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1. Introduction

Since the path-breaking paper of Karmarkar, linear optimization (LO) revived
as an active area of research. Today the resulting interior-point methods (IPMs)
are among the most effective methods for solving wide classes of LO problems.
Many researchers have proposed and analyzed various IPMs for LO and a large
amount of results have been reported. For a survey we refer to recent books on
the subject [9, 12, 14, 15, 20] and the references cited their in.

In the literature two types of primal-dual IPMs are distinguished: large-
update methods and small-update methods, according to the value of the
barrier-update parameter . However, there is still a gap between the prac-
tical behavior of these algorithms and these theoretical performance results.
The so-called large-update IPMs have superior practical performance but with
relatively weak theoretical results. While the so-called small-update IPMs enjoy
the best known worst-case iteration bounds but their performance in computa-
tional practice is poor.

In the last twenty years, this gap was reduced significantly by Peng et
al. [15] who introduced the so-called self-regular kernel functions and designed
primal-dual IPMs based on self-regular proximities for LO. They improved the
iteration bound for large-update methods from O(nlog 2) to O(y/nlognlog 2),
which almost closes the gap between the iteration bounds for large- and small-
update methods. Later, Bai, et al. [4] presented a large class of eligible kernel
functions, which is fairly general and includes the classical logarithmic function
and the self-regular functions, as well as many non-self-regular functions as
special cases. The best known iteration bounds for LO obtained are as good as
the ones in [15] for appropriate choices of the eligible kernel functions.

Particularly, El Ghami et al. [8] first introduced a trigonometric kernel
function for primal-dual IPMs in LO. They established the worst case iter-
ation bounds for large- and small-update methods, namely, O(n% log ) and
O(y/nlog 2), respectively. In[6, 13] the authors proposed a primal-dual interior-
point algorithm for SDO and for P, (k)-Linear Complementarity problems [7]
based on a different kernel function with trigonometric barrier term and ob-
tained the same iteration bounds as for LO.

We consider the standard semidefinite optimization problem (SDO)

(SDP) p* = i%f {Tr(CX) : Tr(A; X) =b;(1 <i<m), X =0},
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and its dual problem (SDD)

(SDD) d* =sup {bTy : ZyiAi +S5S=C,S*>= O},

v.S i=1

where C' and A; are symmetric n X n matrices, b,y € R™, and X > 0 means
that X is symmetric positive semidefinite and Tr(A) denotes the trace of A (i.e.,
the sum of its diagonal elements). Without loss of generality the matrices A;
are assumed to be linearly independent. Recall that for any two n x n matrices,
A and B their natural inner product is given by

TI‘(ATB) = Zn: Zn: AUB”

i=1 j=1

IPMs provide a powerful approach for solving SDO problems. A comprehen-
sive list of publications on SDO can be found in the SDO homepage maintained
by Alizadeh [1]. Pioneering works are due to Alizadeh [1, 2] and Nesterov et
al. [12]. Most IPMs for SDO can be viewed as natural extensions of IPMs
for linear optimization (LO), and have similar polynomial complexity results.
However, to obtain valid search directions is much more difficult than in the
LO case. In the sequel we describe how the usual search directions are ob-
tained for primal-dual methods for solving SDO problems. Our aim is to show
that the kernel-function-based approach that we presented for LO in [8] can be
generalized and applied also to SDO problems.

1.1. Classical search direction

We assume that (SDP) and (SDD) satisfy the interior-point condition (IPC),
i.e., there exists X = 0 and (y°,S°) with S® = 0 such that X° is feasible
for (SDP) and (y°,S°) is feasible for (SDD). Moreover, we may assume that
X% = 8% = E, where E is the n x n identity matrix [14]. Assuming the IPC,
one can write the optimality conditions for the primal-dual pair of problems as
follows.

