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Abstract: An analytical solution of the position dependent mass Schrödinger
equation with a hyperbolic tangent potential is presented. The state energy
and the corresponding wave function are obtained using the Nikiforov-Uvarov
method. The energy eigenvalues and eigenfunctions are discussed and results
are presented for some values of potential parameters.
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1. Introduction

The Schrödinger equation is the fundamental equation describing the dynamics
in microscopical systems (see [20]). In particular, in molecular and atom physics
it is applied to determine the electronic structures and the energy distributions.
The associated wavefunction is commonly used to explain the behavior of mi-
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coscopic systems. The exact solutions of the Schrödinger equation are limited
to some few particular cases (see [22], [26], [21], [12], [11], [14], [2], and [6]). It
is often that we use to approximate complicated potentials with simple known
potential in order to catch the main physical proprieties of the system. Further-
more approximate methods were developed to solve the Schrödinger equation
such as WKB, variations methods and ERS method (see [17], [27], [8], [18], [5],
[9], [4], [3], [16], and [7]). Nikiforov-Uvarov has developed a powerful method to
determine energies from potential verifying some particular conditions. With
this technique the energies of several potentials are analytically determined.
This method is also extend to mass-variable Schrödinger equation (see [1], [10],
[25], [24]) and [19]). This equation is used to describe for example the dynamics
of semiconductor systems where the effective mass of the electrons and holes
vary with the position (see [15] and [23]).

In this work, we consider the case of a mass and a potential having hyper-
bolic tangent position variation. Analytical exact expressions of the energy and
the wavefunction are derived.

2. Review of Nikiforov-Uvarov method

The Nikiforov-Uvarov (NU) method is a technique that takes advantages from
orthogonal functions to solve second order differential equations (see [13]). In
particular, it can be applied to the Schrödinger equation. We consider

d2ψ(x)

dx2
+ [E − V (x)]ψ(x) = 0, (1)

where ~ = 2m0 = 1.
The Schrödinger equation can be transformed into a hypergeometric form

by using an appropriate transformation s = s(x)

Ψ′′(s) +
τ̃(s)

σ(s)
Ψ′(s) +

σ̃(s)

σ2(s)
Ψ(s) = 0, (2)

where σ(s) and σ̃(s) are polynomials at most of second degree, and τ̃(s) is
polynomial at most of first degree. To solve (2) explicitly, one can use change
of variables by means of the wave functions

Ψ(s) = φ(s)χ(s), (3)

to get after substituting (3) into (2)

σ(s)χ′′(s) + τ(s)χ′(s) + λχ(s) = 0, (4)
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where φ(s) is defined by

φ′(s)

φ(s)
=
π(s)

σ(s)
(5)

and π(s) is a polynomial of degree less or equal to one.

The hypergeometric function χ(s) in (4) satisfies the Rodrigues relation

χ(s) =
Bn

ρ(s)

dn

dsn
[σn(s)ρ(s)] , (6)

where Bn is the normalization constant, n is a fixed given number, and ρ(s) is
the weight function that satisfies the differential equation

d

ds
[σ(s)ρ(s)] = τ(s)ρ(s) (7)

with

τ(s) = τ̃(s) + 2π(s). (8)

Condition (7) is satisfied if one imposes a condition on the polynomial func-
tion τ(s) and its derivative, that is, τ(s) to be zero at some point in some interval
I and

τ ′(s) < 0. (9)

So, the function π(s) and the parameter λ required for the Nikiforov-Uvarov
method are defined as:

π(s) =

(

σ′ − τ̃

2

)

±

√

(

σ′ − τ̃

2

)2

− σ̃ + kσ, (10)

λ = k + π′(s). (11)

To determine π(s) in (10) one need another condition, that is we assume
that the discriminant of the expression under the square root be set to zero.
With this, the new eigenvalues in equation (11) become

λ = λn = −nτ ′(s)− n(n− 1)

2
σ′′(s), n = 0, 1, 2, ... (12)

The energy eigenvalues are then obtained from (12) and (11).
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3. Mass dependent Schrödinger equation

The Schrödinger equation with position dependent mass m(z) = m0ρ̃(z) is
given by

− d

dz

[

1

ρ̃(z)

dψ(z)

dz

]

+ V (z)ψ(z) = Eψ(z).

The parametric generalization of the NU method is given by the generalized
hypergeometric-type equation as

−d
2ψ(x)

dx2
−(2v − 1)

m′(x)

m(x)

dψ(x)

dx
(13)

+















−[v(v − 2) + α(α + β + 1) + β + 1]
m′2(x)

m2(x)
+

[

1

2
(β + 1)

]

m′′(x)

m(x)
+m(x)(V (x)− E)















ψ(x)= 0,

where V0 is the potential depth and the m(x) is the mass distribution to be
taken as

m(x) = tanh(λx) + 1. (14)

A plot of the mass distribution and the potential are shown in Figures 1 and 2.

Figure 1: Mass distribution with λ = 1.
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Figure 2: Potential depth with V0 = 50, λ = 1.

To change Eq. (13) to NU equation form, we define the transformation
s(x) = tanh(λx), −1 < s < 1.
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We have

m′(x)

m(x)
= λ(1− s) (15)

m′′(x)

m(x)
= 2λ2s(s− 1)

Using this transformation, we get

d2Ψ

ds2
+

(1 + 2v)s − 2v + 1

s2 − 1

dΨ

ds
(16)

+
1

(s2 − 1)2

[

A(1− s)2 − 2Bs(s− 1)− 1

λ2
(s + 1)(V (x)− E)

]

Ψ = 0,

where

A = v(v − 2) + α(α+ β + 1) + β + 1,

B =
1

2
(β + 1) + v,

ζ =
1

2
− v.

