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Abstract:  The concept of partial metric was initiated by Matthews [14]
as a part of study of denotational semantics of flow networks. In fact, the
partial metric plays a very important role in development of models in theory
of computation and computer domain theory. In this paper we provide some
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1. Introduction

The concept of a partial metric was initiated by Matthews [14] as a part of
study of denotational semantics of flow networks. In fact, the partial metric
plays a very important role in development of models in theory of computation
and computer domain theory (see [2, 9, 12, 17, 21, 22, 23]).
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In the year 1976, the famous mathematician Caristi [8] proved a most valu-
able generalized theorem of Banach Contraction result [6] and proved a fixed
point theorem via a contraction condition.

Theorem 1. Let (2,d) be a complete metric space and ¢ : X — R
be a lower semi - continuous and bounded bellow function. Let & : Q —
be a Caristi type mapping on 2 dominated by ¢ (i.e., S satisfies d(n,In) <
o(n) — () for alln € Q). Then § has a fixed point.

The main aim of this manuscript is to prove some Caristi type results in
partial metric spaces. First, we give basic definitions and lemmas will help us
to prove our main results.

Definition 2. ([14, 15]) Let ©2 be non empty set. A functionp:Q x Q —
[0,00) is said to be a partial metric on €, if for all v, 7, € Q,

(p1) v=n< p(v,v)=p,n) =pnmn);
(p2) p(v,v) < p(v,m), p(n,n) < pv,n);
(p3) p(v,n) = p(n,v);

(ps) p(v,n) +p(¢,C) < p(v,¢) +p(¢,m).

In this case, the pair (p,) is termed as a partial metric space (PMS).

If p is a partial metric on 2, then the mapping d,, :  x Q@ — [0,00) given
by

dp(lj77]) :2p(V7n)_p(V7V)_p(7]7n)a (1)
is a metric on ).
Now, define convergence, completeness, continuity on PMS (see [1, 4, 11,

14, 15]).
Definition 3. Let (2,p) be PMS and {(;} be a sequence in €2

1. {¢} converges to & if and only if p(§,&) = l_i)m p(&, G).

2. {¢;} is termed as a Cauchy sequence if lim p((;, ;) exists and is finite.
1,]—00
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3. The PMS (Q,p) is termed as complete if every Cauchy sequence {(;} in
X converges with respect to 7,, to a point { € () such that

4. A mapping & : Q — Q is said to be continuous at & € € if for every
€ > 0, there is 6 > 0 so that I(By(&o,0)) € Bp(S¢€o, €).

Lemma 4. ([14, 15])

1. A sequence {(;} is Cauchy in the metric space (2, d)) iff it is Cauchy in
the PMS (€, p).

2. A PMS (,p) is complete iff the metric space (§2,d,) is complete. More-
over,

Lemma 5. ([1]) Let (2,p) be a PMS If (; — ¢ as i — oo with p((,() =0,
then lim p({;,n) = p(¢,n) for each n € Q.
11— 00

Lemma 6. ([1]) Let (2,p) be a PMS.
(A) If p(v,n) =0, then v = n. The converse need not be true.
(B) If v # n, then p(v,n) > 0.

Definition 7. The mappings S : Q@ — Q and % : Q are called w -
compatible if #(Sv) = (Fv), whenever Fv = Qv.

2. Results and discussions

Our first result is as follows.

Theorem 8. Let o/, BF,9 : Q — Q be four maps on a PMS (2, p).
Suppose that

(Op(Fv, Bu) + a(Fv) +v(Bu) < P(a(Fv))a(Fv)+ (v (G )V (G 1)
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where a,7y : Q — [0,00) are lower semi-continuous and ¢ : [0,00) — (0,1) is
continuous;

(i) () C¥4(Q2) and B(QQ) C F(Q);

(791) (o, F) and (#,¥9) are w - compatible;

(iv) either .F(Q2), or 4 () is complete.

Then o7 , A,.% and 4 have a unique CFP.