TI‘(AZX) = bi, izl,...,m
ZyiAi—i-S
i=1

XS = 0
X, S

I
Q
—~
—_
S—

Y
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The basic idea of primal-dual IPMs is to replace the complementarity condition
XS = 0 by the parameterized equation

XS =uB; X,S 0,

where > 0. The resulting system has a unique solution for each p > 0. This
solution is denoted by (X (u),y(n),S(u)) for each p > 0; X (p) is called the
p-center of (SDP) and (y(u), S(w)) is the p-center of (SDD). The set of -
centers (with g > 0) defines a homotopy path, which is called the central path
of (SDP) and (SDD) [14, 15]. The principal idea of IPMs is to follow this
central path and approach the optimal set as p goes to zero. Newton’s method
amounts to linearizing the system (1), thus yielding the following system of
equations.

Tr(AAX) = 0, i=1,...,m

D Ayidi+AS = 0 (2)
=1
XAS+AXS = pE—XS.

This so-called Newton system has a unique solution (AX, Ay, AS). Note that
AS is symmetric, due to the second equation in (2). However, a crucial point is
that AX may be not symmetric. Many researchers have proposed various ways
of ‘symmetrizing’ the third equation in the Newton system so that the new
system has a unique symmetric solution. All these proposals can be described
by using a symmetric nonsingular scaling matrix P and by replacing (2) by the
system

Tr(4,AX) = 0, i=1,...,m
> AyAi+AS = 0 (3)
=1

AX + PASPT = puS7'-X

Now AX is automatically a symmetric matrix.
1.2. Nesterov-Todd direction

In this paper we consider the symmetrization schema of Nesterov-Todd [16]. So
we use
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where the last equality can be easily verified. Let D = P%, where P3 denotes
the symmetric square root of P. Now, the matrix D can be used to scale X
and S to the same matrix V, namely [14, 17]:

v Lpixpl-_Lpgsp (4)

NG Vi
Obviously the matrices D and V' are symmetric, and positive definite. Let us
further define
- 1
Ai = —DAZD, 1= 1,2, s, MY

i

and

1 1
Dx := —D 'AXD™', Dg:= —DASD. 5
X i 5 N (5)

We refer to Dx and Dg as the scaled search directions. Now (3) can be rewritten
as follows:

Tr(A;Dx) = 0, i=1,...,m.
> AyAi+Ds = 0, (6)
=1

Dx+Ds = V'-V.

In the sequel, we use the following notational conventions. Throughout this
paper, ||-|| denotes the 2-norm of a vector. The nonnegative and the positive
orthants are denoted as R'! and intR'}, respectively, and S", ST, and intS’
denote the cone of symmetric, symmetric positive semidefinite and symmetric
positive definite nxn matrices, respectively. For any V' € S™, we denote by A(V)
the vector of eigenvalues of V' arranged in increasing order, \; (V) < Ao(V) <
, -, An(V). For any square matrix A, we denote by n;(A4) < m2(4) <, ..., <
nn(A) the singular values of A; if A is symmetric, then one has 7;(A) = |\;(4)],
i=1,2,...,n.If z€ R" and f: R — R, then f(z) denotes the vector in R"
whose i-th component is f (z;), with 1 < ¢ < n, and if D is a diagonal matrix,
then f(D) denotes the diagonal matrix with f(D;;) as i diagonal component.
For X € S, X = Q'DQ, where @ is orthogonal, and D a diagonal matrix,
f(X)=Q 'f(D)Q. Finally if v is a vector, diag(v) denotes the diagonal matrix
with the diagonal elements v;.
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2. New search direction

In this section we introduce the new search direction. But we start with the
definition of a matrix function [18, 19].

Definition 1. Let X be a symmetric matrix, and let

X = Q)_(ldiag()\l(X)v)Q(X)v a)\n(X))QX>

be an eigenvalue decomposition of X, where \;(X), 1 < i < n denotes the i-th
eigenvalue of X, and Qx is orthogonal. If ¢)(¢) is any univariate function whose
domain contains {\;(X);1 < ¢ < n} then the matrix function ¥ (X) is defined
by

P(X) = Q' diag(¢(A1(X)), v (A2(X)), .., ¥(An(X)))Qx-
and the scalar function ¥(X) is defined as follows [15]:

n
W(X) =) (X)) = Tr((X)). (7)
i=1
The univariate function 1 is called the kernel function of the scalar function W.

