International Journal of Applied Mathematics

Volume 31 No. 4 2018, 597-611

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v31i4.6

PROPERTIES OF A CERTAIN SUBCLASS OF STARLIKE FUNCTIONS DEFINED BY A GENERALIZED OPERATOR.

Yuzaimi Yunus^{1 §}, Ajab Bai Akbarally², Suzeini Abdul Halim³

^{1,2}Faculty of Computer and Mathematical Sciences University Teknologi MARA, 40450 Shah Alam Selangor, MALAYSIA

> ³Institute of Mathematical Sciences University Malaya 50603 Kuala Lumpur, MALAYSIA

Abstract: In this paper, we introduce the class $S_{\alpha,\lambda}^{n,s}(\beta)$, consisting of analytic functions defined by a generalized operator. We derive coefficient inequalities, growth and distortion theorem, extreme points and Fekete-Szegö problem for functions in this class.

AMS Subject Classification: 30C45, 30C50

Key Words: analytic functions, starlike functions, operator, coefficient estimates

1. Introduction

Let \mathcal{A} denote the class of functions f(z) normalized by f(0) = 0 and f'(0) - 1 = 0 in the form of

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \tag{1}$$

which are analytic in the open unit disk $\mathbb{U} = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}.$

Received: April 9, 2018

© 2018 Academic Publications

[§]Correspondence author

An analytic function is said to be in the class of starlike functions of order β in \mathbb{U} , denoted by $S^*(\beta)$, if it satisfies the following condition:

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > \beta \quad (z \in \mathbb{U}; \quad 0 \le \beta < 1).$$
 (2)

Note that $S^*(\beta) \subseteq S * (0) =: S$, where S is the well-known class of starlike functions with respect to the origin in \mathbb{U} .

Applications of some linear integral and differential operators play a vital role in geometric function theory. Salagean [11] defined and studied the derivative operator denoted as $D^n f(z)$. Then, Al-Oboudi [1] generalized the Salagean operator. Srivastava and Attiya [12] introduced a convolution operator $J_{s,b}(f)(z)$ that is defined by the Hadamard product in terms of the Hurwitz-Lerch Zeta function, $\phi(z,s;b) = \sum_{k=0}^{\infty} \frac{z^k}{(k+b)^s}$. Liu [7], then generalized the operator, $J_{s,b}(f)(z)$. Several interesting subclasses of analytic functions defined by associating the above mentioned operators are introduced and investigated in literature. (See for example [3, 2, 10, 9]). For further extensions of similar studies, related to operators of generalized fractional calculus, see for example, Kiryakova [5], [6] and many references therein.

Recently, Yunus et. al [13] introduced the operator $\vartheta_{\alpha,\lambda}^{n,s}f(z):\mathcal{A}\to\mathcal{A}$ defined by:

$$\vartheta_{\alpha,\lambda}^{n,s} f(z) = z + \sum_{k=2}^{\infty} (1 - \alpha(1-\lambda)(1-k))^n \left(\frac{1+b}{k+b}\right)^s a_k z^k, \tag{3}$$

where $0 \le \lambda < 1$, $0 < \alpha \le 1$, $b \in \mathbb{C}/\mathbb{Z}_0^-$, $s \in \mathbb{C}$, $n \in \mathbb{N}_0$. Observe that when:

- (i) n = 0, $\vartheta_{\alpha,\lambda}^{0,s} f(z)$ is the Srivastava–Attiya operator [12];
- (ii) $s=0, \lambda=0, \ \vartheta_{\alpha,0}^{n,0}f(z)$ is the Al-Oboudi operator [1];
- (iii) $s = 0, \lambda = 0, \alpha = 1, \ \vartheta_{\alpha,\lambda}^{n,s} f(z)$ is the Salagean differential operator [11].

In this paper, by applying the operator $\vartheta_{\alpha,\lambda}^{n,s}f(z)$, we introduce a subclass of A denoted by $S_{\alpha,\lambda}^{n,s}(\beta)$.

