ON THE FAITHFULNESS OF JONES-WENZL
REPRESENTATION OF THE BRAID GROUP B4

Abstract

We consider the Jones-Wenzl representation $\rho_{4}^{(k,r)}$ of the braid group $B_{4}$. For each pair of integers (k,r) with $r \geq k+1$, we exclude a family of words in the generators from belonging to the kernel of $\rho_{4}^{(k,r)}$. Then, we prove that $\rho_{4}^{(k,r)}$ is not faithful for any even integer $r$.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 32
Issue: 3
Year: 2019

DOI: 10.12732/ijam.v32i3.4

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] M.Y. Chreif, M.N. Abdulrahim, Attacks on the faithfulness of the Burau representation of the braid group B4, Journal of Mathematics Research, 8, No 1 (2016), 5-9.
  2. [2] M.H. Freedman, M.J. Larsen, Z. Wang, The two-eigenvalue problem and density of Jones representation of Braid groups, Communications in Mathematical Physics, 228 (2002), 177-199.
  3. [3] M.H. Freedman, M.J. Larsen, Z. Wang, Topolgical quantum computation, Bulletin (New Ser.) of American Mathematical Society, 40, No 1 (2002).
  4. [4] H.A. Haidar, M.N. Abdulrahim, On the irreducibility of the representation of the pure braid group on three strands, Int. J. Appl. Math., 32, No 2 (2019), 249-257; DOI: 10.12732/ijam.v32i2.7.
  5. [5] V.L. Hansen, Braids and Coverings. London Mathematical Society, Cambridge University Press (1989).
  6. [6] D.D. Long, M. Paton, The Burau representation is not faithful for n ≥ 6, Topology, 32, No 2 (1993), 439-447.