In this paper, when we use the function (-) and its first three derivatives
P'(+), ¥"(+), and 9" (-) without any specification, it denotes a matrix function
if the argument is a matrix and a univariate function (from R to R) if the
argument is in R.

Analogous to the case of LO, the kernel-function-based approach to SDO is
obtained by modifying Nesterov-Todd direction [15].

The observation underlying our approach is that the right-hand side V' —V
in the third equation of (6) is precisely —¢/(V) if 1(t) = (2 — 1)/2 — log t, the
latter being the kernel function of the well-known logarithmic barrier function.
Note that this kernel function is strictly convex and nonnegative, whereas its
domain contains all positive reals and it vanishes at 1. As we will now show
any continuously differentiable kernel function ¢ (¢) with these properties gives
rise to a primal-dual algorithm for SDO.

Given such a kernel function v(t) we replace the right-hand side V! —V in
the third equation of (6) by —/(V'), with ¢’(V') defined according to Definition
1. Thus we use the following system to define the (scaled) search directions Dx
an D S
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Z A%Az +Ds = 0 (8)
=1
Dx +Ds = —¢'(V).

Having Dy and Dg, AX and AS can be calculated from (5). Due to the
orthogonality of AX and AS, it is trivial to see that Dx 1 Dg, and so

Tr(Dx Dg) = Tr(DgDx) = 0. (9)

The algorithm considered in this paper is described in Figure 1.

Algorithm 2.1. Generic Primal-Dual Algorithm for SDO Input:
a kernel function 1 (t);
a threshold parameter 7 > 1;
an accuracy parameter € > 0;
a barrier update parameter 6, 0 < 0 < 1;
begin
X=F,S=F,u:=1V:=F,
while nu > € do
begin
= (1
V=
while ¥ (V) > 7 do
begin
Find search directions by solving system (8);
Determine a step size «;

X = X+alX;
y = y+aAy;
S = S+als;
Compute V from (4);
end
end
end

Figure 1: Generic primal-dual interior-point algorithm for SDO.

The inner while loop in the algorithm is called inner iteration and the outer
while loop outer iteration. So each outer iteration consists of an update of the
barrier parameter and a sequence of one or more inner iterations. Note that
by using the embedding strategy [14], we can initialize the algorithm with X =
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S = E. Since then XS = puE for = 1 it follows from (4) that V = E at the
start of the algorithm, whence ¥(V) = 0. We then decrease i to p:= (1 —6)pu,
for some 6 € (0,1). In general this will increase the value of ¥(V') above the
threshold value 7. To get this value smaller again, and coming closer to the
current p-center, we solve the scaled search directions from (8), and unscale
these directions by using (5). By choosing an appropriate step size «, we move
along the search direction, and construct a new triple (X4, yy,S+) with

Xy =X+aoalAX yy=y+alAy Si=5+alS. (10)

If necessary, we repeat the procedure until we find iterates such that ¥(V') no
longer exceed the threshold value 7, which means that the iterates are in a
small enough neighborhood of (X (), y(r),S(p)). Then p is again reduced by
the factor 1—6 and we apply the same procedure targeting at the new p-centers.
This process is repeated until p is small enough, i.e. until nu < e. At this stage
we have found an e-solution of (SDP) and (SDD). Just as in the LO case, the
parameters 7,6, and the step size a should be chosen in such a way that the
algorithm is ‘optimized’ in the sense that the number of iterations required by
the algorithm is as small as possible. Obviously, the resulting iteration bound
will depend on the kernel function underlying the algorithm, and our main task
becomes to find a kernel function that minimizes the iteration bound.