Namely, we define $f \in A$ to be in the class $S_{\alpha,\lambda}^{n,s}(\beta)$, if $\vartheta_{\alpha,\lambda}^{n,s}f(z)$ is in the class $S^*(\beta)$, that is, if

$$Re\left\{\frac{z(\vartheta_{\alpha,\lambda}^{n,s}f(z))'}{\vartheta_{\alpha,\lambda}^{n,s}f(z)}\right\} > \beta \tag{4}$$

$$(z \in \mathbb{U}; 0 \le \beta < 1; 0 \le \lambda < 1, 0 < \alpha \le 1, b \in \mathbb{C}/\mathbb{Z}_0^-, s \in \mathbb{C}, n \in \mathbb{N}_0).$$

The properties of the above class such as coefficient estimates, growth and distortion theorems, extreme point and Fekete-Szegö problem are investigated.

2. Coefficient estimates

We obtain a sufficient condition for function $f(z) \in \mathcal{A}$ to be in the class $S_{\alpha,\lambda}^{n,s}(\beta)$.

Theorem 1. Let $f(z) \in \mathcal{A}$ be given by (1). If $\leq \beta < 1$, $0 \leq \lambda < 1$, $0 < \alpha \leq 1$, $b \in \mathbb{C}/\mathbb{Z}_0^-$, $s \in \mathbb{C}$, $n \in \mathbb{N}_0$ and

$$\sum_{k=2}^{\infty} (k-\beta) |(1-\alpha(1-\lambda)(1-k))^n| \left| \left(\frac{1+b}{k+b} \right)^s \right| |a_k| \le 1-\beta,$$
 (5)

then $f(z) \in S_{\alpha,\lambda}^{n,s}(\beta)$.

Proof. Suppose that condition (5) is satisfied for $\beta \in [0,1)$. For $f(z) \in \mathcal{A}$, we define the function G(z) by

$$G(z) := \frac{z(\vartheta_{\alpha,\lambda}^{n,s} f(z))'}{\vartheta_{\alpha,\lambda}^{n,s} f(z)} - \beta.$$
(6)

In order to prove that $f(z) \in S_{\alpha,\lambda}^{n,s}(\beta)$, it suffices to show that

$$\left| \frac{G(z) - 1}{G(z) + 1} \right| < 1, \quad (z \in \mathbb{U}).$$

Making use of (3), we have

$$|F(z)| = \left| \frac{G(z) - 1}{G(z) + 1} \right|$$

$$= \left| \frac{z(\vartheta_{\alpha,\lambda}^{n,s} f(z))' - (1 + \beta)\vartheta_{\alpha,\lambda}^{n,s} f(z)}{z(\vartheta_{\alpha,\lambda}^{n,s} f(z))' + (1 - \beta)\vartheta_{\alpha,\lambda}^{n,s} f(z)} \right|$$

$$= \left| \frac{z + \sum_{k=2}^{\infty} k(1 - \alpha(1 - \lambda)(1 - k))^{n} (\frac{1+b}{k+b})^{s} a_{k} z^{k}}{-(1 + \beta)(z + \sum_{k=2}^{\infty} (1 - \alpha(1 - \lambda)(1 - k))^{n} (\frac{1+b}{k+b})^{s} a_{k} z^{k}} \right|$$

$$= \left| \frac{z + \sum_{k=2}^{\infty} k(1 - \alpha(1 - \lambda)(1 - k))^{n} (\frac{1+b}{k+b})^{s} a_{k} z^{k}}{z + \sum_{k=2}^{\infty} k(1 - \alpha(1 - \lambda)(1 - k))^{n} (\frac{1+b}{k+b})^{s} a_{k} z^{k}} \right|$$

$$+ (1 - \beta)(z + \sum_{k=2}^{\infty} (1 - \alpha(1 - \lambda)(1 - k))^{n} (\frac{1+b}{k+b})^{s} a_{k} z^{k}}$$

$$= \frac{\left|\frac{\beta z + \sum_{k=2}^{\infty} (1 + \beta - k)(1 - \alpha(1 - \lambda)(1 - k))^n \left(\frac{1+b}{k+b}\right)^s a_k z^k}{(2 - \beta)z + \sum_{k=2}^{\infty} (1 - \beta + k)(1 - \alpha(1 - \lambda)(1 - k))^n \left(\frac{1+b}{k+b}\right)^s a_k z^k}\right|}$$

$$\leq \frac{\beta |z| + \sum_{k=2}^{\infty} (1 + \beta - k)(1 - \alpha(1 - \lambda)(1 - k))^n \left|\left(\frac{1+b}{k+b}\right)^s |a_k||z^k|}{(2 - \beta)|z| + \sum_{k=2}^{\infty} (1 - \beta + k)(1 - \alpha(1 - \lambda)(1 - k))^n \left|\left(\frac{1+b}{k+b}\right)^s |a_k||z^k|}$$

