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Abstract: A long, locked, dip-slip fault is considered situated in a half space
of linear viscoelastic solid having the properties of both Maxwell and Kelvin
(Voigt) type materials. Tectonic forces due to mantle convection and other
associated phenomena are acting on the system. The magnitude of the tectonic
forces has been assumed to be slowly increasing with time. The movement is
assumed to be slipping in nature. Analytical expressions for the displacement,
stresses and strains are obtained at any field point in an isotropic, homogeneous,
viscoelastic half-space using integral transformation, modified Green’s function
technique and correspondence principle. A detailed study of these expressions
may give some ideas about the nature of stress accumulation in the system.
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1. Introduction and Literature Review

It is observational fact that while some faults are strike-slip in nature, there
are faults (e.g. Sierra Nevada/Owen’s valley; Basin and Range faults, Rocky
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Mountains, Himalayas; Atlantic fault of central Greece-steeply dipping faults
with dip 60 degree, 80 degree), where the surface level changes during the
motion i.e. the faults are dip-slip in nature. It is therefore necessary to under-
stand the mechanism of plate motion in the dip direction with a displacement
dislocation and the nature of stress-strain accumulation/release in spatial and
temporal co-ordinate to predict the future event in space and time. A pioneer-
ing work involving static ground deformation in elastic media was initiated by
[22], [23], [5], [12], [13]. In [18] the authors did a wonderful work in analyzing
the displacement, stress and strain for dip-slip movement of the fault. Later
some theoretical models in this direction have been formulated by a number of
authors like [2], [6], [9], [10], [16], [17], [20], [24]. In the book [19] various aspects
of fault movements have been discussed. [14], [15] have discussed stress accu-
mulation near infinite fault in lithosphere-asthenosphere system. The works
[7], [8], [21] have discussed about long dip-slip fault in the viscoelastic medium
of Maxwell type material. In the earlier works, in most of the cases elastic
or viscoelastic half space or layered medium were considered to represent the
lithosphere-asthenosphere system. Observations in seismically active regions
suggest that linear viscoelastic material of Maxwell and/ or Kelvin type may
be a suitable representation of the system. In many cases tectonic forces are
taken to be constant. In view of these, in this paper we consider an infinite
sudden dip-slip movement situated in a linear viscoelastic solid combining both
the properties of Maxwell and Kelvin type material. The system is under the
action of tectonic forces generated due to mantle convection or similar other
processes and displacements, stresses and strains are analyzed.

2. Formulation

We consider a long, dip-slip fault F , with width D situated in a viscoelastic half
space of linear Maxwell and Kelvin (Voigt) mixed type material. A Cartesian
coordinate system is used with a suitable point O as origin on the the fault, the
strike of the fault is taken along y1 axis, y3 axis pointing downwards so that
the free surface is given by y3 = 0 and y2 axis is perpendicular to y1y3 plane.
We choose another coordinate system with y′1, y

′
2, y

′
3 axes as shown in Figure

1 so that the fault can be given by F : (y′2 = 0, 0 ≤ y′3 ≤ D).

Let θ be the inclination of the fault F with the free surface. We consider the
section of the model by the plane y1 = 0. The displacement, stress and strain
components separate out into two independent groups. One group containing
displacement u, stress component (τ12, τ13) and strain components (E12, E13)
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Figure 1: Coordinate system describing the location of the fault.

is associated with the strike slip movement while the other group containing
displacement component (v,w), stress components (τ22, τ23, τ33) and strain com-
ponents (E22, E23, E33) is associated with dip-slip movement. We consider the
dip-slip movement across the fault F . Let v,w be the displacement compo-
nents along the y2, y3 axes, and τ22, τ23, τ33 are the stress components and
E22, E23, E33 are the strain components respectively. We take t = 0 as an
instant when the medium is in aseismic state.

2.1. Constitutive Equation

The stress-strain relationship for standard linear solid (SLS) of visco-elastic
material can be represented by the following equation:
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where η is the effective viscosity and µ is the effective rigidity of the material.

2.2. Stress Equation of Motion

The stress satisfy the following equations (assuming quasi-static deformation
for which the inertial terms are neglected) and the body forces do not change
during our consideration:

∂

∂y2
(τ22) +

∂

∂y3
(τ23) = 0
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∂y2
(τ32) +

∂

∂y3
(τ33) = 0
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

, (2)

where (−∞ < y2 < ∞, y3 ≥ 0, t ≥ 0).