The rest of the paper is organized as follows. In Section 3 we introduce the
kernel function 1 (t) considered in this paper and discuss some of its properties
that are needed in the analysis of the corresponding algorithm. In Section 4
we derive the properties of the barrier function ¥(V). The step size o and
the resulting decrease of the barrier function are discussed in Section 5. The
total iteration bound of the algorithm and the complexity results are derived
in Section 6. Finally, some concluding remarks follow in Section 7.

3. Our kernel function and some of its properties

Recently in [5, 8] investigated new kernel functions with trigonometric barrier
for LO. In [13] the author present a primal-dual interior-point algorithm for
SDO based on kernel function

2—-1 4 mt
= = ith =—. 11
P(t) 2 + - cot (h(t)), with h(t) T+ (11)
In this paper we consider kernel functions of the form
2_1 1—
P(t) = ! + 6 tan (h(t)), with h(t) = ) (12)

2 T at+2 7
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and to show that the interior-point methods for SDO based on these function
have favorable complexity results.

Note that the growth term of our kernel function is quadratic. However,
this function (12) deviates from all other kernel functions since its barrier term
is trigonometric as %tan ﬂ4(t1;2t). In order to study the new kernel function,
several new arguments had to be developed for the analysis.

This section is started by technical lemma, and then some properties of the

new kernel function introduced in this paper are derived.

3.1. Some technical results

In the analysis of the algorithm based on (t) we need its first three derivatives.
These are given by

6 (t)

W) =t == L+ tan’(h(t)), (13)
() = 1—|—g(1—|—tan2(h(t))) (W"(t) + 21 (t)* tan(h(t))) . (14)
W) = 2 (1t (h(e) kD), (15)
with
k(t) := 6R" ()W (t) tan(h(t)) + B (t) + 21/ (t)* (3tan®(h(t)) + 1) (16)

The next lemma serves to prove that the new kernel function (12) is eligible.

Lemma 2. [Lemma 2 in [8]] Let ¢ be as defined in (12) and t > 0. Then,

() > 1, (17-a)
" (t) + ' (t) > 0, (17-b)
" (t) —¢'(t) > 0, (17-c)
and " (t) < 0. (17-d)

It follows that (1) = ¢'(1) = 0 and ¢"(¢) > 0, proving that ¢ is defined
by 9" (t).

t g
(1) = /1 /1 1(C) dede. (18)

The second property (17-b) in Lemma 2 is related to Definition 2.1.1 and Lemma
2.1.2 in [15]. This property is equivalent to convexity of the composed function
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z + 1p(e*) and this holds if and only if ¢¥(vEit2) < & (1¥(t1) + ¥ (t2)) for any
t1,to > 0. Following [3], we therefore say that v is exponentially convex, or
shortly, e-convex, whenever ¢ > 0.

Lemma 3. Let ¢ be as defined in (12), one has
1 " 2 .
P(t) < §¢ () (-1, if t>1.
Proof. By Taylor’s theorem and (1) = /(1) = 0, we obtain

9(0) = 59 (1) (£ = 1) + 247(0) (€~ 1)°,
where 1 < £ < tif t > 1. Since ¢¥"'(£) < 0, the lemma follows. O

Lemma 4. Let ¢ be as defined in (12), one has
t' () > ap(t), if t > 1.

Proof. Defining g(t) := t'(t) — () one has ¢g(1) = 0 and ¢'(t) = to"(t) >
0. Hence g(t) > 0 and the lemma follows. O

At some places below we apply the function ¥ to a positive vector v. The
interpretation of W(v) is compatible with Definition 1 when identifying the
vector v with its diagonal matrix diag (v). When applying ¥ to this matrix we
obtain

=> (v;), v€intR}.
i=1

4. Properties of ¥(V) and 6(V)

In this section we extend Theorem 4.9 in [4] to the cone of positive definite
matrices.
The next theorem gives a lower bound on the norm-based proximity measure

d(V), defined by

IR 1
(V) =3llv' WVl =5 Z¢ )?=5IDx+Dsll,  (19)
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in terms of ¥(V'). Since W(V) is strictly convex and attains its minimal value
zero at V = E, we have

V(V)=0 & 6(V)=0 & V=E.

