International Journal of Applied Mathematics

Volume 32 No. 2 2019, 189-204

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v32i2.3

ABOUT THE WORDS BY k TO k ERASURE OF LETTER AND THE WORDS OF ERASED LETTERS: STURMIAN CASE

Moussa Barro¹, Idrissa Kaboré²§, Théodore Tapsoba³
^{1,2,3}Department of Mathematics and Computer Science
Université Nazi oni
Bobo-Dioulasso 01 BP 1091, BURKINA FASO

Abstract: In this paper, we define from an infinite word u, the word by k to k erasure of a letter and the word of the erased letters. Then, we study the classical complexity and the palindromic complexity of these words in the case of modulo-recurrent words and more specifically in the Sturmian case.

AMS Subject Classification: 68R15, 11B85

Key Words: sturmian word, modulo-recurrent, k to k erasure, complexity, palindrome

1. Introduction

The classical complexity function, which counts the number of distinct factors of given length in an infinite word, is often used in characterization of some families of words [1]. For instance, Sturmian words are the infinite words non eventually periodic with minimal complexity [6], [7]. During the last thirty years, Sturmian words are intensively studied. These investigations led to the getting of numerous characterizations and various properties [4], [5], [10], [11] on these words. Over the last two decades, palindromes are used abundantly in the literature of combinatorial study of infinite words (see [2], [8], [9]).

The notion of k to k insertion of a letter in infinite words was introduced in [10], and widely studied in [3], [9].

We introduce the concept of k to k erasure of letter in infinite words. It

Received: September 16, 2018

© 2019 Academic Publications

[§]Correspondence author

consists to erase a letter steadily with step of length k in an infinite word u. Thus, the new word obtained is called k to k erasure word of letter in u. The erased letters form a word which is called k to k erased word of u. The paper is devoted to the study of some combinatorial properties of these two types of words.

The paper is organized as follow. In Section 2 we give useful definitions and notations, and recall some properties of Sturmian words and modulo-recurrent words. We determine the classical complexity of the k to k erasure words of letter in non-trivial modulo-recurrent words and the corresponding erased words (Section 3). In Section 4, we study some palindromic proprieties and establish the palindromic complexities of the k to k erasure words and the associated erased words obtained from Sturmian words.

2. Preliminaries

2.1. Definitions and notations

An alphabet \mathcal{A} , is a non empty finite set whose the elements are called letters. A word is a finite or infinite sequence of elements of \mathcal{A} . The set of finite words over \mathcal{A} is denoted \mathcal{A}^* and ε , the empty word. For any $u \in \mathcal{A}^*$, the number of letters of u is called length of u and it is denoted |u|. Moreover, for any letter x of \mathcal{A} , $|u|_x$ is the number of occurrences of x in u. A word u of length n written with a unique letter x is simply denoted $u = x^n$.

Let $u = u_1 u_2 \cdots u_n$ be a word such that $u_i \in \mathcal{A}$, for all $i \in \{1, 2, \dots, n\}$. The image of u by the reversal map is the word denoted \overline{u} and defined by $\overline{u} = u_n \cdots u_2 u_1$. The word \overline{u} is simply called reversal image of u. A finite word u is called palindrome if $\overline{u} = u$. If u and v are two finite words over \mathcal{A} , we have $\overline{uv} = \overline{v} \, \overline{u}$.

The set of infinite words over \mathcal{A} is denoted \mathcal{A}^{ω} and we write $\mathcal{A}^{\infty} = \mathcal{A}^* \cup \mathcal{A}^{\omega}$. The set of letters which apprear in a word u, is designated by alph(u). An infinite word u is said to be eventually periodic if there exist two words $v \in \mathcal{A}^*$ and $w \in \mathcal{A}^+$ such that $u = vw^{\omega}$. If $v = \varepsilon$, then u is periodic The n-th power of a finite word w denoted by w^n is the word corresponding to the concatenation $(ww \cdots w)$ n times of w. By extension, $w^0 = \varepsilon$.

Let $u \in \mathcal{A}^{\infty}$ and $w \in \mathcal{A}^*$. The word w is a factor of u if there exist $u_1 \in \mathcal{A}^*$ and $u_2 \in \mathcal{A}^{\infty}$ such that $u = u_1wu_2$. The factor w is said to be a prefix (resp. a suffix) if u_1 (resp. u_2) is the empty word.

Let u be an infinite word over A. The set of factors of u of length n, is

written $L_n(u)$ and the set of all factors of u is denoted by L(u).

For any infinite word u over \mathcal{A} , we shall write $u = u_0 u_1 u_2 \cdots$, where $u_i \in \mathcal{A}$, $i \geq 0$.

A factor w of length n of an infinite word $u = u_0 u_1 u_2 \cdots$ appears in u in the position l if $w = u_l u_{l+1} \cdots u_{l+n-1}$.

The classical complexity of an infinite word u is the map of \mathbb{N} to \mathbb{N}^* defined by $\mathbf{P}_u(n) = \#L_n(u)$, where $\#L_n(u)$ designates the cardinal of $L_n(u)$.

The set of palindromes of u of length n is denoted $PAL_n(u)$, and the set of all palindromes of u, is PAL(u). The palindromic complexity of an infinite word u is the map of \mathbb{N} to \mathbb{N} , defined by $\mathbf{P}_u^{al}(n) = \#PAL_n(u)$.