2.3. Initial and Boundary Condition

Let (v)0, (w)0, (τ22)0, (τ23)0, (τ33)0, (E22)0, (E23)0, (E33)0 be the initial values of
v,w, τ22, τ23, τ33, E22, E23, E33 respectively at time t = 0. Tectonic forces far
away from the fault due to mantle convection in the lithosphere-asthenosphere
system cause the fault to slip leading to an earthquake. We represent this
tectonic forces by τ∞(t) = τ∞(0)(1 + Kt), where K is any positive number
so that the tectonic forces increase linearly with time. The relevant boundary
conditions become

τ22(y2, y3, t) = τ∞(0)(1 +Kt) cos θ, K > 0 (3)

as |y2| → ∞, y3 ≥ 0, t ≥ 0. On the free surface y3 = 0,

τ23(y2, y3, t) = 0, τ33(y2, y3, t) = 0 (−∞ < y2 < ∞, t ≥ 0). (4)

Also as y3 → ∞,

τ23(y2, y3, t) = 0, τ33(y2, y3, t) = τ∞(0)(1 +Kt) sin θ, K > 0 (5)

(−∞ < y2 < ∞, t ≥ 0), where τ∞(0) is the value of τ∞(t) at t = 0. The initial
conditions satisfy all the above boundary conditions.
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3. Solution

Now differentiating partially 1st equation of (1) with respect to y2 and 3rd
equation of (1) with respect to y3, adding them and using 1st equation of (2),
we arrive at 1st equation of (6). Similar other equation is given in 2nd equation
of (6). Thus,

▽2V (y2, y3, t) = 0, where V = v − (v)0e
− µt

2η
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3.1. Solution Before any Fault Movement

The boundary value problem given by equations (1) to (6) can be solved by
taking Laplace transformation with respect to time t of all the constitutive
equations and the boundary conditions. On taking Laplace inverse transforma-
tion the solutions for displacement, stresses and strain are given below:
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The above solution shows that τ22 increases with time and τ22 → τ∞(t) cos θ
as t → ∞ while τ23 → 0 but τ33 → τ∞(t) sin θ, where τ∞(t) = τ∞(0)(1 +Kt).

We assume that the geological conditions as well as the characteristic of the
fault is such that when the stress component τ23 across the fault reaches some
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critical value τc, τc < τ∞(t) cos θ, the fault F starts slip. For bounded stresses
and strains the dislocation function f(ξ′3) say, should satisfy the conditions as
discussed in [10]: (i) its value will be maximum on the free surface. (ii) the
magnitude of the dislocation will decrease with y′3 as we move downwards and
ultimately tends to zero near the lower edge of the fault y′2 = 0, y′3= D.

3.2. Solution after any Fault Movement

We assume that after time T = 75 years the stress component τ23, which is the
main driving force for the dip-slip motion of the fault, exceeds the critical value
τc = 250 bar and the fault starts to slip. An additional condition characterizing
the dislocation of w due to the sudden movement is written in equation (8):

[w]F = Uf(y′3)H(t1), [w]F = lim
y′
2
→0+

w − lim
y′
2
→0−

w, (8)

where (y′2 = 0, 0 ≤ y′3 ≤ D). Here H(t1) is the Heaviside function, U is the
slip magnitude and [w]F is the discontinuity of w across F . Taking Laplace
Transform of (8) w.r.t. time t, we get [w]F = U

p
f(y′3). The fault slips across

F after time T=75 years. It is to be noted that [w]F = 0 for t1 ≤ 0, where
t1 = t− T . The fault F is located in the region (y′2 = 0, 0 ≤ y′3 ≤ D). We note
that v is continuous even after the fault slip so that v = 0, while w satisfies
the dislocation condition given in equation (8). The modified boundary value
problem is stated below:
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and all other boundary conditions are same as stated in the absence of any fault
movement. We solve the above boundary value problem as shown in Appendix.
Then the solution for displacements, stresses and strains after fault movement
are written in following equation:
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H(t1) is the Heaviside step function which gives the displacement at any point
Q(y2, y3) and φ(y2, y3), φ1(y2, y3), φ2(y2, y3) are given in Appendix. We try to
find the solutions in the following form:

v = (v)absence of fault movement + (v)after fault movement

w = (w)absence of fault movement + (w)after fault movement

τ22 = (τ22)absence of fault movement + (τ22)after fault movement

τ23 = (τ23)absence of fault movement + (τ23)after fault movement

τ33 = (τ33)absence of fault movement + (τ33)after fault movement

E22 = (E22)absence of fault movement + (E22)after fault movement

E23 = (E23)absence of fault movement + (E23)after fault movement

E33 = (E33)absence of fault movement + (E33)after fault movement.
So the final solutions are given by the following equation:
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4. Numerical Computation

