We consider the Jones-Wenzl representation
of the braid group . For each pair of integers (k,r) with , we exclude a family of words in the generators from belonging to the kernel of
. Then, we prove that
is not faithful for any even integer .
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] M.Y. Chreif, M.N. Abdulrahim, Attacks on the faithfulness of the Burau
representation of the braid group B4, Journal of Mathematics Research, 8,
No 1 (2016), 5-9.
[2] M.H. Freedman, M.J. Larsen, Z. Wang, The two-eigenvalue problem and
density of Jones representation of Braid groups, Communications in Mathematical
Physics, 228 (2002), 177-199.
[3] M.H. Freedman, M.J. Larsen, Z. Wang, Topolgical quantum computation,
Bulletin (New Ser.) of American Mathematical Society, 40, No 1 (2002).
[4] H.A. Haidar, M.N. Abdulrahim, On the irreducibility of the representation
of the pure braid group on three strands, Int. J. Appl. Math., 32, No 2
(2019), 249-257; DOI: 10.12732/ijam.v32i2.7.
[5] V.L. Hansen, Braids and Coverings. London Mathematical Society, Cambridge University Press (1989).
[6] D.D. Long, M. Paton, The Burau representation is not faithful for n ≥ 6,
Topology, 32, No 2 (1993), 439-447.