Let $u = u_0 u_1 u_2 u_3 \cdots$ be an infinite word. The window complexity of u is the map, \mathbf{P}_u^f of \mathbb{N} into \mathbb{N}^* , defined by

$$\mathbf{P}_{u}^{f}(n) = \# \left\{ u_{kn} u_{kn+1} \cdots u_{n(k+1)-1} : k \ge 0 \right\}.$$

The shift, is the application S of \mathcal{A}^{ω} to \mathcal{A}^{ω} which erases the first letter of the word.

A morphism f is a map of \mathcal{A}^* into itself such that f(uv) = f(u)f(v), for any $u, v \in \mathcal{A}^*$.

2.2. Sturmian words and modulo-recurrent words

In this subsection, we recall some properties of Sturmian words and modulorecurrent words that will be used in the following.

Definition 1. An infinite word u is a Sturmian word if for any natural n, $\mathbf{P}_{u}(n) = n + 1$.

The most well-known Sturmian word is the famous Fibonacci word. It is generated by the morphism φ defined by $\varphi(a) = ab$ and $\varphi(b) = a$.

Definition 2. An infinite word $u = u_0 u_1 u_2 \cdots$ is said to be modulo-recurrent if for all $i \geq 1$, any factor w of u, appears in u at all positions modulo i, i.e.

$$\forall i \in \{0, 1, 2, \cdots, l-1\}, \ \exists g_i \in \mathbb{N}: \ w = u_{lg_i + i} u_{lg_i + i + 1} \cdots u_{lg_i + i + |w| - 1}.$$

Example 3. The word a^{ω} is modulo-recurrent.

The Thue-Morse word ${\bf t}$ is not modulo-recurrent. Indeed, the factorization in factors with length 2 of ${\bf t}$

$$\mathbf{t} = ab|ba|ba|ab|ab|ab|ab|ba|ba|ab \cdots$$

shows that the factor bb never appears at an even position.

Proposition 4. ([5]) Let u be an infinite word over A such that $P_u(n) = (\#A)^n$, for all $n \in \mathbb{N}$. Then, u is modulo-recurrent.

Definition 5. A modulo-recurrent word u over \mathcal{A} is called non-trivial modulo-recurrent word if there exists a positive integer n_0 such that for all $n \geq n_0$:

$$\mathbf{P}_u(n) < (\#\mathcal{A})^n.$$

Factors of length n occurring in u at a position which is multiple of n as above, are called n-window factors of u.

Proposition 6. ([5]) Let u be a modulo-recurrent word. Then, for all n, the set of n-window factors of u is equal to $L_n(u)$.

Theorem 7. ([10]) Every Sturmian word is modulo-recurrent.

The following theorem presents a classical characterization of Sturmian words.

Theorem 8. ([8]) Let u be a Sturmian word. Then, for all $n \in \mathbb{N}$, we have:

$$\mathbf{P}_{u}^{al}(n) = \begin{cases} 1 & \text{if } n \text{ is even} \\ 2 & \text{otherwise} \end{cases}$$

The modulo-recurrent words can be characterized by their window complexity as follows.

Theorem 9. [5] Let u be a recurrent infinite word. Then, the following assertions are equivalent:

- (1) u is a modulo-recurrent word,
- (2) $\forall n \geq 1, P_u^f(n) = P_u(n).$

3. Classical complexity

We introduce the notion of k to k erasure of letter in the infinite words with $k \geq 1$.

Definition 10. Let u be an infinite word over A. Let us decompose u in the form:

$$u = x_0 m_0 x_1 m_1 x_2 m_2 x_3 m_3 \cdots x_i m_i \cdots, \tag{1}$$

where $m_i \in L_k(u)$ and $x_i \in \mathcal{A}$, $i \in \mathbb{N}$.

Now, let us erase the letters x_i in the previous decomposition of u. We get the word

$$\mathcal{E}_k(u) = m_0 m_1 m_2 m_3 \cdots m_i \cdots.$$

The word $\mathcal{E}_k(u)$ is called word by k to k erasure word of letter in u.

The word defined by the sequence of the erased letters x_i in the decomposition of u is:

$$\mathcal{R}_k(u) = x_0 x_1 x_2 x_3 \cdots x_i \cdots$$

Example 11. Consider the Fibonacci word

Then,

$$\mathcal{E}_3(\mathbf{f}) = baaababaaababaaababaaababaaababaaa \cdots$$

and the associated erased word is

$$\mathcal{R}_3(\mathbf{f}) = ababaabab \cdots$$

Proposition 12. Let u be an infinite word over A and $v = \mathcal{E}_k(u)$. Then, we have:

(i)
$$\forall n \leq k, P_v(n) \leq P_u(n) + (n+1)P_u(n+1),$$

(ii)
$$\forall q \ge 1$$
, $\mathbf{P}_v(kq+r) \le (k-r+1)\mathbf{P}_u((k+1)q+r) + r\mathbf{P}_u((k+1)q+r+1)$ with $0 \le r < k$.

