CONSTRUCTION OF NESTED REAL IDEAL LATTICES
FOR INTERFERENCE CHANNEL CODING

Abstract

In this work we develop a new algebraic methodology which quantizes real-valued channels in order to realize interference alignment (IA) onto a real ideal lattice. Also we make use of the minimum mean square error (MMSE) criterion to estimate real-valued channels contaminated by additive Gaussian noise.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 32
Issue: 2
Year: 2019

DOI: 10.12732/ijam.v32i2.11

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] J. Tang and S. Lambotharan, Interference alignment techniques for MIMO multi-cell interfering broadcast channels, IEEE Trans. on Communications, 61 (2013), 164-175.
  2. [2] A.R. Calderbank and N.J.A. Sloane, New trellis codes based on lattices and cosets, IEEE Trans. on Information Theory, 33 (1987), 177-195.
  3. [3] G.D. Forney, Coset Codes - Part I: Introduction and Geometrical Classification, IEEE Trans. on Information Theory, 34(5) (1998), 1123-1151.
  4. [4] R. Zamir, Lattices are everywhere, In: Proc. of the 4th Annual Workshop on Information Theory and its Applications (ITA) (2009).
  5. [5] C.C. Trinca Watanabe, J.-C. Belfiore, E.D. de Carvalho, J. Vieira Filho, R. Palazzo Jr. and R.A. Watanabe, Construction of complex nested ideal lattices for complex-valued channel quantization, International Journal of Applied Mathematics, 31, No 4 (2018), 549-585; DOI: 10.12732/ijam.v31i4.4.
  6. [6] A.A. de Andrade, C. Alves and T.C. Bertoldi, Rotated lattices via the cyclotomic field Q(ξ2r ), International Journal of Applied Mathematics, 19, No. 3 (2006), 321-331.
  7. [7] C.C. Trinca, A contribution to the study of channel coding in wireless communication systems, Ilha Solteira - S˜ao Paulo, Brazil: Universidade Estadual Paulista “J´ulio de Mesquita Filho” (UNESP), 2013.
  8. [8] C.C. Trinca Watanabe, J.-C. Belfiore, E.D. de Carvalho and J. Vieira Filho, E−8-lattice via the cyclotomic field Q(ξ24), International Journal of Applied Mathematics, 31, No 1 (2018), 63-71; DOI: 10.12732/ijam.v31i1.6.
  9. [9] J. Leech and N.J.A. Sloane, Sphere packings and error correcting codes, Canadian J. of Mathematics, 23 (1971), 718-745.
  10. [10] E. Bayer-Fluckiger, F. Oggier and E. Viterbo, Algebraic lattice constellations: bounds on performance, IEEE Trans. on Information Theory, 52, No 1 (2006), 319-327.
  11. [11] C.C. Trinca, J.-C. Belfiore, E.D. de Carvalho and J. Vieira Filho, Construction of coset codes in order to realize interference alignment, The 8th Intern. Multi-Conference on Complexity, Informatics and Cybernetics: IMCIC 2017, (2017).
  12. [12] K. Conrad, Dirichlet’s unit theorem, Retrieved from http://www.math.uconn.edu/∼kconrad/blurbs/gradnumthy/unittheorem.pdf.
  13. [13] A.K. Lenstra, H.W. Lenstra Jr. and L. Lov´asz, Fatoring polynomials with rational coefficients, Mathematische Annalen, 261 (1982), 515-534.
  14. [14] U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis, Mathematics of Computation, 44, No 170 (1985), 463-471.
  15. [15] B. Nazer and M. Gastpar, Compute-and-forward: Harnessing interference through structured codes, IEEE Trans. on Information Theory, 57, No 10 (2011), 6463-6486.
  16. [16] R.A. Watanabe and C.C. Trinca, Application of the support function and the steiner point on the study of interference alignment channel, 2017 IEEE Intern. Conf. on Fyzzy Systems (FUZZ-IEEE), (2017).
  17. [17] C.C. Trinca, J-C. Belfiore, E.D. de Carvalho and J. Vieira Filho, Coding for the Gaussian interference channel, In: XXXI Simp´osio Brasileiro de Telecomunica¸c˜oes (SBrT) (2013).