$$\leq \frac{\beta + \sum_{k=2}^{\infty} (1 + \beta - k)(1 - \alpha(1 - \lambda)(1 - k))^n \left|\left(\frac{1+b}{k+b}\right)^s |a_k|}{(2 - \beta) + \sum_{k=2}^{\infty} (1 - \beta + k)(1 - \alpha(1 - \lambda)(1 - k))^n \left|\left(\frac{1+b}{k+b}\right)^s |a_k|}\right|}$$

$$\leq 1,$$

provided that

$$\beta + \sum_{k=2}^{\infty} (1+\beta - k)(1 - \alpha(1-\lambda)(1-k))^n \left| \left(\frac{1+b}{k+b} \right)^s \right| |a_k|$$

$$\leq (2-\beta) + \sum_{k=2}^{\infty} (1-\beta + k)(1 - \alpha(1-\lambda)(1-k))^n \left| \left(\frac{1+b}{k+b} \right)^s \right| |a_k|,$$

which is equivalent to hypothesis (5) in Theorem 1. So this completes the proof of Theorem 1. \Box

The next theorem aims to provide coefficient inequalities so that the function f(z) belongs to $S_{\alpha,\lambda}^{n,s}(\beta)$.

Theorem 2. Let $\beta \in [0,1)$. If $f(z) \in S_{\alpha,\lambda}^{n,s}(\beta)$, then

$$|a_k| \le \frac{2(1-\beta)}{(k-1)|(1-\alpha(1-\lambda)(1-k))^n|} \left| \left(\frac{k+b}{1+b}\right)^s \right| \prod_{i=2}^{k-1} \left(1 + \frac{2(1-\beta)}{j-1}\right), \quad (7)$$

with $k \in \mathbb{N}/\{1\}$.

The result is sharp.

Proof. Let $f(z) \in S_{\alpha,\lambda}^{n,s}(\beta)$. Set

$$p(z) = \frac{1}{1-\beta} \left\{ \frac{z(\vartheta_{\alpha,\lambda}^{n,s} f(z))'}{\vartheta_{\alpha,\lambda}^{n,s} f(z)} - \beta \right\} = 1 + c_1 z + c_2 z^2 + \dots$$
 (8)

Then p(z) is analytic with

$$p(0) = 1$$
 and $Re\{p(z)\} > 0$, $(z \in \mathbb{U})$.

Rearranging (8), we get

$$z(\vartheta_{\alpha,\lambda}^{n,s} f(z))' = [(1-\beta)p(z) + \beta]\vartheta_{\alpha,\lambda}^{n,s},$$

and by virtue of (3), we get

$$(k-1)(1-\alpha(1-\lambda)(1-k))^n \left(\frac{1+b}{k+b}\right)^s a_k$$

$$= (1-\beta)c_{k-1} + \sum_{j=2}^{k-1} (1-\beta)c_{k-j}(1-\alpha(1-\lambda)(1-j))^n \left(\frac{1+b}{j+b}\right)^s a_j.$$
(9)

By using Caratheodory's lemma [4], $|c_k| \leq 2$, so we have

Using the principle of mathematical induction, we will prove that the inequality (7) holds true for $k \in \mathbb{N}/\{1\}$. Define formally the summation, $\sum_{j=n}^{m} d_j$ and product, $\prod_{j=n}^{m} h_j$ as follows:

$$\sum_{i=n}^{m} d_i = \begin{cases} 0, & \text{if } n > m, \\ d_n + \sum_{j=n+1}^{m} d_j, & \text{if } m \ge n, \end{cases}$$

and

$$\prod_{j=n}^{m} h_j = \begin{cases} 1, & \text{if } n > m, \\ h_n \prod_{j=n+1}^{m} h_j, & \text{if } m \ge n, \end{cases}$$

respectively.

If k = 2 in (10), then we have

$$(1+\alpha(1-\lambda))^n \left| \left(\frac{1+b}{2+b} \right)^s \right| |a_2| \le 2(1-\beta)$$
$$|a_2| \le \frac{2(1-\beta)}{(1+\alpha(1-\lambda))^n} \left| \left(\frac{2+b}{1+b} \right)^s \right|.$$

Therefore for k=2 the statement is true.