Proof. First, consider $n \leq k$. Then, the factors of u of length n are also factors of v. Moreover, the other factors of v of length n are produced from factors of u of length n+1 by erasing one letter. Thus, we have the following inequality:

$$\mathbf{P}_v(n) \le \mathbf{P}_u(n) + (n+1)\mathbf{P}_u(n+1).$$

Now, consider n > k. Then, we can write n = kq + r with $q \ge 1$ and $0 \le r \le k$. We have two cases to consider.

Case 1: The factors of v of length kq.

Let us observe that any factor of v of length kq comes from a factor of u of length (k+1)q-1, (k+1)q or (k+1)q+1. Let v_1 be a factor of v of length kq coming from a factor u_1 of u.

- If $|u_1| = (k+1)q + 1$, then $u_1 = x_1 m_1 x_2 m_2 \cdots x_q m_q x_{q+1}$ and $v_1 = m_1 m_2 \cdots m_q$ with $|m_i| = k$, for all $i = 1, \ldots, q$.
- If $|u_1| = (k+1)q 1$, then $u_1 = m_1 x_2 m_2 \cdots x_q m_q$ and $v_1 = m_1 m_2 \cdots m_q$ with $|m_i| = k$, for all $i = 1, \ldots, q$.
- If $|u_1| = (k+1)q$, then $u_1 = m_0x_1m_1x_2m_2\cdots x_qm_q$ and $v_1 = m_0m_1m_2\cdots m_q$ with $|m_0| + |m_q| = k$ and $|m_i| = k$, for all $i = 1, \ldots, q-1$.

Consequently, the factors of u of length (k+1)q-1 and (k+1)q+1 produce the same factors of v of length kq. These same factors of v come also from factors of u of length (k+1)q for $|m_0|=0$.

Furtheremore, any factor of u of length (k+1)q produces at most k+1 factors of v of length kq by k to k erasure of letter. In conclusion, we obtain the inequality

$$\mathbf{P}_v(kq) \le (k+1)\mathbf{P}_u((k+1)q).$$

Case 2: The factors of v of length kq + r with $1 \le r < k$.

Observe that any factor of v of length kq + r comes from a factor of u of length (k+1)q + r or (k+1)q + r + 1.

Let v_1 be a factor of v of kq + r coming from a factor u_1 of u.

• If $|u_1| = (k+1)q + r$, then $u_1 = m_0 x_1 m_1 x_2 m_2 \cdots x_q m_q$ with $|m_0| + |m_q| = k + r$ and $|m_0| \le k$, $|m_q| \le k$ and $v_1 = m_0 m_1 m_2 \cdots m_q$.

Therefore, $r \leq |m_0| \leq k$ and any factor of u of length (k+1)q + r produces at most k-r+1 distinct factors of v of length kq+r.

• If $|u_1| = (k+1)q + r + 1$, then $u_1 = m_0 x_1 m_1 x_2 m_2 \cdots x_q m_q x_{q+1} m_{q+1}$ with $|m_0| + |m_{q+1}| = r$ and $v_1 = m_0 m_1 m_2 \cdots m_q m_{q+1}$.

Furthermore, $|m_0| \leq r$. So, any factor of u of length (k+1)q+r produces at most r+1 factors of v of length kq+r. Moreover, for $|m_0| = 0$ and $|m_0| = r$, the factors of v of length kq+r which come from factors of v of length (k+1)q+r+1 are also produced by those of length (k+1)q+r. Consequently, any factor of v of length (k+1)q+r+1 produces at most v distinct factors of v of length v0 of length v1 of length v2 of length v3 of length v4 of length v5 of length v6 of length v7 of length v8 of length v9 of

Finally, we obtain the following inequality:

$$\mathbf{P}_v(kq+r) \le (k-r+1)\mathbf{P}_u((k+1)q+r) + r\mathbf{P}_u((r+1)q+r+1).$$

Proposition 13. Let u be an infinite word and $w = \mathcal{R}_k(u)$. Then, for all positive integer n, the classical complexity of w verifies the following inequality:

$$\mathbf{P}_w(n) \le (k+1)\mathbf{P}_u((k+1)n).$$

Proof. Let u_1 be a sufficiently long factor of u. Let w_1 be a factor of w such that w_1 comes from u_1 . Then, we can write $u_1 = m_0 x_1 m_1 x_2 m_2 \cdots x_q m_q$ with $|m_0| \leq k$, $|m_q| \leq k$ and $|m_i| = k$, for $i = 1, \ldots, q-1$. Furtheremore,

$$|u_1| \in \{(k+1)q - k, (k+1)q - k + 1, \dots, (k+1)q + k\}.$$

Case 1: $|u_1| = (k+1)q - k + r$ with $0 \le r \le k$ and $|m_0| + |m_q| = r$. Then, any factor of u of length (k+1)q - k + r produces r+1 factors of w of length q. Moreover, these factors of w of length q come from the facteur of u of length (k+1)q.

Case 2: $|u_1| = (k+1)q + k - r$ with $0 \le r \le k$, and $|m_0| + |m_q| = 2k - r$. Thus, any factor of u of length (k+1)q + k - r produces r+1 factors of w of length q. Moreover, these factors of w of length q come from those of u of length (k+1)q.

Finally, any factor of w of length q is produced from a factor of u of length (k+1)q. In addition, any factor of u of length (k+1)q produces k+1 factors of w of length q. Thus, we have the following inequality:

$$\mathbf{P}_w(n) \le (k+1)\mathbf{P}_u((k+1)n).$$

Proposition 14. Let u be a modulo-recurrent word over an alphabet A, $k \geq 1$ an integer. Then, the k to k erasure of letter in a factor of u from any possible position produces a factor of $\mathcal{E}_k(u)$.

