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Abstract: Initial-value problems for a semi-linear differential operator equa-
tions with singular linear part are considered. The existence of the infinite
B−chains for the characteristic sheaf λA + B is assumed. In this case condi-
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1. Introduction

We consider the initial-value problem for the semi-linear abstract differential
equation

d(Au(t))

dt
+Bu(t) = f(t, u), (1)

u(0) = u0, (2)

where A,B are closed linear operators from a Hilbert X space into a Hilbert
space Y . In general the operator A is not invertible. Semi-linear equations
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(1) with not invertible operator at the derivative in Banach spaces have been
studied in works [1], [3], [4], [5]. The properties of the solution of initial-value
problem (1), (2) are related to the properties of the characteristic λA+B sheaf
of the equation’s linear part (1). The operator sheaf λA + B is called regular
when there is a complex number λ0 ∈ C, for which the resolvent (λ0A+B)−1is
defined and is bounded on the subspace DA∩DB . Otherwise, the sheaf λA+B

is called singular.

The works [3] and [4] are based on the assumption that the characteristic
sheaf λA+B is regular. In [4] the case of a singular characteristic sheaf λA+B

is considered.

Definition 1.1. A pair of subspaces (X,́ Y )́ is called an invariant relative
to the sheaf λA+B, if

A(DA ∩X´) ⊂ Y´, B(DB ∩X´) ⊂ Y´

and if at least one of the subspaces X,́ Y´ is non-trivial.
Pairs of subspaces (X1, Y1), (X2, Y2) reduce the sheaf λA+B, if,

X = X1 ∔X2, Y = Y1 ∔ Y2, A(DA ∩Xi) ⊂ Yi, B(DB ∩Xi) ⊂ Yi, i = 1, 2.

In [5] the existence of a singular and a regular pair of reduced subspaces
(Xs, Ys), (Xr , Yr) is assumed:

X = XS ∔XR ,Y = YS ∔ YR,

DA = (DA ∩Xi)∔ (DA ∩XR),
DB = (DB ∩XS)∔ (DB ∩XR),

A(DA ∩Xs) ⊂ Ys , B(DB ∩Xs) ⊂ Ys,

A(DA ∩Xr) ⊂ Yr , B(DB ∩Xr) ⊂ Yr.

(3)

The sheaf of operators λAs + Bs = λA + B |XS
induced from the subspace

XS into the subspace YS is singular; the sheaf λAR + BR : XR → YR induced
from the subspaceXR into the subspace YR is regular.

In [5] it was assumed that the structure of the singular component of the
sheaf λAS + BS corresponds to a canonical form of the singular matrix sheaf
according to L. Kroneker. Correspondingly, a canonical basis in the subspace
XS exists, which consists of the L. Kroneker finite singular chains.

In [6] the infinite chains for the pairs of operators A,B are introduced in
connection with some problems of the perturbation theory for linear operator
equations.

Definition 2.1. A sequence of vectors {xi}
∞
i=1 ⊂ DA∩DB is called infinite

B-chains for the sheaf λA + B if the vectors {xi}
∞
i=1 satisfy the following

recurrent correlations
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Ax1 = 0, Bxi = Axi+1, i = 1, 2, 3, ..., (4)

and if {Bxi }
∞
i=1are linearly independent vectors.

In this work the initial-value problem (1), (2) in the case of the singular
characteristic sheaf λA+B with the infinite B−chains will be considered.

2. Example. The Initial-Value Problem for a Partial Derivative
Equation with Infinite B− Chains of the Characteristic Sheaf

λA+B

In the domain t ≥ 0, -π ≤ x ≤ π we shall consider a mixed problem

e−ix∂
2u(t, x)

∂t∂x
− ie−ix ∂u(t, x)

∂t
+

∂u(t, x)

∂x
= f(t, u), (5)

u(t,−π) = u(t, π), u(0, x) = u0(x). (6)

We shall assume that f(t, u) : [0, τ ]×C → C is a continuous complex function.
Let us introduce the following operators in the space C[−π.π] = X = Y :

A = e−ix d(.)

dx
− ie−ix , B =

d(.)

dx
,

DA = DB = D = {y ∈ C1
[−π,π] : y(t,−π) = y(t, π)}.