Assume that (7) is true for $k \leq m$. Then, for k = m + 1, from (7) and (10), we obtain

$$(m+1-1)(1-\alpha(1-\lambda)(1-(m+1)))^{n} \left| \left(\frac{1+b}{k+1+b} \right)^{2} \right| |a_{m+1}|$$

$$\leq 2(1-\beta) \left\{ 1 + \sum_{j=2}^{m-1} (1-\alpha(1-\lambda)(1-j))^{n} \left| \left(\frac{1+b}{j+b} \right)^{s} \right| |a_{j}| \right\}$$

$$\leq 2(1-\beta) \left\{ 1 + \sum_{j=2}^{m} \frac{2(1-\beta)}{j-1} \prod_{j=2}^{j-1} \left(1 + \frac{2(1-\beta)}{j-1} \right) \right\}$$

$$= 2(1-\beta) \prod_{j=2}^{j-1} \left(1 + \frac{2(1-\beta)}{j-1} \right),$$

that is

$$|a_{m+1}| \le \frac{2(1-\beta)}{(m+1-1)(1-\alpha(1-\lambda)(1-(m+1)))^n} \left| \left(\frac{m+1+b}{1+b} \right)^s \right| \times \prod_{j=2}^{m+1-1} \left(1 + \frac{2(1-\beta)}{j-1} \right).$$
 (11)

Therefore (7) holds true for k = m + 1. Hence, by principle of mathematical induction, it is true for all $k \in \mathbb{N}/\{1\}$.

The result is sharp for the function f(z) given by

$$f(z) = z + \frac{2(1-\beta)}{(k-1)(1-\alpha(1-\lambda)(1-k))^n} \left| \left(\frac{k+b}{1+b} \right)^s \right| \times \prod_{j=2}^{k-1} \left(1 + \frac{2(1-\beta)}{j-1} \right) z^k.$$
 (12)

3. Growth and distortion inequalities

Distortion inequalities for the functions in this class are given by the following theorem.

Theorem 3. Let $f(z) \in S_{\alpha,\lambda}^{n,s}(\beta)$, $0 \le \beta < 1$ and |z| = r < 1. Then,

$$r - 2(1 - \beta)r^{2} \sum_{k=2}^{\infty} \frac{1}{(k-1)(1 - \alpha(1-\lambda)(1-k))^{n}} \left| \left(\frac{k+b}{1+b} \right)^{s} \right| \times \prod_{j=2}^{k-1} \left(1 + \frac{2(1-\beta)}{j-1} \right)$$

 $\leq |f(z)| \leq$

$$r + 2(1-\beta)r^{2} \sum_{k=2}^{\infty} \frac{1}{(k-1)(1-\alpha(1-\lambda)(1-k))^{n}} \left| \left(\frac{k+b}{1+b}\right)^{s} \right| \times \prod_{j=2}^{k-1} \left(1 + \frac{2(1-\beta)}{j-1}\right)$$

and

$$1 - 2(1 - \beta)r \sum_{k=2}^{\infty} \frac{k}{(k-1)(1 - \alpha(1-\lambda)(1-k))^n} \left| \left(\frac{k+b}{1+b}\right)^s \right| \times \prod_{j=2}^{k-1} \left(1 + \frac{2(1-\beta)}{j-1}\right)$$

 $\leq |f'(z)| \leq$

$$1 + 2(1 - \beta)r \sum_{k=2}^{\infty} \frac{k}{(k-1)(1 - \alpha(1-\lambda)(1-k))^n} \left| \left(\frac{k+b}{1+b}\right)^s \right| \times \prod_{j=2}^{k-1} \left(1 + \frac{2(1-\beta)}{j-1}\right).$$

Proof. Let $f(z) \in A$ in the form of (1). Then by Theorem 2, we obtain $|f(z)| \le |z| + \sum_{k=2}^{\infty} |a_k| |z^k|$

$$\leq r + r^2 \sum_{k=2}^{\infty} \frac{2(1-\beta)}{(k-1)(1-\alpha(1-\lambda)(1-k))^n} \left| \left(\frac{k+b}{1+b} \right) \right| \times \prod_{j=2}^{k-1} \left(1 + \frac{2(1-\beta)}{j-1} \right)$$

$$= r + 2r^{2}(1-\beta) \sum_{k=2}^{\infty} \frac{1}{(k-1)(1-\alpha(1-\lambda)(1-k))^{n}} \left| \left(\frac{k+b}{1+b} \right) \right| \times \prod_{j=2}^{k-1} \left(1 + \frac{2(1-\beta)}{j-1} \right)$$

