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Abstract: The concept of partial metric was initiated by Matthews [14]
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1. Introduction

The concept of a partial metric was initiated by Matthews [14] as a part of
study of denotational semantics of flow networks. In fact, the partial metric
plays a very important role in development of models in theory of computation
and computer domain theory (see [2, 9, 12, 17, 21, 22, 23]).
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In the year 1976, the famous mathematician Caristi [8] proved a most valu-
able generalized theorem of Banach Contraction result [6] and proved a fixed
point theorem via a contraction condition.

Theorem 1. Let (Ω, d) be a complete metric space and φ : X → R

be a lower semi - continuous and bounded bellow function. Let ℑ : Ω → Ω
be a Caristi type mapping on Ω dominated by φ (i.e., ℑ satisfies d(η,ℑη) ≤
φ(η)− φ(ℑη) for all η ∈ Ω). Then ℑ has a fixed point.

The main aim of this manuscript is to prove some Caristi type results in
partial metric spaces. First, we give basic definitions and lemmas will help us
to prove our main results.

Definition 2. ([14, 15]) Let Ω be non empty set. A function p : Ω × Ω →
[0,∞) is said to be a partial metric on Ω, if for all ν, η, ζ ∈ Ω,

(p1) ν = η ⇔ p(ν, ν) = p(ν, η) = p(η, η);

(p2) p(ν, ν) ≤ p(ν, η), p(η, η) ≤ p(ν, η);

(p3) p(ν, η) = p(η, ν);

(p4) p(ν, η) + p(ζ, ζ) ≤ p(ν, ζ) + p(ζ, η).

In this case, the pair (p,Ω) is termed as a partial metric space (PMS).

If p is a partial metric on Ω, then the mapping dp : Ω × Ω → [0,∞) given
by

dp(ν, η) = 2p(ν, η) − p(ν, ν)− p(η, η), (1)

is a metric on Ω.

Now, define convergence, completeness, continuity on PMS (see [1, 4, 11,
14, 15]).

Definition 3. Let (Ω, p) be PMS and {ζi} be a sequence in Ω

1. {ζi} converges to ξ if and only if p(ξ, ξ) = lim
i→∞

p(ξ, ζi).

2. {ζi} is termed as a Cauchy sequence if lim
i,j→∞

p(ζi, ζj) exists and is finite.
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3. The PMS (Ω, p) is termed as complete if every Cauchy sequence {ζi} in
X converges with respect to τp, to a point ξ ∈ Ω such that

p(ξ, ξ) = lim
n,m→∞

p(ζi, ζj).

4. A mapping ℑ : Ω → Ω is said to be continuous at ξ0 ∈ Ω if for every
ǫ > 0, there is δ > 0 so that ℑ(Bp(ξ0, δ)) ⊆ Bp(ℑξ0, ǫ).

Lemma 4. ([14, 15])

1. A sequence {ζi} is Cauchy in the metric space (Ω, dp) iff it is Cauchy in
the PMS (Ω, p).

2. A PMS (Ω, p) is complete iff the metric space (Ω, dp) is complete. More-
over,

lim
i→∞

dp(ξ, ζi) = 0 ⇔ p(ξ, ξ) = lim
i→∞

p(ξ, ζi) = lim
i,j→∞

p(ζi, ζj).

Lemma 5. ([1]) Let (Ω, p) be a PMS If ζi → ζ as i→ ∞ with p(ζ, ζ) = 0,
then lim

i→∞
p(ζi, η) = p(ζ, η) for each η ∈ Ω.

Lemma 6. ([1]) Let (Ω, p) be a PMS.

(A) If p(ν, η) = 0, then ν = η. The converse need not be true.

(B) If ν 6= η, then p(ν, η) > 0.

Definition 7. The mappings ℑ : Ω → Ω and F : Ω are called ω -
compatible if F (ℑν) = ℑ(Fν), whenever Fν = ℑν.

2. Results and discussions

Our first result is as follows.

