CONSTRUCTION OF EVEN-DIMENSIONAL LATTICES
OF FULL DIVERSITY

Abstract

In this work even-dimensional ideal lattices of full diversity are obtained via the twisted homomorphism of the ring of integers of a totally real subfield of Q(ζ p), where p is an odd prime.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 32
Issue: 2
Year: 2019

DOI: 10.12732/ijam.v32i2.12

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] A. A. Andrade and E. D. De Carvalho, Constructions of ideal lattices with full diversity, J. Adv. Res. Appl. Math., 3 (2011), 82-92.
  2. [2] A. A. Andrade, C. Alves, T. B. Carlos and A. J. Ferrari, Lattices via cyclotomic fields in dimensions 2 and 4, Int. J. Appl. Math., 20 (2007), 1095-1105.
  3. [3] E. Bayer-Fluckiger, F. Oggier and E. Viterbo, New algebraic constructions of rotated Zn-lattice constellations for the Rayleigh fading channel, IEEE Trans. Inform. Theory, 50 (2004), 702-714.
  4. [4] P. Elia, B. A. Sethuraman and P. Vijay Kumar, Perfect space-time codes for any number of antennas, IEEE Trans. Inform. Theory, 53 (2007), 3853-3868.
  5. [5] J. C. Interlando, J. O. D. Lopes and T. P. da N´obrega Neto, Fourdimensional lattices from Q(√2,√5), Int. J. Appl. Math., 30 (2017), 401-408, doi: 10.12732/ijam.v30i5.4.
  6. [6] P. Ribenboin, Classical Theory of Algebraic Numbers, Springer Verlag, New York (2001).
  7. [7] C. C. Trinca Watanabe, J.-C. Belfiore, E. D. De Carvalho and J. Vieira Filho, E8-lattice via the cyclotomic field Q(24), Int. J. Appl. Math., 31 (2018), 63-71, doi: 10.12732/ijam.v31i1.6.