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Abstract: Mathematical modelling of traffic flow for accurate prediction of fu-
ture traffic conditions plays a vital role in real time traffic control systems. Mod-
elling of traffic at macroscopic level using Lighthill Whitham Richards (LWR)
model is computationally less intensive than microscopic car following models.
With advanced computing facilities, numerical solution of the LWR model is
preferred than traditional analytical approaches. In the present study, an at-
tempt has been made to solve numerically the LWR model using “Forward-Time
Backward-Space (FTBS)” finite difference scheme. Actual traffic flow data col-
lected from a roadway in Vellore were used to frame the initial and boundary
conditions and for corroboration of the results. The results were promising as
the predicted flow values by the FTBS scheme were matched closely with the
actuals with mean absolute percentage error (MAPE) of 12.854. This showed
the suitability of the proposed numerical scheme for traffic flow prediction.
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1. Introduction

Traffic flow, the number of vehicles passing a particular point on a roadway in a
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given time interval is of great interest to traffic engineers since the appearance
of traffic bottlenecks. Modelling of traffic flow help to predict the future traffic
conditions which in turn help the traffic engineers to divert the traffic in critical
areas and maximize the overall throughput of traffic along a given stretch of
road. In general, the traffic flow models can be categorized into two types: mi-
croscopic and macroscopic. The microscopic traffic flow models concerned with
simulating the single vehicle-driver units and analyze the microscopic prop-
erties like the position and velocity of each individual vehicle. The popular
microscopic models are car-following models [1] and cellular automata models
[2]. Car-following models mainly describe how vehicles follow one another on a
roadway by maintaining sufficient time gap or distance. In cellular automata
models, the roadway is considered as a string of cells which may be either empty
if there are no vehicles or occupied by a vehicle. The problem with microscopic
models is that they are computationally intensive as they deal with individual
vehicles and sometimes it becomes complex to describe the interaction among
the vehicles especially in heterogeneous traffic conditions as exists in India as
there are wide variety of vehicles with varying static and dynamic character-
istics. In such cases, it is desirable to use macroscopic traffic flow models as
they are computationally less intensive as they work with aggregate variables
and do not describe the traffic situation on the level of independent vehicles.
Lighthill, Whitham [3] and Richards [4] proposed a simple continuum macro-
scopic traffic flow model based on the hydrodynamic theory of fluids to describe
the traffic characteristics which is popularly called as LWR model. It involves
a non-linear, first-order hyperbolic partial differential equation (PDE) in space
and time which can be solved either by analytical [5, 6] or numerical methods [7,
8]. With high performance computing facilities now-a-days, numerical solution
of the PDE has been reported in many studies [7, 8]. However the major draw-
back of the reported studies is that the corroboration of results were mostly
done by simulation or using hypothetical data. Use of real world data were
not attempted much. The present study aims to develop a model for real time
prediction of traffic flow through numerical discretization of LWR macroscopic
model. The finite difference scheme, namely, “Forward-Time Backward-Space
(FTBS)” was used to solve the PDE with real world data as input and the
results also were corroborated using the actual data from the field.
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2. Field Data Collection and Extraction

The traffic flow data which can be used as initial and boundary conditions and
for corroboration of the results was collected from one of the busy roads in
Vellore city located in Tamil Nadu, India. The study stretch was located in
Palar bridge which is about 700m in length separating Vellore and Katpadi
town. The traffic data was collected by placing the video cameras over the
tripod at the entry and exit points of the bridge and continuously recorded for
a period of 100 minutes from 7.45 am to 9.25 am on a typical working day. As
a pilot study, only two-wheelers were considered and the recorded videos were
played to count the number of two-wheelers at each one minute interval at entry
and exit. The first one minute flow at entry and exit was used to frame the
initial condition. Flow at each one minute interval at the entry was treated as
the boundary condition in the numerical scheme. The FTBS scheme predicts
the exit flows which were then compared with the actual flow values obtained
from the video to check the accuracy of the proposed prediction scheme.

3. Development of Prediction Scheme

In this section, the basic equations of the LWR model are first detailed followed
by the numerical solution through finite difference formulation for solving the
PDE.

3.1. Basic Equations of the LWR Model

The LWR model is a simple continuum equation for traffic flow, where an
analogy is made between the vehicular flow and the flow of a compressible
fluid. The two basic aspects of this model are (a) traffic flow is conserved, that
is, the total number of vehicles is conserved; and (b) there is a relationship
between speed and density (number of vehicles present in the section per unit
length), or between flow and density. The conservation equation is given by

ok 0q
E‘F%—O» (1)

where k and ¢ represent the traffic density and flow rate respectively and the
independent variables & and ¢ represent space and time respectively. The LWR
model is usually accompanied by the fundamental traffic flow relationship given
by



606 G. Omkar, S.V. Kumar

q = uk, (2)

where u is the space mean speed of vehicles travelling along the test bed under
consideration. A speed-density relationship (i.e., an equation linking the space
mean speed u and density k) is also needed to solve the above PDE. One of the
simplest relationships relating speed and density is Greenshield’s linear model
[9] which is given by
k
=F1-—=), 3

u=F(1- ) (3)
where F' is the free flow speed and K is the jam density. Equations (1)-(3) form
a set of basic equations describing the LWR model.

