CONSTRUCTION OF EVEN-DIMENSIONAL LATTICES
OF FULL DIVERSITY
Antonio A. Andrade1, J. Carmelo Interlando2 1Department of Mathematics
São Paulo State University
São José do Rio Preto, SP 15054-000, BRAZIL 2Department of Mathematics and Statistics
San Diego State University
San Diego, CA 92182-7720, USA
In this work even-dimensional ideal lattices of full diversity are obtained via the twisted homomorphism of the ring of integers of a totally real subfield of Q(ζ p), where p is an odd prime.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] A. A. Andrade and E. D. De Carvalho, Constructions of ideal lattices with
full diversity, J. Adv. Res. Appl. Math., 3 (2011), 82-92.
[2] A. A. Andrade, C. Alves, T. B. Carlos and A. J. Ferrari, Lattices via
cyclotomic fields in dimensions 2 and 4, Int. J. Appl. Math., 20 (2007),
1095-1105.
[3] E. Bayer-Fluckiger, F. Oggier and E. Viterbo, New algebraic constructions
of rotated Zn-lattice constellations for the Rayleigh fading channel, IEEE
Trans. Inform. Theory, 50 (2004), 702-714.
[4] P. Elia, B. A. Sethuraman and P. Vijay Kumar, Perfect space-time codes
for any number of antennas, IEEE Trans. Inform. Theory, 53 (2007), 3853-3868.
[5] J. C. Interlando, J. O. D. Lopes and T. P. da N´obrega Neto, Fourdimensional
lattices from Q(√2,√5), Int. J. Appl. Math., 30 (2017), 401-408, doi: 10.12732/ijam.v30i5.4.
[6] P. Ribenboin, Classical Theory of Algebraic Numbers, Springer Verlag, New
York (2001).
[7] C. C. Trinca Watanabe, J.-C. Belfiore, E. D. De Carvalho and J. Vieira
Filho, E8-lattice via the cyclotomic field Q(24), Int. J. Appl. Math., 31
(2018), 63-71, doi: 10.12732/ijam.v31i1.6.