Proof. For arbitrary elements vy, 7 in X, from condition (i7), define the
sequences {vo, }, {2, } and {we,} in X as
Son = Gvon1 = Aoy,
Son+1 = Fropto = Broptr, n=0,1,2,---

By (i), we have that
0 < p(&n,&on+1)
= p(Avop, Bran+1)
< Y(a(Fran)) o Fran) — (A van)
TV (V(Gvan1))1(Gvont1) — 7(Bransa)

< p(a€an—1))a(§an—1) — a(&on)+Y(V(&2n)) v (E2n) — V(E2ns1)-

Therefore,

p(&on, ant1) < al€on—1) — al&on) + 7(E2n) — V(E2n+1) (2)
and
a(§an) + v(§2n+1)
< lal§an—1))a(§an—1) + P (v(&2n))V(E2n)
< max {¢(a(&an—1)), V(v(&n))} (a(€2n—-1) +7(&2n)) (3)
< (aléan-1) +v(&2n)) -

Take t, = a(&,) + ¥(&nt1)- From the precedent inequality,
ton = a2n) +v(E2n41) < ton—1 = a(&an—1) + 7(&2n)-

Similarly, to,_1 < to,_2 and so on.
This shows that the sequence {t¢,} is a strictly decreasing, bounded below
sequence and so it converges to some [ > 0.
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Suppose [ > 0. Letting n — oo in Equation (3),we have
I < nli_)rrolomax {¥(a(€an—1)), V(v (&2n))
= max {1/1 (nll_{rolo a(§2n71)> P <n11—>1r<>lo 7(§2n)> } !

< 1, since 9 is continuous and 1 : [0,00) — (0,1) .

It is a contradiction. Consequently,

Jim[a(&on) +7(€2n41)] = 0.

Thus, we have
Jima(&z,) = lim 7(Eont1) = 0. (4)

Also, from (2), li_r)n p(&2n, Eant1) = 0. Now for any n,m > 0 and from (2), we
n—oo
have that

p (52717 £2m+1)
< p(&on, &ont1) + p(€ant1, Song2) + -+ P(E2m—1,E2m)

+p(Eam, Eom+1) — P(E2nt1: S2nr1) — P(S2nt2, Sonpa) — -+
—p(§2m—1, §2m—1) — P(&2m, E2m)
< a€on—1) — a(€an) +7(&2n) — V(€2nt1) + aé2n) — aéon+1)
+7(Sant1) — V(&an2) + a€ant1) — alSant2) +V(E2nr2)
=Y (&2n+3) + -+ + Eam—2) — a(€am—1) + ¥(E2m-1) — V(E2m)
+a(8om-1) — a§am) +¥(&2m) — V(€2m+1)
= a(on-1) — a(8am) + ¥(&2n) — V(E2m1)

—0 asn,m — oo.

Now from py, we have that

P(2nyEom) < P(§2ns Somr1) + P(Eamt1, Som) — P(Samy1s Samr1)
— 0 asn,m — oo.
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This shows that {£2,,} is a Cauchy sequence in (€2, p).

From Lemma 4, {£5,} is Cauchy sequences in metric space (€2, d,).
Hence {¢,} is Cauchy sequences in metric space (€2, d,).

Hence, we have that

lim d,(&,,&m) =0.

n,m—0o0

By the definition of d, we have
lim  p(&,,&n) = 0. (5)

7,1M—00

Suppose .Z(2) is a complete. Since {241} C Z(Q) is Cauchy sequences
in complete metric space (% (Q2),d,). It follows that {241} is convergent in
(F(),d,). Thus

le dp(&ant1, ) =0, for some pe F(Q).

Since {&,} is Cauchy sequences in (#(Q),dp) , {ant1 — i , it follows that
&on — p . From Lemma 4,

p(ps p) = lim p(Eon, ) = lm p(§any1,p) = lim  p(§an, Som) = 0.
n— o0 n— o0 m,n—0o0
Since « and ~ are lower semi-continuous functions, &, — p and as n — oo
from (4) we have a(u) = v(p) = 0.