3.2. Finite Difference Formulation

The Equations (1) to (3) can be solved numerically using a finite difference
formulation of the time (¢) and space (x) derivatives. To do so, the solution
domain in the x — t space is first discretized using a rectangular grid with grid
spacing given by Ax and At in the x and ¢ directions respectively as shown in
Figure 1.

For ease of implementation, the grid spacings are chosen to be uniform
throughout. As illustrated, the space domain (z) is divided into J number of
intervals and time to NN intervals depending on the duration of the analysis.
Thus, z; = j.Ax for j = 0,1,...,J and t, = n. At for n = 0,1,...,N. The
intersections of the grid lines are called grid point, where the density and flow
are denoted by k7 and ¢, respectively. That is, k7 and ¢} are density and flow
defined in space-time domain, where j represents space and n represents time.

The finite difference formulation used in the present study is a ‘forward-
time backward-space’, or FTBS scheme. In this scheme, the time derivative is
approximated using the current grid point and the corresponding grid point in
the next time level (forward-time), while the space derivative is approximated
using the current grid point and the corresponding grid point in the previous
space step (backward space). Thus, Equations (1), (2) and (3) may be written
in discretized form as

O At A \
Ae & )
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Equation (5) after substituting for v} from equation (6) results in,

n n F niin

Equation (4) after substituting for ¢} from equation (7) results in,

n Fingn n Fin n +1 n
A LR R RO

Az Az Az Az NN
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RN o M L < L e L A
Ax Ax Ax Ax At At
n Finin n Fin n
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At AtF . At At F . _—
A E T R R - R+ kiR R = =k
Changing sign on both the sides results in,
At At F At At F
n+l _ 1.n n nin n n n
iR G RN T Gl T ik
At At F At At F
Ertl gl - S O R g [ - g
j T R P ae gl il =~ Ay ki)
At K7 At k-
n+1 n J n 7—1
vl _gn TR — L v [ R — L)),
B = k= P = 2+ B P - =) (8)

Using Equation (8), the density at various time intervals can be predicted based
on the previous time interval data. Once this prediction is carried out for the
entire discretized section, the flow at various grid points can be determined by
using equation (7). The estimation of density at various time intervals using
equation (8) requires some initial and boundary conditions to start. The details
of finding this initial and boundary conditions using the field data from entry
and exit is explained below.

The first one minute flow value at entry and exit were converted to density
using equation (7) and were linearly interpolated to get the density at various
discretized grid points. This forms the initial condition for solving the PDE.
Similarly the flow values at entry at every one minute time interval were con-
verted to density and were linearly interpolated for every time interval of At to
provide the required boundary condition for the numerical scheme. The values
of Az, At, F and K in equation (8) were carefully chosen as 50 m, 2 sec, 53
km /hr and 680 vehicles/km respectively in order to ensure the stability of the
numerical scheme.

4. Corroboration of the Prediction Scheme

The efficacy of the FTBS scheme for the prediction of traffic flow was tested
using the field data and the results are presented here. The Mean Absolute
Percentage Error (MAPE) is used as a measure of prediction accuracy and is
calculated using

n

1 Fl red ~ Fl obser
MAPE = = Y (F-2ered — Z200obser ) 3y, (9)

n-= Flowepser
1=
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where, n is 100, the total number of one minute time intervals during the
observation period. The results are shown in Figure 2.
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Figure 2: Plot of actual versus predicted flows at exit

It can be seen that the predicted flows matches closely with the observed
flows with a MAPE of 12.854. In general, any forecast with a MAPE value
of less than 10% can be considered highly accurate, 11% - 20% is good, 21% -
50% is reasonable and 51% or more is inaccurate. Based on this, it can be said
that the results are good and thus the proposed FTBS scheme can be used to
predict the traffic flow through space-time discretization of the LWR model.

5. Conclusion

Prediction of future traffic conditions is very essential for advanced traffic con-
trol systems to operate effectively. Traffic flow can be modelled either at macro-
scopic or microscopic level. Modelling of traffic at macroscopic level using
models such as LWR is computationally faster than the microscopic simulation
based approach. With advanced computing facilities, numerical solution of the
LWR model is usually preferred than traditional analytical approaches. In the
present study, an attempt has been made to solve numerically the LWR model
using ‘FTBS’ finite difference formulation scheme. Actual traffic flow data from
the field were used to frame the initial and boundary conditions and for cor-
roboration of the results. The predicted flow values by the ‘FTBS’ scheme at
the exit location were matched closely with the actuals and this showed the
suitability of the proposed numerical scheme for traffic flow prediction.
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