Theorem 8. Let A ,BF ,G : Ω → Ω be four maps on a PMS (Ω, p).
Suppose that

(i)p(A ν,Bµ) + α(A ν) + γ(Bµ) ≤ ψ(α(Fν))α(Fν)+ψ(γ(G µ))γ(G µ)



228 D. Ram Prasad, G.N.V. Kishore, V.S. Bhagavan

where α, γ : Ω → [0,∞) are lower semi-continuous and ψ : [0,∞) → (0, 1) is
continuous;
(ii) A (Ω) ⊆ G (Ω) and B(Ω) ⊆ F (Ω);
(iii) (A ,F ) and (B,G ) are ω - compatible;
(iv) either F (Ω), or G (Ω) is complete.
Then A ,B,F and G have a unique CFP.

Proof. For arbitrary elements ν0, η0 in X, from condition (ii), define the
sequences {ν2n}, {ξ2n} and {ω2n} in X as

ξ2n = G ν2n+1 = A ν2n,

ξ2n+1 = Fν2n+2 = Bν2n+1, n = 0, 1, 2, · · ·

By (i), we have that

0 ≤ p(ξ2n, ξ2n+1)

= p(A ν2n,Bν2n+1)

≤ ψ(α(Fν2n))α(Fν2n)− α(A ν2n)

+ψ(γ(G ν2n+1))γ(G ν2n+1)− γ(Bν2n+1)

≤ ψ(α(ξ2n−1))α(ξ2n−1)− α(ξ2n)+ψ(γ(ξ2n))γ(ξ2n)− γ(ξ2n+1).

Therefore,

p(ξ2n, ξ2n+1) < α(ξ2n−1)− α(ξ2n) + γ(ξ2n)− γ(ξ2n+1) (2)

and

α(ξ2n) + γ(ξ2n+1)

≤ ψ(α(ξ2n−1))α(ξ2n−1) + ψ(γ(ξ2n))γ(ξ2n)

≤ max {ψ(α(ξ2n−1)), ψ(γ(ξ2n))} (α(ξ2n−1) + γ(ξ2n)) (3)

< (α(ξ2n−1) + γ(ξ2n)) .

Take tn = α(ξn) + γ(ξn+1). From the precedent inequality,

t2n = α(ξ2n) + γ(ξ2n+1) < t2n−1 = α(ξ2n−1) + γ(ξ2n).

Similarly, t2n−1 < t2n−2 and so on.
This shows that the sequence {tn} is a strictly decreasing, bounded below

sequence and so it converges to some l ≥ 0.
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Suppose l > 0. Letting n→ ∞ in Equation (3),we have

l ≤ lim
n→∞

max {ψ(α(ξ2n−1)), ψ(γ(ξ2n))} l

= max
{

ψ
(

lim
n→∞

α(ξ2n−1)
)

, ψ
(

lim
n→∞

γ(ξ2n)
)}

l

< l, since ψ is continuous and ψ : [0,∞) → (0, 1) .

It is a contradiction. Consequently,

lim
n→∞

[α(ξ2n) + γ(ξ2n+1)] = 0.

Thus, we have

lim
n→∞

α(ξ2n) = lim
n→∞

γ(ξ2n+1) = 0. (4)

Also, from (2), lim
n→∞

p(ξ2n, ξ2n+1) = 0. Now for any n,m > 0 and from (2), we

have that

p (ξ2n, ξ2m+1)
≤ p(ξ2n, ξ2n+1) + p(ξ2n+1, ξ2n+2) + · · · + p(ξ2m−1, ξ2m)

+p(ξ2m, ξ2m+1)− p(ξ2n+1, ξ2n+1)− p(ξ2n+2, ξ2n+2)− · · ·

−p(ξ2m−1, ξ2m−1)− p(ξ2m, ξ2m)

≤ α(ξ2n−1)− α(ξ2n) + γ(ξ2n)− γ(ξ2n+1) + α(ξ2n)− α(ξ2n+1)