(7)

Considering function u(t, x) as a mapping u(t) : [0, τ ] → C1
[−π,π], let us repre-

sent the initial-value problem (5), (6) as an equivalent to the Cauchy abstract
problem (1), (2) in the spaces C1

[−π,π] = X = Y .
The characteristic sheaf λA+B is singular in fact, the equation

(λA+B)y = 0

can be rewritten in the form
((

λe−ix + 1
)

y
)′
= 0. (8)

Clearly, in the case |λ| 6= 1 the equation (8) has a non-trivial solution - the
function

y0(x, λ) = (λe−ix + 1)−1; (9)

while in the case |λ| = 1, the coefficient by the derivative of the differential
operator λA+B is irreversible.

The sequence of exponents
{

eikx
}∞

k=1
forms infinite B−chains for the sheaf

λA+B.
In fact, the exponents which are in the domain of the sheaf λA + B :

eikx ∈ C1
[−π,π], e

−ikx = eikx satisfies the correlation (4):
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A(eix) = 0, B(eix) = ieix = A(ei2x), ..., B((eikx) = kieikx = A((ei(k+1)x), ...;

the sequence of functions {Bxi}
∞
i=1 =

{

eikx
}∞

k=1
forms the system of linearly

independent functions.

In the next section the initial-value problem (1), (2) in a general case of a
characteristic sheaf with the infinite B−chains will be considered.

3. The Theorem of Existence of a Solution of the Initial-Value
Problem (1), (2) with the Infinite B−Chains for a Characteristic

Sheaf

The initial-value problem (1), (2) in the Hilbert spaces X,Y is considered in
this work. We assume that the decompositions (3), DA ⊂ DB , hold true; the
regular component of the sheaf λAR + BR has the bounded inverse operator
A−1

R ∈ L (YR,XR),

Hence, BRA
−1
R ∈ L (YR).

Furthermore, let us assume that the following orthogonal decompositions
hold true for the singular pair of the subspaces (XS , YS) (3)

XS = kerA ∩ kerB ⊕X1, , YS = kerA∗ ∩ kerB∗ ⊕ Y1, (10)

where the subspace X1 is the closing of the linear span of the finite set of the
infinite B−chains, Y1 = B(X1).

The first vector for each of the B−chains belongs to the subspace kerA.

We shall denote the closing of the linear span of the other vectors by X2.

From A−1
R ∈ L (YR,XR) follows the decomposition XS = kerA∔X2.

We introduce two pairs of the mutually complementary projectors

K : X → kerA, P = (1−K) : X → X2 ∔XR,K
2 = K;

L : Y → ImA, Q : Y → kerA∗, L2 = L.

Definition 3.1. The continuous vector-function u(t) ∈ C ([0, τ0],X) with
the values from DA ∩DB is called the solution of the equation (1) in the range
0 ≤ t ≤ τ0, if Au(t) ∈ C1 ([0, τ0], Y ) and the function u(t) satisfies the equation
(1) for all t ∈ [0, τ0].

Let us designate a closed sphere in the Hilbert space X with the center
x0 ∈ X as B(X,x0, r) = {x ∈ X : ‖x− x0‖ ≤ r}.
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Theorem 3.1. Let the decompositions (3),(10) hold true for the equation
(1). Let dim (kerA∗ ∩ kerB∗) ≤ dimkerA and vector u0 ∈ DA satisfies the
condition Qf(0, u0) = 0.

Assume that the function f(t, u) is continuous in the set [0, τ ]×B(X,u0, r),
the component Lf of the vector-function f(t, u) satisfies the Lipschitz condition

∥

∥Lf(t, u1)− Lf(t, u2)
∥

∥ ≤ a
∥

∥u1 − u2
∥

∥ , ∀u1, u2 ∈ B(X,u0, r),
t ∈ [0, τ ],

(11)

and the component Qf has a continuous Frechet derivative
∂Qf(t, u)

∂u
.

