STABILITY INEQUALITIES FOR THE DELAY
PSEUDO-PARABOLIC EQUATIONS
Ilhame Amirali1, Seda Cati2, Gabil M. Amiraliyev3 1Department of Mathematics
Faculty of Arts and Sciences
Duzce University, 81620, Duzce, TURKEY 2Department of Mathematics
Faculty of Arts and Sciences
Duzce University, 81620, Duzce, TURKEY 3Department of Mathematics
Faculty of Arts and Sciences
Erzincan University, 24000, Erzincan, TURKEY
This paper deals with the initial-boundary value problem for linear pseudo-parabolic equation. Using the method of energy estimates the stability bounds obtained for the considered problem. Illustrative example is also presented.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] C. Cuesta, C.J. Van Duijn, J. Hulshof, Infiltration in porous media with
dynamic capillary pressure: travelling waves. Eur. J. Appl. Math., 11, No
4 (2000), 381-397.
[2] G. Barenblatt, V. Entov, V. Ryzhik, Theory of Fluid Flow Through Natural
Rocks, Kluwer, Dordrecht (1990).
[3] G. M. Amiraliyev, E. Cimen, I. Amirali, M. Cakir, High-order finite difference
technique for delay pseudo-parabolic equations, J. Comput. Appl.
Math., 321 (2017), 1-7; DOI: 10.1016/j.cam.2017.02.017.
[4] G. M. Amiraliyev, Y. Mamedov, Difference scheme on the uniform mesh
for singularly perturbed pseudo-parabolic equation, Turkish J. Math., 19
(1995), 207-222.
[5] Quan Liu, Xuefeng Wang, Daniel De Kee, Mass transport through swelling
membranes, International J. Engineering Science, 43 (2005), 1464-1470.
[6] T.W. Ting, Certain non-steady flows of second-order fluids, Arch. Ratl.
Mech. Anal. 14 (1963), 1-26.
[7] R.W. Caroll, R.E. Showalter, Singular and Degenerate Cauchy Problems,
Mathematics in Science and Engineering 127, Academic Press, N. York
(1976).
[8] H. Gajewski, K. Zacharias, ยจ Uber eine weitere klasse nichtlinearer differentialgleichungen
im Hilbert-Raum, Math. Nachr., 57 (1973), 127-140.
[9] S.M. Hassanizadeh, W.G. Gray, Thermodynamic basis of capillary pressure
in porous media, Water Resour. Res., 29 (1993), 858-879.
[10] T. Kato, Quasi-linear equations of evolution, with applications to partial
differential equations, In: Spectral Theory and Differential Equations,
Lecture Notes in Math., 448, Springer, Berlin (1975), 2570.
[11] R.E. Showalter, Hilbert Space Methods for Partial Differential Equations,
Monographs and Studies in Mathematics, Pitman, London (1977).