We denote by ¢ : [0,00) — [1,00) the inverse function of ¢(¢) for ¢t > 1. In
other words,
s=y(t) & t=op(s), t>1. (20)

Theorem 5. Let ¢ be as defined in (20). Then
5(V) = 59" (e (¥(V))).
Proof. If V.= E then §(V) = ¥(V) = 0. Since p(0) =1 and ¢/(1) = 0, the
inequality holds with equality if V' = E. Otherwise, by the definitions of §(V)

in (19) and ¥(V) in (7), we have §(V) > 0 and U(V) > 0. Let v; := \(V),
1 <¢<n. Then v > 0 and

MW%J}:WMM@V%JZ}Mwﬂ
=1

=1

Since 1 (t) satisfies (17-d) we may apply Theorem 4.9 in [4] to the vector v.

This gives .
5(V) > 3¢ (9 (Z 1/)(%))) :
i=1
Since . .
D w(v) = pN(V) = B(V),
i=1 i=1
the proof of the theorem is complete. O

Lemma 6. If¥(V) > 1, then

5(V) > ~W(V)z. (21)

Proof. The proof of this lemma uses Theorem 5 and Lemma 4. Putting
s = U(V), we obtain from Theorem 5 that

5(V) > 59" (0(s)) -
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Putting ¢t = o(s), we have by (20),

21 6 1-—
o) =1 — o+ tan (b)) = s, with h(t):%, E>1.

For t > 1 we have —% < h(t) = Witl;;) < 0 which implies that —1 < tan (h(t)) <

0 for all ¢ €]1, 00|, using s, > 1 we get

t2—1 6 6
=s——tan(h(t)) < s+ — <s+2 < 3s,
2 s ™

whence
t2 <1465 < 7s,

and therefore,
o(s) =t <V7s < 352,

Now applying Lemma 4 we may write

5(V) 2 30/ (0(s)) 2 — =2

This proves the lemma. U
Note that since 7 > 1 we have at the start of each inner iteration that
U(V) > 1. Substitution in (21) gives

o(V) > (22)

=

5. Analysis of the algorithm
In the analysis of the algorithm the concept of exponential convexity [4, 9] is
again a crucial ingredient. In this section we derive a default value for the step
size and we obtain an upper bound for the decrease in ¥(V') during a Newton
step.

5.1. Three technical lemmas

The next lemma is cited from [18, Lemma 3.3.14 (c)].
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Lemma 7. Let A, B € S™ be two nonsingular matrices and f(t) be given
real-valued function such that f(e') is a convex function. One has

> Fmi(AB)) <Y f(ni(A)mi(B)),
i=1 i=1

where n;(A), and n;(B) i = 1,2,...,n denote the singular values of A and B
respectively

Lemma 8. Let A, A+ B € S}, then one has
XNi(A+B) > X — |A\(B)], i=12,..,n.
Proof. 1t is obvious that A\;(A + B) > A (A + B). By the Rayleigh-Ritz
theorem (see [11]), there exists a nonzero Xy € R", such that

XJ(A+B)Xy XIAX, XIBX,

M(A+B = :
il ) XTX, xXI'x, = XTX,

We therefore may write

XTAX XTBX,
MA+B) > 2000 120700
X Xo X Xo
XTAx XTBX
> mi _ = = A = I\ (B)].
z W RTx | xTx | =M (B
This completes the proof of the lemma. ]

A consequence of condition (17-b) is that any eligible kernel function is
exponentially conver [15, Eq. (2.10)]:

(Vi) < %(w 1)+ (1)), Vi >0,y > 0. (23)

This implies the following lemma, which is crucial for our purpose.

Lemma 9. Let V) and V5 be two symmetric positive definite matrices,
then

1

1 1
v ((V12‘/§‘/12)%> < 3 (W) +¥(Va)), VWV >=0,VV, > 0.