Proof. Let u_1 be a factor of u. We have two cases to discuss.

Case 1: $|u_1| \le k + 1$.

Consider p and s two factors of u and x a letter in \mathcal{A} such that $u_1 = pxs$. Thus, since u is modulo-recurrent, then u_1 appears in u in some position $h \equiv k+1-|p|$ mod (k+1). Therefore, ps is a factor of $\mathcal{E}_k(u)$.

Case 2: $|u_1| > k + 1$.

Consider the words p, s, m_1, \dots, m_q such that

 $u_1 = px_1m_1x_2\cdots x_qm_qx_{q+1}s$ with $|p|+|s| \leq k$ and $|m_i|=k$ for $i=1,\ldots,q$. Then, as previously u_1 appears in u in some position $h\equiv k+1-|p|\mod(k+1)$. Therefore, it follows that $pm_1\cdots m_qs$ is a factor of $\mathcal{E}_k(u)$.

The following corollaries are immediate consequences of Proposition 14.

Corollary 15. Let u be a modulo-recurrent word over A and u_1 be a factor of u. Then, any erased factor of u_1 appears in $\mathcal{R}_k(u)$.

Corollary 16. Let u be a modulo-recurrent word. Then, the words $\mathcal{E}_k(u)$ and $\mathcal{R}_k(u)$ are recurrent.

Remark 17. Let u be a non-trivial modulo-recurrent word. Then, $\mathcal{E}_k(u)$ is not modulo-recurrent.

Indeed, pose $v = \mathcal{E}_k(u)$. Since u is non-trivial modulo-recurrent then, we have

$$\mathbf{P}_v^f(k) \leq \mathbf{P}_u^f(k+1) = \mathbf{P}_u(k+1)$$
 and $\mathbf{P}_v(k) = (k+1)\mathbf{P}_u(k+1)$.
Therefore, $\mathbf{P}_v^f(k) \neq \mathbf{P}_v(k)$. Hence, v is not modulo-recurrent.

Lemma 18. Let u be a modulo-recurrent word over A. Then, u is periodic if and only if $u = x^{\omega}$, $x \in A$.

Proof. Suppose u a periodic word. So, there exists a factor m of u such that $u=m^{\omega}$. Thus, $\mathbf{P}_{u}^{f}(lq)=1$ with |m|=l and $q\geq 0$. Since u is modulo-recurrent then, we have $\mathbf{P}_{u}(lq)=1$. Consequently, $\mathbf{P}_{u}(n)=1$ for all n. Hence, m=x and $u=x^{\omega}$.

The converse is evident. \Box

Lemma 19. Let u be a modulo-recurrent word over A. Then, the following properties are equivalent:

- (i) u is not eventually periodic;
- (ii) $\mathcal{E}_k(u)$ is not eventually periodic;
- (iii) $\mathcal{R}_k(u)$ is not eventually periodic.

Proof. $(i) \Longrightarrow (ii)$. Suppose that u is not eventually periodic. Then, assume that $\mathcal{E}_k(u)$ is eventually periodic. Therefore, v is periodic since it is recurrent. So, there exists a factor m of $\mathcal{E}_k(u)$ such that $\mathcal{E}_k(u) = m^{\omega}$.

For k = |m|, we obtain $u = (x_i m)^{\omega}$ with $x_i \in \mathcal{A}$. Thus, for $q \geq 1$, we have $\mathbf{P}_u^f((k+1)q) \leq \#\mathcal{A}$ since u is modulo-recurrent. Furthermore, we have

- $\mathbf{P}_u((k+1)q) \leq \#\mathcal{A}$. Therefore, \mathbf{P}_u is bounded and u is eventually periodic. This contradicts the fact that u is not eventually periodic. Hence, $\mathcal{E}_k(u)$ is not eventually periodic.
- $(ii) \Longrightarrow (i)$. Suppose that $\mathcal{E}_k(u)$ is not eventually periodic. By contradiction, assume that u is not eventually periodic. Therefore, u is periodic since it is recurrent. So, there exists a word t such that $u = t^{\omega}$. Thus, u can be written in the form $u = (xm)^{\omega}$ with t = xm and $x \in \mathcal{A}$.

For k = |m|, we obtain $\mathcal{E}_k(u) = m^{\omega}$. We have a contradiction. Hence, u is not eventually periodic.

 $(iii) \Longrightarrow (i)$. Suppose that $\mathcal{R}_k(u)$ is not eventually periodic. By contradiction, assume that u is not eventually periodic. Therefore, u is periodic since it is recurrent. So, there exists a word t such that $u = t^{\omega}$. Thus, u can be written in the form $u = (xm)^{\omega}$ with t = xm and $x \in \mathcal{A}$.

For k = |m|, we have $\mathcal{R}_k(u) = x^{\omega}$. This contradicts the fact that $\mathcal{R}_k(u)$ is not evantually periodic. Contradiction. Hence, u is not eventually periodic. \square

Corollary 20. Let u be an infinite word. If u is τ -periodic and $k \equiv -1 \mod \tau$, then $\mathcal{E}_k(u)$ is k-periodic.

