boundary value problem (1)-(2) has at least one solution. We observe
that boundary value problem (1)-(2) may be recast as an equivalent summation
equation. It follows from Theorem 5 that z(k) is a solution of (1)-(2) if and
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only if (k) is a fixed point of the operator T': R“t* — R, where

k—a
(Ta:)(k):%a) (k—s—1)% 1f(5+a—1g;(5_|_a_1))
s=0
1 e a—1 . B
_QF(a);(aH_S F=fs+a-lzls+a-1) (12)
A(k) (+1 . e 1 1
+4F(Oz—1)§(a+ —s—1)*=f(s+a—-1l,z(s+a—1))
£+2
+%g(a—l-g—s—1)ﬁf(s+a—17x(3+a_1))’

for k € [a — 3, + {]n, 5, where A(k) = [(2a — 3) + (¢ — 2k)] and B(k) =
[2(0k — k?) + 4k(a — 1) — 2a(a 4+ £ — 2) + (5£ 4 3)].

Theorem 8. Define |z| = max |x(k)|. Assume that f(k,x)

k€la—=3,a+lN,, 4
is Lipschitz in x. That is, there exists L > 0 such that |f(k,x) — f(k,y)| <
L |z —y| whenever x,y € R. Then it follows that discrete fractional antiperi-
odic boundary value problem (1)-(2) has a unique solution provided that the

condition

Fla+0+1)
2T (a — I(0+ 1)

A=BL <1, (13)

- 3 (£+3) (¢+3)
where 3 = (a(a 1) * 20a—-1)(+1) 4l +1)(+2)

> holds.

Proof. We show that T' is a contraction mapping. To achieve this, we notice
that for given z and y,

k—a
1
Txr —Tyll < L - a [(a) o 1
| Tz yl < Lz —yll ke[a—glaff]zv I'(a ; )
l
+ Lz -y max e

k€la—=3,a+lN,, 4 «Q =
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A(K)| A

+ Lz — atl—s—1)e=
I i kefa-3,a+ln, 5 4'(a — 1) g( !
042
|B(k)| -3
+ Lz — (v — 9) ot b—s—1)%=
lz = vl kela—3,a+4n,_5 8I'(a — 2) g( |

Since |A(k)| = |(2a — 3) + (¢ — 2k)| = (£ + 3) and |B(k)| =
|2(¢k — k?) + 4k(a — 1) — 2a(a 4+ £ — 2) + (50 + 3)| = (¢ + 3). By an applica-
tion of Theorem 6 and Corollary 7, we obtain

[Tz =Tyl <

3L||x—y\|[ Na+/¢+1) ]
2 Tla+ DL +1)
+LHx—yH(f+3) [F(a+€+1)]

4 T(@)T(+2)
+LHx—yH(f+3)[ MNa+0+1) ]
8 Ta—OI(+3)]

Above inequality leads to the conclusion

Fla+l+1)
(a— 10 + 1)] lz =yl

Tx—Ty| < |BL
72~ Tyl < |55

When the condition (13) holds, boundary value problem (1) - (2) has a unique
solution, which completes the proof of the theorem. O

Theorem 9. Assume that there exists a constant M > 0 such that f(k,x)
satisfies the inequality

M
Tla+0+1) " (14)
b [QF(a — DI+ 1)}

[f (R, x)| <

max
(k,z)€la=3,a+{ N, _3x[—M,M]

3 (¢+3) (¢+3)
h =
where <a(a —) T 2a-nir D A+ D+ 2)
that discrete fractional antiperiodic boundary value problem (1) - (2) has at
least one solution xq satisfying |zo(k)| < M for all k € [a — 3,0 + (N, -

> . Then it follows

Proof. Consider the Banach space B := {z € R“" : ||z < M}. Let T be
the operator defined in (12). It is clear that T" is a continuous operator. Thus,
the main purpose is to prove that T': B — B. That is, whenever ||z| < M, it
follows that ||Tz|| < M. Once this is proved, we use the Brouwer fixed point
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theorem to obtain the conclusion. Suppose that inequality (14) holds for given
f. For convenience, we assume