Following Cathles [4], Aki and Richards [1] and the recent studies on rheological
behaviour of the crust and upper mantle by Chift et al. [3], the value of the
model parameters are taken as follows:
µ = 3× 1010N/m2(Pascals), η = 3× 1019Pa : s,
τ∞(0) = 30× 105N/m2, τ∞(t) = τ∞(0)(1 +Kt), K = 10−9,
D=Width of the fault F=10 km =10× 103 meter,
(τ22)0 = 30× 105N/m2 (Pascals), (τ23)0 = 30× 105N/m2(Pascals),
(τ33)0 = 30× 105N/m2(Pascals),
τc = 250 bar = 2.5 × 107N/m2(Pascals), θ = π/6, π/4, π/3, π/2,
R=2 meter, U=1.6 meter, 3.7 meter, 5.6 meter.

We consider different dislocation function f(ζ ′3) in the following form sug-
gested by Godara et al. [11]:

(i) Liner Slip Function (LSF): f(ζ ′3) =R(1-
ζ′
3

D
); (ii) Parabolic Slip Function

(PSF): f(ζ ′3) =R(1-
ζ′2
3

D2 ); (iii) Elliptic Slip Function (ESF): f(ζ ′3) =R(1-
ζ′2
3

D2 )
1

2 ,
which are satisfied for all the conditions for bounded stresses and strains stated
in 3.1. We have computed displacements, stresses and strains taking the above
values of the parameter with new time origin t1 = t − T , where T = 75 years
(say) using MATLAB.

Fig-2(a) shows the displacement component w against y2 for different slip
function taking y3 = 5 km with average slip magnitude 3.7 meter and a fixed
inclination θ = π/3 just immediately after the fault movement. From this figure
it is clear that the displacement is maximum for ESF and minimum for LSF and
as we move far away from the fault, the displacement tends to zero. From Fig-
2(b) we have found that with the value of y2 = 5 km, slip magnitude U = 3.7
meter for the ESF, displacement is found to be maximum on the free surface
y3 = 0 and it sharply decreases and then gradually → 0 with the increasing
value of depth. This rate of decrease of displacement is higher when the fault
is inclined at an angle θ = π/6 and this displacement falls off rapidly with the
increase of inclination of the fault and finally tend to zero as y3 → ∞ for all θ.

It is observed that the slip is small for earthquake of smaller magnitude and
this slip is higher for earthquake of higher magnitude.

Fig-3(a) shows the variation of displacement w with y2 for different slip
magnitude. It is found that for y3 = 5 km with fixed dip angle and ESF, the
displacement is maximum for maximum slip magnitude (5.6 meters) and it is
symmetric about y2 ≈ 0. Shear stress τ23 with y2 has been shown in Fig-3(b) for
various inclinations taking y3 = 0 with average slip magnitude and ESF. This
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Figure 2: (a): Displacement w against y2 for different slip function.
(b): Displacement w against y3 for various inclination.
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Figure 3: (a): Displacement w with y2 for different slip magni-
tude. (b): Stressτ23 with y2 for various dip angle.

shows that when |y2| → ∞ this stress approaches to zero and finally vanishes.
Each stress curve has a branch cut which reflects the discontinuity in stress
near the fault.

For fixed dip angle θ = π/3 and y2 = 5 km, shear stress τ23 is plotted
against y3 for different slip function in Fig-4(a). The accumulation of stress τ23
is maximum near y3 = 5 km and this maximum value is attained quite rapidly
for ESF and comparatively slow for LSF. All the stresses are found to tend to
zero as y3 → ∞ from free surface.
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Figure 4: (a): Stressτ23 with y3 for various slip function. (b): Stress
τ33 with y2 for various y3.
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Figure 5: (a): Stress τ33 with y3 for various y2. (b): Strain E23 with
y2.