Proof. Consider u a periodic infinite word. Then, we can write $u = t^{\omega} = (xm)^{\omega} = xmxmxmxm \cdots$ with t = xm, $x \in \mathcal{A}$ and $|t| = \tau$.

If $k = q\tau - 1$, then $\mathcal{E}_k(u) = (m(xm)^{q-1})^{\omega} = (mt^{q-1})^{\omega}$. Thus, v is periodic and $|mt^{q-1}| = q\tau - 1 = k$.

- **Lemma 21.** Let u be a modulo-recurrent word over A. Let u_1 be a factor of u such that $|u_1| \leq k + 1$. If the k to k erasures of letter in u_1 from two different positions produce a same factor then,
 - (i) the erased letters are identical;
- (ii) the factor which separates these two positions in u_1 is a power of the erased letter.

Proof. Let u_1 be a factor of u such that $|u_1| \leq k+1$. Let v_1 and v_2 be two words obtained by k to k erasures of letter from two different positions in u_1 such that $v_1 = v_2$. Then, u_1 can be written in the form $u_1 = px_1tx_2s$ with $|p|, |t|, |s| \geq 0$ and $v_1 = ptx_2s, v_2 = px_1ts$. Since $v_1 = v_2$, then we get $ptx_2s = px_1ts$. It follows that $x_1 = x_2$ (i).

In addition, $ptx_2s = px_1ts$ implies that $tx_2 = x_1t$. Thus, by (i) we have tx = xt with $x = x_1 = x_2$. Therefore, t is a power of x because x is a letter (ii).

For the sequel, we need the following definitions.

Definition 22. Let u be a modulo-recurrent word over \mathcal{A} and $k \geq 1$.

- (1) A factor u_1 of u is said to be sufficiently long if u_1 contains all the (k+1)-window factors of u.
- (2) A factor v_1 of $\mathcal{E}_k(u)$ is said to be sufficiently long if v_1 comes from a sufficiently long factor of u.

Lemma 23. Let u be a non-trivial modulo-recurrent word over \mathcal{A} . Let u_1 be a sufficiently long factor of u. Then, the k to k erasures of letter in u_1 from two different positions produce distinct factors of $\mathcal{E}_k(u)$.

Proof. Let u_1 be a sufficiently long factor of u. The word u is modulorecurrent and non-trivial since it is Sturmian. So, any k to k erasure of letter in u_1 produces a factor of $\mathcal{E}_k(u)$. Consider two factors v_1 and v_2 of $\mathcal{E}_k(u)$ obtained by k to k erasures of letter from two different positions in u_1 such that $v_1 = v_2$. Then, v_1 and v_2 contain the same number of erased letters. So, u_1 can be written in two forms $u_1 = m_0 x_1 m_1 x_2 m_2 \cdots x_q m_q$ and $u_1 = t_0 y_1 t_1 y_2 t_2 \cdots y_q t_q$ with $x_i, y_i \in \mathcal{A}$. Therefore, we obtain $v_1 = m_0 m_1 m_2 \cdots m_q$ and $v_2 = t_0 t_1 t_2 \cdots t_q$.

Since $v_1 = v_2$, we have three cases to discuss.

Case 1: $|m_0| = |t_0|$. So $m_0 = t_0$ since $v_1 = v_2$. Then, $m_i = t_i$ et $x_i = y_i$, for all $i = 0, 1, \ldots, q$. Thus, the two erasures are identical.

Case 2: $|m_0| < |t_0|$. We can write $t_0 = m_0 x_1 t_1'$ since $v_1 = v_2$. Thus, u_1 can be written in the form

$$u_1 = m_0 x_1 t_1' y_1 t_1'' x_2 t_2' y_2 t_2'' \cdots x_q t_q' y_q t_q$$

with $t_i = t_i'' x_{i+1} t_{i+1}'$, $i = 1, \ldots, q-1$. According to Lemma 21, we have $x_i = y_i$ and $t_i' = x_i^l$ with $l \geq 1$, for $i = 1, \ldots, q-1$. Therefore, we obtain $u_1 = m_0 x_1^{l+2} t_1'' x_2^{l+2} t_2'' \cdots x_q^{l+2} t_q$. Now, we know that $|x_i^{l+2} t_i''| = k+1$, for all $i = 1, \ldots, q-1$. So, all the (k+1)-window factors of $S^{|m_0|}(u_1)$ begin with x_i^2 . Thus, $\mathbf{P}_u^f(k+1) \leq \mathbf{P}_u(k+1) - (\#\mathcal{A})$ since $L_{k+1}(u)$ contains all the factors of u of length k+1 begining with $x_i x_j$ where $x_i, x_j \in \mathcal{A}$. This contradicts the fact that $\mathbf{P}_u^f(k+1) = \mathbf{P}_u(k+1)$ by Theorem 9 since u is modulo-recurrent. Thus, $|m_0| = |t_0|$ and we come back to Case 1.

Case 3: $|m_0| > |t_0|$. We carry on the reasoning similarly in Case 2.

Lemma 24. Let u be a non-trivial modulo-recurrent word over A. Let u_1 and u_2 be two distinct and sufficiently long factors of u. Then, the words

obtained by k to k erasures of letter in the words u_1 and u_2 are distinct factors of $\mathcal{E}_k(u)$.