+γ(ξ2n+1)− γ(ξ2n+2) + α(ξ2n+1)− α(ξ2n+2) + γ(ξ2n+2)

−γ(ξ2n+3) + · · · + α(ξ2m−2)− α(ξ2m−1) + γ(ξ2m−1)− γ(ξ2m)

+α(ξ2m−1)− α(ξ2m) + γ(ξ2m)− γ(ξ2m+1)

= α(ξ2n−1)− α(ξ2m) + γ(ξ2n)− γ(ξ2m+1)

→ 0 as n,m→ ∞.

Now from p4, we have that

p(ξ2n, ξ2m) ≤ p(ξ2n, ξ2m+1) + p(ξ2m+1, ξ2m)− p(ξ2m+1, ξ2m+1)
→ 0 as n,m → ∞.
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This shows that {ξ2n} is a Cauchy sequence in (Ω, p).

From Lemma 4, {ξ2n} is Cauchy sequences in metric space (Ω, dp).

Hence {ξn} is Cauchy sequences in metric space (Ω, dp).

Hence, we have that

lim
n,m→∞

dp(ξn, ξm) = 0.

By the definition of dp, we have

lim
n,m→∞

p(ξn, ξm) = 0. (5)

Suppose F (Ω) is a complete. Since {ξ2n+1} ⊆ F (Ω) is Cauchy sequences
in complete metric space (F (Ω), dp). It follows that {ξ2n+1} is convergent in
(F (Ω), dp). Thus

lim
n→∞

dp(ξ2n+1, µ) = 0, for some µ ∈ F (Ω).

Since {ξn} is Cauchy sequences in (F (Ω), dp) , ξ2n+1 → µ , it follows that
ξ2n → µ . From Lemma 4,
p(µ, µ) = lim

n→∞
p(ξ2n, µ) = lim

n→∞
p(ξ2n+1, µ) = lim

m,n→∞
p(ξ2n, ξ2m) = 0.

Since α and γ are lower semi-continuous functions, ξ2n → µ and as n→ ∞
from (4) we have α(µ) = γ(µ) = 0.

Since F : Ω → Ω and µ ∈ F (Ω), there exist s ∈ Ω such that Fs = µ.
From (i), we have

p(A s, µ) = p(A s, ξ2n+1) + p(ξ2n+1, µ)− p(ξ2n+1, ξ2n+1)
= p(A s,Bν2n+1) + p(ξ2n+1, µ)− p(ξ2n+1, ξ2n+1)
≤ ψ(α(Fs))α(Fs) − α(A s)
+ψ(γ(G ν2n+1))γ(G ν2n+1)− γ(Bν2n+1)
+p(ξ2n+1, µ)− p(ξ2n+1, ξ2n+1)

< α(Fs)− α(A s) + γ(G ν2n+1)− γ(Bν2n+1)
+p(ξ2n+1, µ)− p(ξ2n+1, ξ2n+1).

Letting n→ ∞, we have

p(A s, µ) ≤ α(µ)− α(A s) + γ(µ)− γ(µ) + p(µ, µ)− p(µ, µ)
= α(µ) − α(A s, t) ≤ α(µ) = 0.

Therefore p(A s, µ) = 0, so we have A s = µ = Fs.
Since (A ,F ) are ω - compatible, we have that A µ = Fµ.
We have
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p(Fµ, ξ2n) = p(A µ,Bν2n)
≤ ψ(α(Fµ))α(Fµ) − α(A µ) + ψ(γ(G ν2n))(γ(G ν2n)− γ(Bν2n)
< α(Fµ) − α(A (µ, ϑ)) + γ(G ν2n)− γ(B(ν2n, η2n))
< α(Fµ) − α(Fµ) + γ(ξ2n−1)− γ(ξ2n)
< γ(ξ2n−1)− γ(ξ2n).

Letting n→ ∞ , we have that

p(Fµ, µ) → γ(µ)− γ(µ) = 0.