Fig-4(b) shows normal stress for a fixed inclination with y2 for various y3,
taking parabolic slip function and average slip magnitude. We have found that
for y3 = 1 km, the normal stress τ33 increases sharply up to certain value after
that it decreases rapidly and → 0 as expected. For y3 = 3 km, there is gradual
increase of stress and then it decreases. For y3 = 1 km, the rate of decrease of
stress is higher than the other values of y3.

In Fig-5(a), this normal stress is plotted against y3 for different y2. Here nor-
mal stress suddenly increases near the fault for y2 = 1 km, but maximum stress
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Figure 6: (a): Strain E33 with y2. (b): Strain E33 with y3.

occurs when y2 = 3 km, little bit away from the fault, it is about 4.2×108N/m2.
For y2 = 5 km, stress is negative everywhere and finally it tends to zero. Fig-
5(b) shows the shear strain (E23) release with y2, taking y3 = 1 km, and θ = π/3
with average slip magnitude and elliptic type slip function. It shows that the
release of shear strain near the free surface is maximum near the fault y2 = 0
and this effect gradually falls off as we move far away from the trace of the fault.
This shear strain release is negative everywhere because after fault movement
stress is releasing so corresponding strain also releases and hence it is negative
everywhere. We have also observed that for y3 = 0 this strain has a branch cut
about y2 = 0 as expected.

Fig-6(a) shows the normal strain E33 with y2 taking y3 = 5 km, θ = π/3,
slip magnitude of 1.5 meter but slip function of parabolic type. There is a strain
accumulation near the fault y2 ≈ 0. This accumulation decreases sharply for
0 < y2 < 0.5 km, i.e. there is release of strain for y2 > 0 and it approaches to
zero for y2 → ∞. In Fig- 6(b), same normal strain has been plotted against y3
taking y2 = 5 km, θ = π/6 and U = 3.7 meter but slip function is elliptic type.
The pattern of strain is almost same as in Fig-6(a) but for present case strain
release is more sharper and it tends to zero very rapidly within shallow depth.

5. Conclusions

The contribution of the previous study [8] suggest that the Rheological prop-
erties of standard linear solid (SLS) may be a suitable representation of the
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lithosphere-asthenosphere system. So we derived analytical solutions for dis-
placement, stress and strain due to fault movement across an inclined, infinite,
Dip-slip fault situated in a visco-elastic half space of Maxwell and Kelvin-Voigt
type material. From the above numerical computation, it is found that these
displacement, stresses and strains depend on various inclinations and slip mag-
nitude of the fault. Also the stress accumulation / release near the fault varies
not only due to dip angle and slip magnitude but also on slip functions and
visco-elastic material in the lithosphere-asthenosphere system. The values of
the model parameters play an important role in determining the displacement,
stress and strain. The movement of fault causes stress accumulation/release
near the fault which essentially depend on different positions of point on the
fault for fixed width.

6. Appendix

Taking the Laplace transform of all constitutive equations and boundary con-
ditions, one can obtain

τ22 =
η(τ22)0

µ(1 + ηp
µ
)
+

(µ+ 2ηp) ∂v
∂y2

1 + ηp
µ

−
2η( ∂v

∂y2
)0

1 + ηp
µ

(13)

and similar other equation for τ23 and τ33.
Also we have the boundary condition in transform domain as:

τ22(y2, y3, t) = τ∞(0)(
1

p
+

K

p2
) cos θ as |y2| → ∞

τ23(y2, y3, t) = 0 as y3 → ∞,

τ33(y2, y3, t) = τ∞(0)(
1

p
+

K

p2
) sin θ as |y2| → ∞,

(−∞ < y2 < ∞, t ≥ 0), (y3 ≥ 0, t ≥ 0), K > 0



































. (14)

Here τ∞(0) is the value of τ∞(t) at t = 0, where τ22 =
∫∞

0 τ22e
−ptdt, p being

Laplace transform variable.
We have equation (6), in transform domain it can be written as,

▽2V = 0, where V = v −
v0

p+ µ
2η

, ▽2 W = 0, where W = w −
w0

p+ µ
2η

.

We solve the governing Laplace equation with the boundary conditions (3)-
(5) and (10).
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To solve the boundary value problem, one might guess that v, w have
the form v(y2, y3) = v0

p+ µ

2η

+ Ay2 + By3 and w(y2, y3) = w0

p+ µ

2η

+ Cy2 + Dy3.