Proof. Let u_1 and u_2 be two distinct and sufficiently long factors of u. We decompose u_1 and u_2 in the following forms $u_1 = m_0 x_1 m_1 x_2 m_2 \cdots x_q m_q$ and $u_2 = t_0 y_1 t_1 y_2 t_2 \cdots y_q t_q$ with $x_i, y_i \in \mathcal{A}$, and $m_i, t_i \in L_k(u)$, $1 \le i \le q-1$. Thus, we obtain $v_1 = m_0 m_1 m_2 \cdots m_q$ and $v_2 = t_0 t_1 t_2 \cdots t_q$.

Suppose $v_1 = v_2$.

Case 1: $|m_0| = |t_0|$. Since $v_1 = v_2$, then $m_0 = t_0$. So, we have $m_i = t_i$ and $x_i = y_i$, for all $i = 0, 1, \dots, q$. Thus, it results that $u_1 = u_2$. This is impossible because u_1 and u_2 are distinct factors. Therefore, v_1 and v_2 are distinct factors of $\mathcal{E}_k(u)$.

For the cases $|m_0| < |t_0|$ and $|m_0| > |t_0|$, we carry on the reasoning similarly to Lemma 23. In conclusion, v_1 and v_2 are distinct factors of $\mathcal{E}_k(u)$.

Corollary 25. Let u be a non-trivial modulo-recurrent word over \mathcal{A} . Let u_1 and u_2 be two distinct and sufficiently long factors of u. Let v_1 and v_2 (resp. w_1 and w_2) be two words obtained by k to k erasures of letters (resp. two erased words) in the words u_1 and u_2 respectively. If $v_1 = v_2$, then we have $w_1 = w_2$.

Proof. It suffices to apply successively Lemma 24 and Lemma 23. □

We show that the inequality of the Proposition 12 becomes an equality for n sufficiently large and u is a non-trivial modulo-recurrent word.

Theorem 26. Let u be a non-trivial modulo-recurrent word over A, $v = \mathcal{E}_k(u)$ and $w = \mathcal{R}_k(u)$. Then, for q sufficiently large, we have:

(i)
$$P_v(kq+r) = (k-r+1)P_u((k+1)q+r) + rP_u((k+1)q+r+1),$$

(ii)
$$P_w(q) = (k+1)P_u((k+1)q).$$

Proof. (i) According to Lemma 23, the k to k erasures from two different positions in a sufficiently long factor of u produce distinct factors of v. Moreover, by Lemma 24, the k to k erasures of letter in two distinct and sufficiently long factors of u produce distinct factors of v. Therefore, by Proposition 12, any factor of u of length (k+1)q+r (resp. (k+1)q+r+1) produce after erasure (k-r+1) (resp. r) distinct factors of v since u is modulo-recurrent and non-trivial. Hence, the inequality in Proposition 12 becomes an equality.

(ii) By Corollary 25, any sufficiently long factor of w comes from an only one factor of u. So, any factor of u of length (k+1)q produces (k+1) factors of length q of u. Thus, the inequality of the Proposition 13 becomes an equality.

Observe that the Theorem 26 is not true for the trivial modulo-recurrent words.

Indeed, if $\mathbf{P}_u(n) = 1$, for all $n \in \mathbb{N}$, then the word u is periodic. From Lemma 18, it follows that $u = x^{\omega}$ and v = u. Consequently, for all $n \in \mathbb{N}$, $\mathbf{P}_v(n) = 1$.

If $\mathbf{P}_u(n) = (\#\mathcal{A})^n$, for all $n \in \mathbb{N}$, then the classical complexity of u is maximal. Since u is modulo-recurrent, so $\mathbf{P}_v(n) \geq \mathbf{P}_u(n)$, for all $n \in \mathbb{N}$. Thus, we have $\mathbf{P}_v(n) = \mathbf{P}_u(n)$, for all $n \in \mathbb{N}$.

Taking r = 0, in Theorem 26, we have the following:

Remark 27. Let u be a non-trivial modulo-recurrent word over \mathcal{A} , $v = \mathcal{E}_k(u)$ and $w = \mathcal{R}_k(u)$. Then, for q sufficiently large we have

$$\mathbf{P}_w(q) = \mathbf{P}_v(kq).$$

Corollary 28. Let u be a Sturmian words over A, $v = \mathcal{E}_k(u)$ and $w = \mathcal{R}_k(u)$. Then, for all sufficiently large n, we have:

(i)
$$\mathbf{P}_v(n) = (k+2)n + k + \lfloor \frac{n}{k} \rfloor + 1,$$

where [.] denotes the floor function.

(ii)
$$\mathbf{P}_w(n) = (k+1)^2 n + k + 1.$$

Proof. Since the word u is Sturmian, then it is a non-trivial modulo-recurrent word. By applying Theorem 26 for n = kq + r, we have:

(i)
$$\mathbf{P}_{v}(kq+r) = (k-r+1)\mathbf{P}_{u}((k+1)q+r) + r\mathbf{P}_{u}((k+1)q+r+1)$$

 $= (k-r+1)((k+1)q+r+1) + r((k+1)q+r+2)$
 $= (k+2)(kq+r) + k + q + 1$
 $= (k+2)n + k + \lfloor \frac{n}{k} \rfloor + 1 \text{ since } q = \frac{n-r}{k} = \lfloor \frac{n}{k} \rfloor$.