and

$$|f(z)| \ge |z| - \sum_{k=2}^{\infty} |a_k||z^k|$$

$$\geq r - r^2 \sum_{k=2}^{\infty} \frac{2(1-\beta)}{(k-1)(1-\alpha(1-\lambda)(1-k))^n} \left| \left(\frac{k+b}{1+b} \right) \right| \times \prod_{j=2}^{k-1} \left(1 + \frac{2(1-\beta)}{j-1} \right)$$

$$= r - 2r^{2}(1-\beta) \sum_{k=2}^{\infty} \frac{1}{(k-1)(1-\alpha(1-\lambda)(1-k))^{n}} \left| \left(\frac{k+b}{1+b} \right) \right| \times \prod_{j=2}^{k-1} \left(1 + \frac{2(1-\beta)}{j-1} \right)$$

for |z| = r < 1.

From (1), upon differentiating

$$|f'(z)| \le 1 + \sum_{k=2}^{\infty} k|a_k||z^{k-1}|$$

$$\leq 1 + r \sum_{k=2}^{\infty} \frac{2(1-\beta)}{(k-1)(1-\alpha(1-\lambda)(1-k))^n} \left| \left(\frac{k+b}{1+b} \right) \right| \times \prod_{j=2}^{k-1} \left(1 + \frac{2(1-\beta)}{j-1} \right)$$

$$= 1 + 2(1 - \beta)r \sum_{k=2}^{\infty} \frac{1}{(k-1)(1 - \alpha(1-\lambda)(1-k))^n} \left| \left(\frac{k+b}{1+b} \right) \right| \times \prod_{j=2}^{k-1} \left(1 + \frac{2(1-\beta)}{j-1} \right)$$

and

$$|f'(z)| \ge 1 - \sum_{k=2}^{\infty} k|a_k||z^{k-1}|$$

$$\ge 1 - r \sum_{k=2}^{\infty} \frac{2(1-\beta)}{(k-1)(1-\alpha(1-\lambda)(1-k))^n} \left| \left(\frac{k+b}{1+b} \right) \right|$$

$$\times \prod_{j=2}^{k-1} \left(1 + \frac{2(1-\beta)}{j-1} \right)$$

$$= 1 - 2(1-\beta)r \sum_{k=2}^{\infty} \frac{1}{(k-1)(1-\alpha(1-\lambda)(1-k))^n} \left| \left(\frac{k+b}{1+b} \right) \right|$$

$$\times \prod_{j=2}^{k-1} \left(1 + \frac{2(1-\beta)}{j-1} \right).$$

4. Extreme points

Let $\tilde{S}_{\alpha,\lambda}^{n,s}(\beta)$ be subclass of $S_{\alpha,\lambda}^{n,s}(\beta)$ that consists of all functions $f(z) \in \mathcal{A}$ which satisfy the inequality (5). Then the extreme points of $\tilde{S}_{\alpha,\lambda}^{n,s}(\beta)$ are given as follows:

Theorem 4. Let

$$f_1(z) = z$$

and

$$f_k := z + \frac{1-\beta}{(k-\beta)(1-\alpha(1-\lambda)(1-k))^n} \left| \left(\frac{k+b}{1+b} \right)^s \right|.$$

Then

$$f \in \tilde{S}^{n,s}_{\alpha,\lambda}(\beta)$$

if and only if it can be expressed in the following form:

$$f(z) = \sum_{k=2}^{\infty} t_k f_k(z) \quad \left(t_k > 0; \quad \sum_{k=1}^{\infty} t_k = 1\right).$$

Proof. Suppose that

$$f(z) = \sum_{k=1}^{\infty} t_k f_k(z)$$

$$= z + \sum_{k=2}^{\infty} t_k \frac{1-\beta}{(k-\beta)(1-\alpha(1-\lambda)(1-k))^n} \left| \left(\frac{k+b}{1+b}\right)^s \right| z^k.$$