Therefore, Fµ = µ.

Therefore, A µ = Fµ = µ.

Since A (Ω) ⊆ G (Ω), there exist a ∈ X such that A µ = G a. Therefore,
µ = A µ = G a,

p(µ,Ba) = p(A µ,Ba)
≤ ψ(α(Fµ))α(Fµ) − α(A µ) + ψ(γ(G a))γ(G a)− γ(Ba)
≤ α(Fµ) − α(A µ) + γ(G a)− γ(Ba)

= α(µ) − α(µ) + γ(µ)− γ(Ba) ≤ γ(µ) = 0.

Therefore, p(µ,Ba) = 0, that is, µ = Ba.

Since (B,G ) are ω - compatible, we have Bµ = Gµ. We have

p(µ,G µ) = p(A µ,Bµ)
≤ ψ(α(Fµ))α(Fµ) − α(A µ) + ψ(γ(G µ))γ(G µ)− γ(Bµ)
= α(Fµ) − α(A µ) + γ(G µ)− γ(Bµ)
≤ α(µ) − α(µ) + γ(Gµ)− γ(G µ) = 0.

Therefore, p(µ,G µ) = 0, so µ = Gµ.

We obtained that µ = Gµ = Bµ.

This shows that µ is a CFP of A ,B,F and G . Suppose µ∗ is an another
common fixed point of A ,B,F and G . One writes

p(µ, µ∗) = p(A µ,Bµ∗)
≤ ψ(α(Fµ))α(Fµ) − α(A µ) + ψ(γ(G µ∗))γ(G µ∗)− γ(Bµ∗)
< α(µ)− α(µ) + γ(µ∗)− γ(µ∗) ≤ 0.

Therefore, µ = µ∗. This shows that µ is the unique CFP of A ,B,F and G .
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Corollary 9. Let (Ω, p) be a partial metric space. Let A , F , G : Ω → Ω
be mappings such that

(a) p(A ν,A µ) ≤ ψ(α(Fν))α(Fν) − α(A ν)
+ ψ(γ(Bµ))γ(Bµ)− γ(A µ),

where α, γ : Ω → [0,∞) are lower semi-continuous and ψ : [0,∞) → (0, 1) is
continuous. Suppose that
(b)A (Ω) ⊆ G (Ω) and A (Ω) ⊆ F (Ω);
(c) Either (A ,F ), or (A ,G ) are ω - Compatible;
(d) Either F (Ω), or G (Ω) is complete.
Then A ,F and G have a unique CFP of the form µ.

Theorem 10. Let (Ω, p) be PMS. Let A ,B,F ,G : Ω → Ω be such that
(i) p(A ν,Bµ) ≤ α(ψ(Fν,G µ))ψ(Fν,G µ)− ψ(A ν,Bµ)
where ψ : Ω × Ω → [0,∞) is lower semi-continuous and α : [0,∞) → (0, 1) is
continuous. Suppose that
(ii) A (Ω) ⊆ G (Ω) and B(Ω) ⊆ F (Ω);
(iii) (A ,F ) and (B,G ) are ω-compatible;
(iv) either F (Ω), or G (Ω) is complete.
Then A ,B,F and G have a unique CFP of the form µ.

Proof. Consider ν0, η0 in X. By (ii), define {ν2n} and {ζ2n} as follows
ζ2n = Gν2n+1 = Aν2n,

ζ2n+1 = Fν2n+2 = Bν2n+1, n = 0, 1, 2, · · ·

Now,

0 ≤ p(ζ2n, ζ2n+1)

= p(Aν2n,Bν2n+1)

≤ α(ψ(Fν2n,Gν2n−1))ψ(Fν2n,Gν2n−1)− ψ(Aν2n,Bν2n+1)

≤ α(ψ(ζ2n−1, ζ2n))ψ(ζ2n−1, ζ2n)− ψ(ζ2n, ζ2n+1).