(ii)
$$\mathbf{P}_{w}(n) = (k+1)\mathbf{P}_{u}((k+1)n)$$

$$= (k+1)((k+1)n+1)$$

$$= (k+1)^{2}n + k + 1.$$

4. Palindromic complexity

In this section, we determine the palindromic complexities of $\mathcal{E}_k(u)$ and $\mathcal{R}_k(u)$.

Lemma 29. Let u be a modulo-recurrent word over A. Then, the following assertions are equivalent:

- (i) L(u) is stable by reversal map;
- (ii) $L(\mathcal{E}_k(u))$ is stable by reversal map;
- (iii) $L(\mathcal{R}_k(u))$ is stable by reversal map.

Proof. Let u_1 be a factor of u such that $u_1 = m_0 x_1 m_1 x_2 m_2 \cdots x_q m_q$. Then, we have $v_1 = m_0 m_1 m_2 \cdots m_q$ and $w_1 = x_1 x_2 \cdots x_q$.

- $(i) \Longrightarrow (ii)$. Suppose that L(u) is stable by reversal map. Then we have $\overline{u}_1 = \overline{m}_q x_q \cdots \overline{m}_1 x_1 \overline{m}_0 \in L(u)$. So, by Proposition 14, we get $\overline{v}_1 = \overline{m}_q \cdots \overline{m}_1 \overline{m}_0 \in L(\mathcal{E}_k(u))$ since u is modulo-recurrent.
- (ii) \Longrightarrow (i). Suppose that $L(\mathcal{E}_k(u))$ is stable by reversal map. Then, we have $\overline{v}_1 \in L(\mathcal{E}_k(u))$. According to Proposition 14, \overline{v}_1 comes from \overline{u}_1 since u is modulo-recurrent. Thus, we have $\overline{u}_1 = \overline{m}_q x_q \cdots \overline{m}_1 x_1 \overline{m}_0 \in L(u)$.
- $(iii) \Longrightarrow (i)$. Suppose that $L(\mathcal{R}_k(u))$ is stable by reversal map. Then, we have $\overline{w}_1 \in L(\mathcal{R}_k(u))$. In addition, \overline{w}_1 comes from \overline{u}_1 because u is modulo-recurrent. Hence, we have:

$$\overline{u}_1 = \overline{m}_q x_q \cdots \overline{m}_1 x_1 \overline{m}_0 \in L(u).$$

Theorem 30. Let u be a modulo-recurrent word over A. Let v_1 be a palindrome of $\mathcal{E}_k(u)$ coming from a sufficiently long factor u_1 of u and w_1 the associated erased factor of u_1 . Then, u_1 and w_1 are palindromes.

Proof. Let u_1 , v_1 and w_1 be words satisfying the hypothesis of the Theorem. Then, by Lemma 29, we have $\overline{u}_1 \in L(u)$. Since v_1 comes from u_1 , by Proposition 14, \overline{v}_1 comes from \overline{u}_1 . Furthermore, v_1 is palindrome, i.e, $\overline{v}_1 = v_1$. So, by Lemma 23, v_1 comes from \overline{u}_1 since v_1 is sufficiently long. According to Lemma 24, it results that $\overline{u}_1 = u_1$.

Moreover, we have $\overline{w}_1 \in L(\mathcal{R}_k(u))$ because $w_1 \in L(\mathcal{R}_k(u))$. Therefore, u_1 being sufficiently long, by Proposition 14, \overline{w}_1 comes from \overline{u}_1 . In addition, u_1 being a palindrome, by Corollary 25, we deduce that $\overline{w}_1 = w_1$.

Theorem 31. Let u be an infinite word over A, admitting palindromes and $v = \mathcal{E}_k(u)$. We have:

• For n < k,

$$\mathbf{P}_{v}^{al}(n) \le \mathbf{P}_{u}^{al}(n) + \mathbf{P}_{u}^{al}(n+1).$$

• For n = kq + r with $0 \le r < k$,

$$\boldsymbol{P}_{v}^{al}(kq+r) \leq \left\{ \begin{array}{l} \boldsymbol{P}_{u}^{al}((k+1)q+r) + \boldsymbol{P}_{u}^{al}((k+1)q+r+1)\,if\,k,r\,are\,even\\ \boldsymbol{P}_{u}^{al}((k+1)q+r) \quad if\,\,k,r\,are\,odd\\ \boldsymbol{P}_{u}^{al}((k+1)q+r+1) \quad if\,\,k\,is\,odd,r\,is\,even\\ 0 \quad if\,\,k\,is\,even,r\,is\,odd \end{array} \right.$$

Proof. Let us observe that any palindrome of v comes from a palindrome of u by Theorem 30.

For $n \leq k$, according to Proposition 12, we have:

- $PAL_n(v) = \{P, Qx\overline{Q} : P \in PAL_n(u), Qxx\overline{Q} \in PAL_{n+1}(u)\}$ if n is odd.
- $PAL_n(v) = \{P, Q\overline{Q} : P \in PAL_n(u), Qx\overline{Q} \in PAL_{n+1}(u)\}$ if n is even.