Since .# : Q@ — Q and p € Z (), there exist s €  such that Fs = p.
From (i), we have

p(As,p) = p(As,Eant1) + p(Eant1, 1) — P(€ons1, E2ntt)
= p(A's, Bvont1) + p(€ant1, 1) — P(Eant1, Eont1)
< YP(a(Fs))a(Fs) — a(d's)
+Y(v(Gvoni1))v(Gvans1) — v(Bronyi)
+p(&ant1; 1) — P(&2nt1, E2nt1)
< a(Fs) —ald's) +7(Gvmi1) — V(Brans1)
+p(§2n+1, 1) — P(E2n+1, Eant1)-

Letting n — oo, we have

(s, 1) < alp) — a('s) + () —v(u) + plu, 1) — p(, 1)
= a(p) —a(s,t) < a(p) =0.

Therefore p(o/s, ) = 0, so we have &'s = p = Fs.
Since (&7, .%) are w - compatible, we have that o/ = .Z p.
We have
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p(ﬁ,u, 5211) = p(JZ{,U/a r937/211)

< Y(a(Fp)a(Fp) — a(d p) + (¥ (Gvn)) (V(Gvan) — v(PBran)
O‘(ﬁ:u) - CM(JZ{(/J,,’L%) + V(gVZn) - 7(%(7/211;77271))
a(ﬁ:u) - a(gﬂ) + ’7(621171) - 7(5211)
V(€2n—-1) — 7(&2n)-

Letting n — oo , we have that
p(Fp, ) = () — () = 0.
Therefore, Fu = p.
Therefore, o/ n = Fp = p.
Since &7 () C 4(R2), there exist a € X such that &/ = “a. Therefore
p=9pu=">9a,
p(p, #Ba) = p(A 1, Ba)
<Y Fp))a(Fp) — o p) +(v(Ga))y(Ga) - ~(Ha)
<o Fp) — ol p) +~(Ga) - v(Ha)

= a(p) — a(p) +v(p) —v(%a) < y(p) = 0.

Therefore, p(u, Ba) = 0, that is, p = Aa.
Since (#,9) are w - compatible, we have Zu = Yu. We have

n, G ) = p( p, Bu)

Y(a(Fp))o(Fp) — ol p) + (VG )G ) —v(Bu)
a(Fp) — o p) +v(Gp) — (D)

a(p) —a(p) +y(Gu) —v(@p) = 0.

Therefore, p(u,9pn) =0, so p =Y p.
We obtained that p = % u = ZApu.

This shows that p is a CFP of o/, %,.% and ¢. Suppose p* is an another
common fixed point of &7, %,.# and 4. One writes

IA I I/\E\

%) = Z))(%H’%H )

Yla(Fp))a(F ) — o p) + (VG )G ) — v (Bu*)
a(p) — olp) + (") —y(p*) <0.

AN INZE

Therefore, = p*. This shows that p is the unique CFP of o7, #,. % and ¢4. O
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Corollary 9. Let (2,p) be a partial metric space. Let o/, %, : Q — Q
be mappings such that

(a) plev,op) <Pa(Fv))a(Fr) —a(dv)
+ P (Bp)v(Bp) — (A ),

where a,7y : Q — [0,00) are lower semi-continuous and ¢ : [0,00) — (0,1) is
continuous. Suppose that

b)) (Q) CY(Q) and (Q) C F(Q);

(c) Either (o, %), or (4/,%9) are w - Compatible;

(d) Either .F(Q2), or 4(2) is complete.

Then o7 ,.% and ¢4 have a unique CFP of the form .