Using the initial and boundary conditions and taking inverse Laplace transform,
the solution of displacement, stress and strain before any fault movement is
given by the equation (7). After the fault movement, an additional uniform
dislocation condition which characterizes the sudden movement across F is
given by equation (8). Taking L.T. of (8), we get

[w] =
U

s
f(y′3). (15)

All the basic equations and initial conditions are same as before for the post
movement period. The modified boundary conditions are given in equation
(10). We solved the above boundary value problem by modified Green’s func-
tion method developed by Maruyama [12], [13] and Rybicki [16], [17] and cor-
respondence principle. Let Q(y2, y3) be any point in the medium and P (ζ2, ζ3)
be any point on the fault F , then we have

w(Q) =

∫

F

w(P )G(P,Q), (16)

where G(P,Q) = G3
32(P,Q)dζ3 −G3

33(P,Q)dζ2
and G3

32(P,Q), G3
33(P,Q) are

G3
32(P,Q) = 1

2π [
y2−ζ2
L2 + y2−ζ2

M2 ], G3
33(P,Q) = 1

2π [
y3−ζ3
L2 − y3+ζ3

M2 ],
L2 = (y2 − ζ2)

2 + (y3 − ζ3)
2, M2 = (y2 − ζ2)

2 + (y3 + ζ3)
2.

Now (ζ2, ζ3 ) being a point on F , 0 ≤ ζ2 ≤ D cos θ, 0 ≤ ζ3 ≤ D sin θ and ζ2 =
ζ3 cot θ. A change in the co-ordinate axis from (ζ2, ζ3) to (ζ ′2, ζ

′
3) is connected

by the relation: ζ2 = ζ ′2 sin θ + ζ ′3 cos θ , ζ3 = −ζ ′2 cos θ + ζ ′3 sin θ so that ζ ′2 =
0, 0 ≤ ζ ′3 ≤ D on F . Therefore dζ2 = cos θdζ ′3, dζ3 = sin θdζ ′3. Thus,

w(Q) =
U

2πp

∫ D

0
[
y2 sin θ − y3 cos θ

L2
+

y2 sin θ + y3 cos θ

M2
]f(ζ ′3)dζ

′
3.

Taking the inverse Laplace transform, we get

w(Q) =
U

2π
φ(y2, y3)H(t1), (17)

where φ(y2, y3) =
∫ D

0 [y2 sin θ−y3 cos θ
L2 + y2 sin θ+y3 cos θ

M2 ]f(ζ ′3)dζ
′
3

and L2,M2 have the form L2 = ζ ′23 − 2ζ ′3(y2 cos θ + y3 sin θ) + y22 + y23 ,
M2 = ζ ′23 − 2ζ ′3(y2 cos θ − y3 sin θ) + y22 + y23 .

It is to be noted that w = 0 for t1 = t − T ≤ 0. From the equation (13),
(17) and assuming displacement, stress and strain to be zero for t1 = t−T < 0,
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we have τ22 = 0. We note that v is continuous even after the fault slip so
that v = 0 after fault movement. Taking inverse Laplace transform, τ22 = 0.
Similarly other equations are as follows:

τ23 =
U

2π
µH(t1)(1 + e−

µt1
η

)φ1(y2, y3)

E23 =
U

4π
µ(1 + e−

µt1
η

)H(t1)φ1(y2, y3), where φ1(y2, y3) =
∂φ

∂y2

=

∫ D

0
[
ζ ′23 sin θ − 2y3(ζ

′
3 − y2 cos θ)− (y22 − y23) sin θ

L4

+
ζ ′23 sin θ + 2y3(ζ

′
3 − y2 cos θ)− (y22 − y23) sin θ

M4
]f(ζ ′3)dζ

′
3.

τ33 =
U

2π
µH(t1)(1 + e−

µt1
η

)φ2(y2, y3), E22 = 0

E33 =
U

2π
µ(1 + e−

µt1
η

)H(t1)φ2(y2, y3), where φ2(y2, y3) =
∂φ

∂y3

= −

∫ D

0
[
ζ ′23 cos θ − 2y2(ζ

′
3 − y3 sin θ) + (y22 − y23) cos θ

L4

−
ζ ′23 cos θ − 2y2(ζ

′
3 + y3 sin θ) + (y22 − y23) cos θ

M4
]f(ζ ′3)dζ

′
3
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