If

rang
∂

∂Ku
Qf(0, u) |u=u0

= dim (kerA∗ ∩ kerB∗) ,

then the problem (1),(2) has the solution u(t) on the non-trivial interval [0, τ0].
Moreover the solution is unique if

dimkerA =dim (kerA∗ ∩ kerB∗) .

Proof. Let us denote

uK = Ku, up = Pu,AL = LA,BL = LB.

From the construction projector of K follows that K(X) = kerA.
This means that, AK = 0.
From the other side of the definition of infinite B−chains it follows that

B (kerA) ⊂ ImA.
Hence QBK = 0.
Therefore, equation (1) is equivalent to the following two equations

Qf(t, uk + up) = 0, (12)

d(ALup(t))

dt
+BLup(t) = Lf(t, uk + up)−BLuk(t). (13)

From the conditions of Theorem 3.1 it follows that there exist subspace X10 ⊂
kerA and the projector K1 : X → X10 such that dimX10 = dimY1, K1K = K,

and the linear operator ∂
∂K1u

Qf(0, u0) : X → X10 is invertible.

Let us denote K2 = K −K1, X11 = K2(X), uK1
= K1uK , uK2

= K2uK . If
we substitute uK = uK1

+ uK2
in the equation (12) and apply the theorem of

implicit function [2], we get the function

uK1
= Ψ(t, uK2

, up).

This function has a continuous Frechet derivative ∂Ψ
∂up

and defined on the set

Ω = {(t, uK2
, up)} = [0, τ1]×B(X11 ∔X2 ∔XR, (K2 + P )u0, r1), r1≤r, τ1≤τ.
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Now changing up = A−1
L υ and substitute function uK1

= Ψ(t, uK2
, up) in the

equation (13) we obtain
dυ

dt
+BLA

−1
L up(t) = (t, uK2

, ν)−BLΨ(t, uK2
, ν)−BLuK2

, (14)

where

ϕ(t, uK2
, ν) = Lf(t, u), Ψ(t, uK2

, ν) = Ψ(t, uK2
, A−1

L υ),

u = Ψ(t, uK2
, A−1

L υ) + uK2
+A−1

L υ.

Let us introduce the set

G = [0, τ2]×B(X11 ∔X2 ∔XR, (K2 + P )u0, r1), r2 ≤ r, τ2≤τ1.

From the conditions of Theorem 3.1 it follows that the function Ψ(t, uK2
, ν)

satisfies the Lipschitz condition on G. We apply the Picard theorem [6] to
the equation (14) with the initial condition ν(0) = ALup(0). We obtain a
continuous differentiable solution υ(t, uK2

) on some set

Φ = {(t, uk2)} = [0, τ0]×B(X11,K2u0, r3).

The obtained function defines a continuous differentiable function u2(t) =
A−1

L υ(t, uK2
), which is the component of the solution u(t).

The component uK2
is being chosen arbitrarily from the class C([0, τ0];

B(X11,K2u0, r3) with the initial condition K2u(0) = K2u0.
Finally, the function u = Ψ(t, uK2

, up) + uK2
+ up is the solution of the

problem (1), (2). �

In the mixed problem (5), (6) we consider the restriction of the operators
A,B (7) in a Hilbert spaces X ′ = Y ′ = L2

[−π,π].
Introduce the following subspaces

XS = Lin{eikx}∞k=1, YS = Lin{eikx}∞k=0,XR = Lin{eikx}∞k=0,

YR = Lin{eikx}∞k=1, kerA = {eix},X1 = XS = Y1,

X2 = Lin{eikx}∞k=2, kerA
∗ ∩ kerB∗ = Lin{1}.

It may be shown that for |λ| > 1 the operator (λAR +BR) is invertible
bounded and defined on all subspace YR.