Proof. For any nonsingular matrix U € S™, we have

ni(U) = ()\Z-(UTU))% = ()\Z-(UUT))% , i=1,2,...,n.
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11
Taking U = V*V,?, we may write

-(V%V%): )\'(V%VV%) EZ/\, (V%VV%) 2 i —1.9
i\V1i Vo (V1 V2V 7 9 V1Vo 5 {2 y Ly ey TV

Since Vi and V5 are symmetric positive definite, using Lemma 7 one has

v (b)) - Zw(m viv ><§w(m<v1%>m<v§>>.

-

1 1
Since 1 (V4?), m (Vy?) > 0 we may use that ¢(t) satisfies (17-b) for ¢t > 0. Using
(23), hence we obtain

\P<<V§V2V§>%) < —Z( (m Vi )w(n?(Vf)))
= ;Z £ ((12))
- %(@(VMWQ».
This completes the proof. 0

5.2. The decrease of the proximity in the inner iteration

In this subsection we are going to compute a default value for the step size «
in order to yield a new triple (X4, y4,5+) as defined in (10). After a damped
step, using (5) we have

Xy = X+aAX =X+oa/uDDxD = /uD(V +aDx)D,

y+ = y+aldy,

Sy = S+alAS=X+ay/puD 'DgD' = \/uD" ' (V +aDg) D"

Denoting the matrix V' after the step as V., we have
V+ == L ( 1X+S+D)%
Vi

1 1
Note that Vf is unitarily similar to the matrix %Xj S X7} and hence also to

=

(V + aDy)2 (V +aDg) (V +aDy)? .
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This implies that the eigenvalues of V. are the same as those of the matrix

V, = ((V +aDx)? (V +aDg) (V + aDX)%) .

The definition of U(V') implies that its value depends only on the eigenvalues
of V. Hence we have

v (V+) =0 (V).

Our aim is to find « such that the decrement
fl@):=w (Vi) = w (V) = v (Vi) -0 (V), (24)

is as small as possible. Due to Lemma 9, it follows that

v() = v (((v +aDy)? (V +aDg) (V + an)%)%>
< L@ (V+aDx)+ ¥ (V +aDg)].
From the definition (24) of f(a), we now have f(e) < fi(a), where
fi(a) =L [0 (V+aDx)+ ¥ (V+aDg)] - ¥ (V).

Note that fi(«) is convex in «, since ¥ is convex. Obviously, f(0) = f1(0) = 0.
Taking the derivative with respect to «, we get

fi(e) = 3Tr (¢ (V 4+ aDx) Dx +¢' (V + aDg) Dg) .

Using the last equality in (8) and also (19), this gives
F1(0) = 3Tx (¥/(V) (Dx + Ds)) = —5Tr (¢/(V)?) = =26(V)*.

Differentiating once more, we obtain

{() = 3T (¥ (V + aDx) Dk +4¢" (V + aDs) Dg) . (25)
In the sequel we use the following notation:

A1 =min(\;(V)), 6:=46(V).
Lemma 10. One has

(@) <262 9¢" (A — 2a0) .
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Proof. The last equality in (8) and (19) imply that |Dx + Ds||* = || Dx|*+
| Dg||* = 46. Thus we have |\,(Dx)| < 26 and |\,(Dg)| < 26. Using Lemma
8 and V + aDyx = 0, As a consequence we have, for each 17,

Ai(V +aDx)
)\Z(V + OéDs)

)\1 — |)\n(Dx)| Z )\1 — 20&(5,

>
> )\1 — |)\n(D5')‘ > )\1 — 2a.

Due to (17-d), ¢" is monotonically decreasing. So the above inequalities imply
that

" (N(V + aDx))
" (N(V + aDg))

Substitution into (25) gives

() < (A — 2a6) Tr (DX + D3)

Q/)II
¥ (01 —200) (IDx > + |1 Ds|P) -

1

2

1
)
Now, using that Dx and Dg are orthogonal, by (9), and also |Dx + Dgl|* =
462, by (19), we obtain

V() <26% 9" (M(V) = 2a0) .

