STABILITY INEQUALITIES FOR THE DELAY
PSEUDO-PARABOLIC EQUATIONS

Abstract

This paper deals with the initial-boundary value problem for linear pseudo-parabolic equation. Using the method of energy estimates the stability bounds obtained for the considered problem. Illustrative example is also presented.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 32
Issue: 2
Year: 2019

DOI: 10.12732/ijam.v32i2.10

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] C. Cuesta, C.J. Van Duijn, J. Hulshof, Infiltration in porous media with dynamic capillary pressure: travelling waves. Eur. J. Appl. Math., 11, No 4 (2000), 381-397.
  2. [2] G. Barenblatt, V. Entov, V. Ryzhik, Theory of Fluid Flow Through Natural Rocks, Kluwer, Dordrecht (1990).
  3. [3] G. M. Amiraliyev, E. Cimen, I. Amirali, M. Cakir, High-order finite difference technique for delay pseudo-parabolic equations, J. Comput. Appl. Math., 321 (2017), 1-7; DOI: 10.1016/j.cam.2017.02.017.
  4. [4] G. M. Amiraliyev, Y. Mamedov, Difference scheme on the uniform mesh for singularly perturbed pseudo-parabolic equation, Turkish J. Math., 19 (1995), 207-222.
  5. [5] Quan Liu, Xuefeng Wang, Daniel De Kee, Mass transport through swelling membranes, International J. Engineering Science, 43 (2005), 1464-1470.
  6. [6] T.W. Ting, Certain non-steady flows of second-order fluids, Arch. Ratl. Mech. Anal. 14 (1963), 1-26.
  7. [7] R.W. Caroll, R.E. Showalter, Singular and Degenerate Cauchy Problems, Mathematics in Science and Engineering 127, Academic Press, N. York (1976).
  8. [8] H. Gajewski, K. Zacharias, ยจ Uber eine weitere klasse nichtlinearer differentialgleichungen im Hilbert-Raum, Math. Nachr., 57 (1973), 127-140.
  9. [9] S.M. Hassanizadeh, W.G. Gray, Thermodynamic basis of capillary pressure in porous media, Water Resour. Res., 29 (1993), 858-879.
  10. [10] T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, In: Spectral Theory and Differential Equations, Lecture Notes in Math., 448, Springer, Berlin (1975), 2570.
  11. [11] R.E. Showalter, Hilbert Space Methods for Partial Differential Equations, Monographs and Studies in Mathematics, Pitman, London (1977).