Note that for |λ| > 1 the function y0(x, λ) (9) is expanded into the following
series:

y0(x, λ) =
(

λe−ix + 1
)−1

=
1

λ
eix

(

1 +
1

λ
eix

)−1
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=
1

λ
e−ix −

1

λ2
e−i2x + ...(−1)k−1 1

λk
e−ikx + ...,

and for |λ| < 1 the function y0(x, λ) (9) expanded as follows:

y0(x, λ) =
(

λe−ix + 1
)−1

= 1− λe−ix + ...(−1)ke−ikx + ... .

The sequence of functions {eikx}∞k=0 forms the infinite A−chains [6]:

B(1) = 0, A(1) = −ie−ix = B(e−ix), ... − i(k + 1)e−i(k+1)x = B(e−i(k+1)x), ...

Hence, if |λ| < 1 then the complex number λ is the singular point of the sheaf
λAR +BR.

We shall be obtain a representation for A−1
R ∈ L(YR,XR). Let us show that

for any function f ∈ YR there exists a unique function y ∈ XR ∩ YR, so that
ARy = f .

Consider the equation ARy = f :

e−ixy′ − e−ixy = f.

This equation can be written in the form

(

e−ixy
)′
= f. (15)

From (15) it follows that:

y = eix
π
∫

−π

f(s)ds+ Ceix. (16)

Let us prove that the function Y (16) belong to the domain of the operator A.

Really, y(−π) = −C ; on the other side, using f ∈ YR we obtain:

y(π) = −

π
∫

−π

f(s)ds− C = −(f, 1)− C = −C.

We shall find the value C so that the function y (16) shall belongs to the
subspace XR.

Calculate the scalar product (y, eix):

(y, eix) =

π
∫

−π

x
∫

−π

f(s)dsdx+ C

π
∫

−π

dx =

π
∫

−π

x
∫

−π

f(s)dsdx+ 2πC.
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Hence, for the function y (16) belongs to the subspace XR, it is necessary that
C has the form

C =
1

2π

π
∫

−π

x
∫

−π

f(s)dsdx.

Now we calculate the scalar product (y, eix) for k > 1, using the fact that
f ∈ YR :

(y, eikx) =

π
∫

−π

e−i(k−1)x

π
∫

−π

f(s)dsdx+ C

π
∫

−π

e−i(k−1)xdx

= −
i

k − 1
e−i(k−1)x

π
∫

−π

f(s)ds |π−π +
i

k − 1

π
∫

−π

e−i(k−1)xf(x)dx

=
i

k − 1
((−1)k(f, 1) + (f, ei(k−1)x)) = 0.

Thus, the representation for the operator A−1
R has the form:

A−1
R y = eix





π
∫

−π

f(s)ds+
1

2π

π
∫

−π

x
∫

−π

f(s)dsdx



 .

Calculate the projectors Q and K:

Qy =
1

2π

π
∫

−π

ydx, Ky =
1

2π

π
∫

−π

ye−ixdx.eix.

Then the conditions of Theorem 3.1 for the mixed problem (5), (6) have the
form:

1) u0 ∈ DA ⇐⇒ u0(−π) = uo(π);

2) Qf(0, u0) = 0 ⇐⇒

π
∫

−π

f(0, u0)dx = 0;

3)
∂f(t, u)

∂u
is continuous;

4)

π
∫

−π

∂f(0, u0)

∂u
dx = 0.

For example, f(t, u) = u2 − 1.
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Hence, there exists a single solution of the problem (5), (6) for any function
u0(x) that satisfies the following conditions:

1. u0(−π) = u0(π);

2.

π
∫

−π

u20(x)dx = 2π;

3.

π
∫

−π

u0(x)dx 6= 0.

For example, u0(x) = eix + 1.

4. Conclusion

In this work conditions for solvability of the Cauchy problem for some singular
differential operator equations are received. In our case the singular charac-
teristic sheaf λA + B has only infinite B−chains. If the characteristic sheaf
λA + B has as infinite B−chains as finite singular chains, then the conditions
for solvability will be other form. This problem will be considered in the next
work.

The results have been applied to the investigation of mixed problems for
partial differential equations. These mixed problems may be received in the
investigation of the waveguide.
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