Rearranging the terms inside the brackets in (14) we obtain the parametric
generalization of the NU method, given by the generalized hypergeometric-type
equation,

d2Ψ

ds2
+

(1 + 2v)s − 2v + 1

s2 − 1

dΨ

ds
+

1

(s2 − 1)2









(

V0
2λ2

+A− 2B

)

s2

+

(

E + V0
λ2

− 2A+ 2B

)

s+

(

2E + V0
2λ2

+A

)









Ψ = 0,

or

d2Ψ

ds2
+

(1 + 2v)s − 2v + 1

s2 − 1

dΨ

ds
+

1

(s2 − 1)2





(

ζ2 − c1
)

s2+
(

c2 − 2ζ2
)

s+
(

ζ2 − c3
)



Ψ = 0, (17)

where

c1 − ζ2 = 2B −A− V0
2λ2
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c2 − 2ζ2 = 2B − 2A+
E + V0
λ2

c3 − ζ2 = −A− 2E + V0
2λ2

c1 − c2 + c3 = ε2 = − 2

λ2
(E + V0).

To get the energy we have from Eqn. (17)

σ(s) = s2 − 1 (18)

σ̃(s) =
(

ζ2 − c1
)

s2 +
(

c2 − 2ζ2
)

s+
(

ζ2 − c3
)

(19)

τ̃(s) = (1 + 2v)s + 1− 2v, (20)

π(s) is given by (10), substituting the above polynomials we get

π(s) = ζ(s− 1)±
√

(k + c1)s2 − c2s+ c3 − k. (21)

We use the condition that the discriminant of the quadratic expression
under the square root in (21) must be zero, that is

k =
1

2
c3 −

1

2
c1 ±

1

2
ε
√

2c2 + ε2. (22)

Therefore π(x) can be written as

π(x) = ζ(s− 1)− 1

2
(
√

ε2 + 2c2 + ε) +
1

2
s(
√

ε2 + 2c2 − ε) (23)

= ζ(s− 1)− 1

2
(
√

ζ2 −A+B + ε) +
1

2
s(
√

ζ2 −A+B − ε)

if k =
1

2
c3 −

1

2
c1 −

1

2
ε
√

2c2 + ε2.

So to obtain the energy E we need to find ε.

We have

λ = k + π′(s) (24)

λ = λn = −nτ ′(s)− n(n− 1)

2
σ′′(s) = −nτ ′(s)− n(n− 1) (25)

τ(s) = τ̃(s) + 2π(s) = (2− ε+
√

ε2 + 2c2)s− (
√

ε2 + 2c2 + ε)

τ ′(s) = 2− ε+M

M =
√

ε2 + 2c2. (26)
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Combining Eqns (24) and (25) we get

ε = 2n+ 1 +M + 2

√

c1 + v − 1

4

where M = 2

√

2v − α− β

2
− α2 − αβ − 1

4
.

Combining (23), (24) and (25) we obtain

En = −2λ2









n+
1

2
+

√

2v − α− β

2
− α2 − αβ − 1

4
+

√

4v − α− α2 − αβ − 1

2λ2
V0









2

− V0. (27)

To derive the approximation of the wave function Ψ(s) in (3) we need to
determine φ(s) and χ(s). By using Eqns (7), (8) and (18) we get

ρ(s) = (s− 1)−ε(s+ 1)
√

ε2+2c2 . (28)

Similarly using (5), (18) and (23) we get

φ(s) = (s− 1)

1

2
− v − 1

2ε(s+ 1)

√
ε2+2c2
2 (29)

The wave equation which is given by (3)

Ψn(s) = φ(s)
Bn

ρ(s)

dn

dsn
[σn(s)ρ(s)] . (30)

From Eqns (28) and (29) we obtain

Ψn(s) = (−1)n(−1)
1
2−v−ε/2(1− s)

1
2−v+ε/2(1 + s)−

1
2

√
ε2+2c2

×Bn
dn

dsn

[

(1− s)n−ε(1 + s)n+
√

ε2+2c2

]

. (31)

By introducing the Jacobi polynomial given by

P (µ,θ)
n (x) =

(−1)n(1− x)−µ(1 + x)−θ

2nn!
× dn

dxn

[

(1− x)n+µ(1 + x)n+θ
]

, (32)

the wave equation takes the form

Ψn(s) = 2nn!(−1)1/2−v−ε/2(1− s)1/2−v−ε/2(1 + s)
1
2

√
ε2+2c2BnP

(µ,θ)
n (s) (33)
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with µ = −ε, θ =
√
ε2 + 2c2.

There Bn is the normalized constant that can be obtained using the relation

∫ 1

0
|Ψn(s)|2 ds = 1.

The graph of the wave function Ψn(s) and the energy En are shown in
Figures 3 and 4, respectively.
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Figure 3: Wave equation for α = 0, β = −1, v = 1/2, n = 1, λ = 1
and V0 = 4.

4. Conclusion

In this paper the Nikiforov-Uvarov method is used to derive the solution of the
mass variable Schrödinger equation with a hyperbolic tangent potential. The
wave function is expressed in terms of the Jacobi polynomials and the energy
eigenvalues are analytically determined. The hyberbolic tangent potential is
one of the toy models that can be used in several fields of physics such as solid
states physics and quantum field theories, where the supersymmetry can be
associated to such a hyperbolic potential.
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Figure 4: Energy En for different values of λ = 1.
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