This proves the lemma. O
Using the notation v; = A\;(V), 1 < i < n, again, we have

(@) < 2624 (v] — 200) , (26)

which is exactly the same inequality as Lemma 3.1 in [8]. This means that our
analysis closely resembles the analysis of the LO case in [8]. From this stage on
we can apply similar arguments as in the LO case. In particular, the following
two lemmas can be stated without proof.

Lemma 11. [Lemmas 3.3 and 3.4 in [10]] Let p be the inverse function of
—3/(t) for t € (0,1]. Then the largest value of the step size o satisfying (26)
is given by

1

= g5 [p(8) = p(20)].

Moreover,
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For future use we define

~ 1
=) 27

By Lemma 11 this step size satisfies (26).
Lemma 12. If the step size « is such that o < & then
fla) < —ad?
Using the above lemmas from [8] we proceed as follows.

Theorem 13. Let p be as defined in Lemma 11 and a as in (27) and
U(v) > 1. Then

52 o2

O = =5y = 98

Proof. Since & < &, Lemma 12 gives f(a) < —a 6%, where a = m
as defined in (27). Thus the first inequality follows. To obtain the inverse
function ¢ = p(s) of —31/(t) for ¢ € (0, 1], we need to solve ¢ from the equation

B (t X 61/ () (1 + tan2(h(t)))) = 2s. This implies,

™

14 tan?(h(t)) = 6}; 0 (25 +1)

o (2t + 1)*
= %(28+t><28+1 for t<1.
s

Hence, putting ¢ = p(20), which is equivalent to 46 = —'(t), we get

tan(h(t)) < 2V/6. (28)
Using (28), thus we have
-1 B 1
‘= V) 1+ S (14 tan(h(t))) (R (t) + 21/ (t)? tan(h(t)))
1

v

1+ 8 (1+49) (h”(t) + 4h'(t)2x/3) '
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Since 1'(t) = s < 6, and W(1)” = 4(;121)4 < 922 for all 0 <t < 1. Then
we have

_ 1 1

o>

1+ £ (1+46) (67 + 972V ) T 1 18(1+49) (2+37v3)

Also using (22) (i.e., 66 > 1) we get,
1
(66)2 + 18 (65 + 49) (2\/@ v 37r\/5)
1 1
: - > -
(62 +180 (2vB+3m)) 8%~ 25932

a >

Hence
1

@) < — 28
= " (p(20) T 9250363 2593°

Thus the theorem follows. O
Substitution in (21) gives

53 Ui Ui

) < — < — < — .
J@) < =5508 = ~ 203G = 6532

5.3. A uniform upper bound for ¥

In this subsection we extend Theorem 3.2 in [4] to the cone of positive definite
matrices. As we will see the proof of the next theorem easily follows from
Theorem 3.2 in [4].

Theorem 14. Let ¢ be as defined in (20). Then for any positive vector v
and any [ > 1 we have:

B(EV) < i <ﬁ@ (#)) .

Proof. Let v; := X\;(V), 1 <i <n. Then v > 0 and

V(BV) =D pN(BV) =D w(BN(V) =D 9(Bui) = ¥(Bv),
=1 =1 =1
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Due to the fact that ¢ (t) satisfies (17-c), at this stage we may use Theorem 3.2

in [4], which gives
v <m0 M),

Since
V(v) =D o) =Y b(N(V)) = (V)
i=1 i=1
the theorem follows. O
Before the update of p we have U(V) < 7, and after the update of u to
(1 — @) we have V. = \/%. Application of Theorem 14, with 5 = ﬁ,

yields that

W(Vy) < ) (%) .

Therefore we define

e (%)
m) (29)

In the sequel the value L(n,#,7) is simply denoted as L. A crucial (but triv-
ial) observation is that during the course of the algorithm the value of W(V)
will never exceed L, because during the inner iterations the value of ¥ always
decreases.