Theorem 10. Let (2,p) be PMS. Let &7, B, %,9 : Q) — Q be such that
() p(etv, Bp) < a((Fv, 9 )W Fv,Gp) — (v, Bp)
where 1 : Q x Q — [0,00) is lower semi-continuous and « : [0,00) — (0,1) is
continuous. Suppose that
(i) () C¥4(Q) and B(QN) C F(Q);
(ii1) (o, F) and (#A,9) are w-compatible;
(iv) either Z(Q), or 4(Q) is complete.
Then <7, AB,.% and 4 have a unique CFP of the form p.

Proof. Consider vy, np in X. By (i), define {vo,,} and {(2,,} as follows
Cn = Grony1 = Avan,
Gnt1 = Fronge = Brapt, n=0,1,2,--

Now,
0 < p(CansCont1)

= p(Avop, Bra,y1)

< a(Y(Fran, Gron—1))(Fron, Gran—1) — Y (Ava,, Brapi1)

< a(¥(Can—1,C2n))V(Con—1,C2n) — ¥ (Can, C2ny1)-
Therefore,

P(Cons Cont1) < Y(Con—1,Con) — ¥ (Con, Cont1)- (6)

and

1/1(C2m C2n+1) < a(w(Canly CZn))@b(Canlu CZn) (7)
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< Q/)(C2n—l) CQn)

Thus, {¢(Can, (2n+1)} is non-increasing, so it converge to k > 0. Suppose that
k > 0. Letting n — oo in equation (7), we get a contradiction. Therefore,

lim ¥ (Can, Cont1) = 0.

Now, from (p4) and Equation (6),

P (Con, Come1)

< p(Cany Can+1) + P(Cont1, Cont2) + - + P(C2m—1,Com)
+p(Coms Com+1) — P(Cont15 Cont1) — P(Cont2s Cong2) — -+
—p(C2m—1,C2m—1) — P(Com, Com)

< p(Can» Cant1) + P(Cant1, Canta) + -+
+p(Com—1,Com) + P(Com, Cam+1)

< 1/}(<2n717 CZn) - ¢(C2nu C2n+1)
‘H/)(CZna C2n+1) - ¢(C2n+1, C2n+2)
+9(Cam—25 Cam—1) — ¥Y(Cam—1, Cam)
+¢(C2m717 <2m) - ¢(C2m7 <2m+1)

= ¢(C2n—1, CQn) - Q/)(CQma C2m+1)

— 0 as n,m — oo.

Again from (p4), we have

P(Cons C2m) < P(Cans C2mr1) + 2(C2mt1; Com) — P(Comt1s Comr1)
— 0 as n,m — 00.

Clearly, {(2,} is a Cauchy sequence in (£2,p). In a similar way, one proves that
{wap } is Cauchy in (€2, p).

By proceeding the similar track as mentioned in Theorem 8, we get the
CFP for A, B, F and G. O

Corollary 11. Let (2,p) be a PMS and let A, F,G :  — Q be so that
(a) p(Av, Ap) < a(p(Frv, Gu))y(Fr,Gu) — (Av, Ap)

where 1, ¢ : Q@ — [0,00) are lower semi-continuous and « : [0,00) — (0,1) is
continuous. Suppose that

(b) A(Q2) C G(Q) and A(R2) C F(Q);

(c) either (A, F), or (A,G) are w - compatible;

(d) either F(2), or G(§2) is complete.

Then A, F and G have a unique CFP of the form pu.
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Theorem 12. Let (X,p) be a PMS and let A, B, F, G :  — Q be so that
(i) p(Av,Bu) < B(a(Fr,Gu))o(Fr,Gu) — a(Av, Bu)
where o : 2 x Q — [0, 00) is lower semi-continuous and
B :]0,4+00) — (0,1) is continuous.
(11) A(Q) C G(Q2) and B(R2) C F(Q);
(#i1) (A, F) and (B,G) are w - Compatible;
(iv) either F(Q2), or G(Q2) is complete.
Then A, B, F and G have a unique CFP of the form p.

3. Conclusion

In this paper, we provided some common fixed point results by using Caristi
type contractions in the class of partial metric spaces.
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