For n > k, we can write n = kq + r with $0 \le r < k$. According to Proposition 12, we have:

$$PAL_{n}(v) = \left\{ m_{0}m_{1}m_{2}\cdots m_{q} : m_{0}x_{1}m_{1}x_{2}\cdots x_{q}m_{q} \in PAL_{(k+1)q+r}(u), \right.$$

$$\left| m_{0} \right| = \left| m_{q} \right| = \frac{k+r}{2} \right\}$$

$$\cup \left\{ m_{0}m_{1}\cdots m_{q}m_{q+1} : m_{0}x_{1}m_{1}\cdots x_{q+1}m_{q+1} \in PAL_{(k+1)q+r+1}(u), \right.$$

$$\left| m_{0} \right| = \left| m_{q+1} \right| = \frac{r}{2} \right\}.$$

Thus, it follows that:

- If k and r have the same parity, any palindrome of u of length (k+1)q+r produces a palindrome of v of length kq+r.
- If r is even, any palindrome of u of length (k+1)q+r+1 produces a palindrome of v of length kq+r.

Remark 32. For n sufficiently large the inequality of the Theorem 31 becomes an equality, if u is a non-trivial modulo-recurrent word.

Corollary 33. Let u be a Sturmian word over A and $v = \mathcal{E}_k(u)$. Then, for any n sufficiently large, we have:

$$\mathbf{P}_v^{al}(n) = \left\{ \begin{array}{ll} 3 & if \ k, n \ are \ even \\ 0 & if \ k \ is \ even, n \ is \ odd \\ 2 & if \ k \ is \ odd \end{array} \right..$$

Proof. Consider n sufficiently large and pose n = kq + r with $0 \le r < k$. The word u being Sturmian, it is non-trivial modulo-recurrent word. From Theorem 26, any palindrome of u of length n produces a unique palindrome of v. Consequently, the inequality of the Theorem 31 becomes an equality.

- \bullet For k even, then r and n have the same parity. So, according to Theorem 8, v admits three palindromes if n is even and neither otherwise.
- For k odd and n even, then r and q have the same parity. Thus, if r is even (resp. odd), then (k+1)q+r+1=n+q+1 (resp. (k+1)q+r=n+q) is odd. Hence, v admits two palindromes of length n.
- For k and n odd, then r and q have the different parities. If r is even (resp. odd), then (k+1)q+r=n+q (resp. (k+1)q+r+1=n+q+1) is odd. Thus, v admits also two palindromes of length n.

Corollary 34. Let u be a Sturmian word over A, $v = \mathcal{E}_k(u)$ and $w = \mathcal{R}_k(u)$. Then, for n sufficiently large, we have:

$$\mathbf{P}_w^{al}(n) = \begin{cases} 1 & if \ k, n \ are \ even \\ 2 & if \ k \ is \ even, n \ is \ odd \\ 2 & if \ k \ is \ odd \end{cases}$$

Proof. Suppose n sufficiently large. So, from Proposition 13, we have: $PAL_n(w) = \{x_1x_2\cdots x_n : m_0x_1m_1x_2\cdots x_nm_n \in PAL(u), |m_0| = |m_n|\}$.

Thus, any palindrome of w of length n comes from a palindrome of u of length (k+1)n-k i.e., $|m_0|=|m_n|=0$.

- If k is odd, then (k+1)n k is odd. So, according to Theorem 8, we deduce that w admits two palindromes of length n.
- If k is even, then (k+1)n k and n have the same parity. So, w admits a unique palindrome if n is even and two palindromes otherwise.

References

- [1] J.-P. Allouche, Sur la complexité des suites infinies, Bull. Belg. Math. Soc. Simon Stevin, 1 (1994), 133-143.
- [2] J.-P. Allouche, M. Baake, J. Cassaigne, D. Damanik, Palindrome complexity, *Theoret. Comput. Sci.*, **292** (2003), 9-31.
- [3] M. Barro, I. Kaboré, T. Tapsoba, On the words by k to k insertion of a letter in Sturmian words, *International Journal of Applied Mathematics* **30**, No 5 (2017), 387-400; doi: 10.12732/ijam.v30i5.3.
- [4] J. Berstel, Sturmian and episturmian words (a survery of some recent resultats), In: *Proc. of CAI 2007*, *LNCS* **4728**, Springer-Verlag, 2007.
- [5] J. Cassaigne, I. Kaboré, T. Tapsoba, On a new notion of complexity on infinite words, *Acta Univ. Sapentiae, Mathematica*, **2** (2010), 127-136.
- [6] E.M. Coven, Sequences with minimal block growth, Math. Syst. Theory, 8 (1975), 376-382.
- [7] E.M. Coven, G.A. Hedlund, Sequences with minimal block growth, *Math. Syst. Theory*, **7** (1973), 138-153.
- [8] X. Droubay, G. Pirillo, Palindromes and Sturmian words, *Theoret. Comput. Sci.*, **223**, (1999), 73-85.
- [9] I. Kaboré, About k to k insertion words of Sturmian words, Intern. J. Pure and Appl. Math., 79, No 4 (2012), 561-572.
- [10] I. Kaboré, T. Tapsoba, Combinatoire des mots récurrents de complexités n+2, RAIRO-Theo. Inf. Appl. 41 (2007), 425-446.
- [11] M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, 2002.