L=1L(n,0,7):=ny (

6. Complexity

We are now ready to derive the iteration bounds for large-update methods. An
upper bound for the total number of (inner) iterations is obtained by multiply-
ing an upper bound for the number of inner iterations between two successive
updates of p by the number of barrier parameter updates. The last number is
bounded above by (cf. [20, Lemma II.17, page 116])

11 n
—log —.
0 ge

To obtain an upper bound K for the number of inner iterations between two
successive updates we need a few more technical lemmas.
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The following lemma is taken from Proposition 1.3.2 in [15]. Its relevance is
due to the fact that the barrier function values between two successive updates
of p yield a decreasing sequence of positive numbers. We will denote this
sequence as Vg, Uy, ....

Lemma 15. Let tg,t1, - ,tx be a sequence of positive numbers such that

tk-l—lgtk_’it]lgi’yu k20717”'7K_]-7

where k >0 and 0 < v < 1. Then K < U{—%

Lemma 16. If K denotes the number of inner iterations between two
successive updates of i, then

26128 3 s
K < = =05 < 8710%.

Proof. The definition of K implies W 1 > 7 and, according to Theorem
13, U < 7 and

Upy < Uy — 1 (T k=0,1,--- , K —1,

with k = %32 and v = %. Application of Lemma 15, with t;, = Wy yields the
desired inequality. O

Using 1y < L, where the number L is as given in (29), and Lemma 16 we
obtain the following upper bound on the total number of iterations:

3
8710L1
L log 2. (30)
0 €

6.1. Large-update

The inverse function of 9 (t) for t € [1,00) is obtained by solving ¢ from

t2—1 6  w(1-1)
= —tan ———— = t>1.
W)= -+t =s 12

We derive an upper bound for ¢, as this suffices for our goal. One has from (18)
and " (t) > 1,

sz = [ [wracae [ [ acie=fu-y,
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which implies
t=p(s) <14 V2s. (31)
We just established that (30) is an upper bound for the total number of
iterations, using

?2—-1 6 7w(1—-t) t2-1
<

P(t) = 5 -l—;tan iz S g for t>1,
and (31), by substitution in (29) we obtain
(am)Q_l
L 1_92 §2(1n_9) <9+2\/%+2%>: (9n+22(\1/ﬁ)+27')'
Using (30), thus the total number of iterations is bounded above by
K n 8710

log — <

JE— g S e —
07T o(20-0)) (
A large-update methods uses 7 = O(n) and 6 = ©(1). The right-hand side

expression is then O (ng log %) , as easily may be verified.

3
On + 2vV2tn + 27’) ! log n
€

6.2. Small-update methods

For small-update methods one has 7 = O(1) and § = © (7) Using Lemma
3, with (1) = 2%;9, we then obtain

n@r+9) (0@ L\
RTSTFENNY

Using (31), then

144/
L<n (2m +9) "y
18 V1—26
Using 1 —v/1—6 = \/7 < 6, this leads to L < 1827r1+96 (0v/n+ v 27)
conclude that the total number of iterations is bounded above by

K, n_ 871002+ 9)1

9 g
€ 9 (18(1 0))
Thus the right-hand side expression is then O (y/nlog Z).

(0\/_4-\/?) log%.
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7. Concluding Remarks

In this paper we extended the results obtained for kernel-function-based IPMs
in [8] for LO to semidefinite optimization problems. The analysis in this paper is
new and different from the one using for LO. Several new tools and techniques
are derived in this paper. The proposed function has a trigonometric barrier
term but the function is not logarithmic and not self- regular. We proved that
the iteration bound of a large-update interior-point method based on the kernel

function considered in this paper is O (n% log %) , which is the same complexity

achieved in [13] by using a different trigonometric kernel function (11). The
ol?tained complexity improves the classical iteration complexity with a factor
n4. For small-update methods we obtain the best know iteration bound, namely

O (y/nlog).
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