Therefore,

p(ζ2n, ζ2n+1) ≤ ψ(ζ2n−1, ζ2n)− ψ(ζ2n, ζ2n+1). (6)

and

ψ(ζ2n, ζ2n+1) ≤ α(ψ(ζ2n−1, ζ2n))ψ(ζ2n−1, ζ2n) (7)
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< ψ(ζ2n−1, ζ2n).

Thus, {ψ(ζ2n, ζ2n+1)} is non-increasing, so it converge to k ≥ 0. Suppose that
k > 0. Letting n→ ∞ in equation (7), we get a contradiction. Therefore,

lim
n→∞

ψ(ζ2n, ζ2n+1) = 0.

Now, from (p4) and Equation (6),

p (ζ2n, ζ2m+1)
≤ p(ζ2n, ζ2n+1) + p(ζ2n+1, ζ2n+2) + · · ·+ p(ζ2m−1, ζ2m)
+p(ζ2m, ζ2m+1)− p(ζ2n+1, ζ2n+1)− p(ζ2n+2, ζ2n+2)− · · ·
−p(ζ2m−1, ζ2m−1)− p(ζ2m, ζ2m)

≤ p(ζ2n, ζ2n+1) + p(ζ2n+1, ζ2n+2) + · · ·
+p(ζ2m−1, ζ2m) + p(ζ2m, ζ2m+1)

≤ ψ(ζ2n−1, ζ2n)− ψ(ζ2n, ζ2n+1)
+ψ(ζ2n, ζ2n+1)− ψ(ζ2n+1, ζ2n+2)
+ · · ·
+ψ(ζ2m−2, ζ2m−1)− ψ(ζ2m−1, ζ2m)
+ψ(ζ2m−1, ζ2m)− ψ(ζ2m, ζ2m+1)

= ψ(ζ2n−1, ζ2n)− ψ(ζ2m, ζ2m+1)
→ 0 as n,m→ ∞.

Again from (p4), we have

p(ζ2n, ζ2m) ≤ p(ζ2n, ζ2m+1) + p(ζ2m+1, ζ2m)− p(ζ2m+1, ζ2m+1)
→ 0 as n,m→ ∞.

Clearly, {ζ2n} is a Cauchy sequence in (Ω, p). In a similar way, one proves that
{ω2n} is Cauchy in (Ω, p).

By proceeding the similar track as mentioned in Theorem 8, we get the
CFP for A,B,F and G.

Corollary 11. Let (Ω, p) be a PMS and let A,F ,G : Ω → Ω be so that

(a) p(Aν,Aµ) ≤ α(ψ(Fν,Gµ))ψ(Fν,Gµ) − ψ(Aν,Aµ)

where ψ, φ : Ω → [0,∞) are lower semi-continuous and α : [0,∞) → (0, 1) is
continuous. Suppose that
(b) A(Ω) ⊆ G(Ω) and A(Ω) ⊆ F(Ω);
(c) either (A,F), or (A,G) are ω - compatible;
(d) either F(Ω), or G(Ω) is complete.
Then A,F and G have a unique CFP of the form µ.



234 D. Ram Prasad, G.N.V. Kishore, V.S. Bhagavan

Theorem 12. Let (X, p) be a PMS and let A, B, F , G : Ω → Ω be so that
(i) p(Aν,Bµ) ≤ β(α(Fν,Gµ))α(Fν,Gµ) − α(Aν,Bµ)
where α : Ω× Ω → [0,∞) is lower semi-continuous and
β : [0,+∞) → (0, 1) is continuous.
(ii) A(Ω) ⊆ G(Ω) and B(Ω) ⊆ F(Ω);
(iii) (A,F) and (B,G) are ω - Compatible;
(iv) either F(Ω), or G(Ω) is complete.
Then A,B,F and G have a unique CFP of the form µ.

3. Conclusion

In this paper, we provided some common fixed point results by using Caristi
type contractions in the class of partial metric spaces.
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