M
= Tla+e+1) |’ (15)
p [QF(a — DI+ 1)}

which is a strictly positive constant. Then we obtain

o = a—1 o : a—1
|Tz|| < o) g(/ﬂ— s—1)e=ly 0 ;(a +0—s—1)2=L
/41
+%Z(a+€—s—l)“
s=0
0+2
+78?(|f(—k)2‘) Z(a +0—5—1)2=3
s=0

Since |A(k)| = |(2a — 3) + (¢ — 2k)| = (£ + 3) and |B(k)| =
|2(¢k — k?) + 4k(a — 1) — 2a(a 4+ £ — 2) + (50 + 3)| = (¢ + 3). By an applica-
tion of Theorem 6 and Corollary 7, we get

30 [ T(a+(+1) B(l+3) [Dla+l+1)
ITall = =- [F(a FO0(+ 1)} 4 [F(a)I‘(E ¥ 2)]
S(U+3) [ T(a+l+1)

8 [F(a “ T+ 3)] '

From the above inequality, we have

Fla+l+1)
Tx| < . 1
1Tl < 8 [QF(a— 1)r(£+1)] (16)
Finally, by the definition of ® given in (15), we get that (16) implies that
|Tx|| < M. (17)

Thus, from (17) we deduce that T': B — B. Consequently, it follows from
Brouwer fixed point theorem that there exists a fixed point of the map 1", say
Txy = xg with g € B. So this x( is a solution of (1) - (2). Moreover, xg
satisfies the bound |zo(k)| < M, for each k € [a —3,a + {|n,_,. Proof of the
theorem is completed. ]
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5. Examples

This section provides two examples to illustrate Theorems 8 and 9. We start
with an example illustrating Theorem 8, subsequently by an example illustrat-
ing Theorem 9.

Example 10. Suppose that o = % and ¢ = 5. Let f(k,x) = cosz(k) and

1000+ k2
L = 3555- Then discrete fractional antiperiodic boundary value problem (1)-(2)
becomes

oS (a: (k + %))

5
o3
AZa(k) = :
o 1000 + (k + 2)°

ke 0,7, (18)

subject to the conditions
1 15 1 15
o(-g) == (3) () =-ae(3)

In this case, inequality (13) takes the form
Fa+0+1)
A=pL
AL e =D+ 1)

Therefore, from Theorem 8 we conclude that boundary value problem (18) -
(19) has a unique solution. For the values of o € (2,3] (with an increment
of 0.1), the corresponding values of A are computed and tabulated in Table 1.
Taking the values of a on the horizontal axis, the computed values of A are
plotted in Figure 1. The resulting curve is nonlinear and shows monotonically
increasing trend in « € (2,3] (with an increment of 0.025).

< 0.0853 < 1.

o 2.1 2.2 2.3 24 2.5

A = BLoyr i | 0.0528 | 0.0597 | 0.0674 | 0.0759 | 0.0853

o 2.6 2.7 2.8 2.9 3

— T(at+l+1)
A—ﬁLm 0.0956 | 0.1069 | 0.1194 | 0.1331 | 0.1480

Table 1: Illustration of 2 < o« < 3 and A.

When « € (2,3], condition provided by Theorem 8 for the existence of
unique solution for the boundary value problem (18) - (19) is satisfied, see
Table 1 and Figure 1.
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Figure 1: « versus A.

Example 11. Suppose that o = %4, ¢=7Tand M = 1000 with f(k,z) =

2—1114:6_%‘”2(]‘“'). Then discrete fractional antiperiodic boundary value problem

(1)-(2) takes the form
14 1 9
CAT (k) = 5- (k + 5) e 107 (), ke [0,9), (20)

subject to the conditions

() ==(8). () (2).

The Banach space is B := {x € R'"! : ||z]| < 1000}. We note that

(21)

M 1000
Fla+0+1) ] 236.4345

~ 4.2295.
b [QF(a — T+ 1)

It is clear that |f(k,z)| < 16 < 4.2295, whenever = € [—1000,1000]. Therefore

by Theorem 9, we conclude that the boundary value problem (20) - (21) has at
least one solution.
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6. Conclusions

Arguments in this paper are based on a contraction mapping theorem and
Brouwer fixed point theorem for Banach spaces. Conditions for the existence
and uniqueness of solutions for the fractional order difference equations in the
presence of antiperiodic boundary conditions are obtained. Results obtained in
the main results are illustrated with suitable examples supported with numerical
calculations.
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