Then

$$\sum_{k=2}^{\infty} (k-\beta)(1-\alpha(1-\lambda)(1-k))^n \left| \left(\frac{1+b}{k+b}\right)^n \right| |a_k|$$

$$= \sum_{k=2}^{\infty} (k-\beta)(1-\alpha(1-\lambda)(1-k))^n \left| \left(\frac{1+b}{k+b}\right)^n \right|$$

$$\times t_k \frac{1-\beta}{(k-\beta)(1-\alpha(1-\lambda)(1-k))^n} \left| \left(\frac{k+b}{1+b}\right)^n \right|$$

$$= (1-\beta) \sum_{k=2}^{\infty} t_k = (1-\beta)(1-t_1) \le 1-\beta.$$

Therefore, by the definition of class $\tilde{S}^{n,s}_{\alpha,\lambda}(\beta)$, we get

$$f \in \tilde{S}_{\alpha,\lambda}^{n,s}(\beta) \quad (0 \le \beta < 1).$$

Conversely, suppose that

$$f \in \tilde{S}^{n,s}_{\alpha,\lambda}(\beta) \quad (0 \le \beta < 1).$$

Then, by using equation (5), we may set

$$t_k = (k - \beta)(1 - \alpha(1 - \lambda)(1 - k))^n \left| \left(\frac{1 + b}{k + b}\right)^n \right| \quad (k \in \mathbb{N}/\{1\})$$

$$t_1 = 1 - \sum_{k=2}^{\infty} t_k.$$

We note that $f(z) = \sum_{k=1}^{\infty} t_k f_k(z)$ and the proof of Theorem 4 is thus completed.

5. Fekete-Szegö problem

The aim of this section is to obtain the Fekete-Szegö inequality for functions in the class $S_{\alpha,\lambda}^{n,s}$ provided

$$s > 0, \quad b > 0, \quad 0 \le \beta < 1.$$

To derive the results, we recall the lemma from [8].

Lemma 5. If $p(z) = 1 + c_1 z + c_2 z^2 + ...$ is an analytic function in \mathbb{U} such that $Re\{p(z)\} > 0$ for $z \in \mathbb{U}$, then

$$|c_2 - \nu c_1^2| \le \begin{cases} -4\nu + 2, & \text{if } \nu \le 0\\ 2, & \text{if } 0 \le \nu \le 1\\ 4\nu - 2, & \text{if } \nu \ge 1. \end{cases}$$

When $\nu < 0$ or $\nu > 1$ the equality holds true if and only if

$$p(z) = \frac{1+z}{1-z},$$

or one of its rotations. If $0 < \nu < 1$, then the equality holds true if and only if

$$p(z) = \frac{1+z^2}{1-z^2},$$

or one of its rotations. If $\nu = 0$, the equality holds true, if and only if

$$p(z) = \left(\frac{1+\omega}{2}\right) \left(\frac{1+z}{1-z}\right) + \left(\frac{1-\omega}{2}\right) \left(\frac{1-z}{1+z}\right) \quad (0 \le \omega \le 1)$$

or one of its rotations. If $\nu = 1$, then the equality holds true if and only if p(z) is the reciprocal of one of the functions such that the equality holds true in the case $\nu = 0$.

Theorem 6. Let s > 0, b > 0, and $0 \le \beta < 1$. If $f(z) \in S_{\alpha,\lambda}^{n,s}$, then

$$|a_3 - \mu a_2^2| \le \begin{cases} (1-\beta)^2 \left\{ \frac{2}{D_2^n} \left(\frac{3+b}{1+b} \right)^s - \frac{4\mu}{D_1^{2n}} \left(\frac{2+b}{1+b} \right)^{2n} + \frac{1}{(1-\beta)D_2^n} \left(\frac{3+b}{1+b} \right)^s \right\}, & \text{if } \mu \le \sigma_1, \\ \frac{(1-\beta)}{D_2^n} \left(\frac{3+b}{1+b} \right)^s, & \text{if } \sigma_1 \le \mu \le \sigma_2, \\ (1-\beta)^2 \left\{ \frac{4\mu}{D_1^{2n}} \left(\frac{2+b}{1+b} \right)^{2s} - \frac{2}{D_2^n} \left(\frac{3+b}{1+b} \right)^s - \frac{1}{(1-\beta)D_2^n} \left(\frac{3+b}{1+b} \right)^s \right\}, & \text{if } \mu \ge \sigma_2, \end{cases}$$

where

$$D_1 = 1 + \alpha(1 - \lambda) \quad \text{and} \quad D_2 = 1 + 2\alpha(1 - \lambda),$$

$$\sigma_1 = \frac{1}{2} \left(\frac{D_1^2}{D_2}\right)^n \left(\frac{1+b}{2+b}\right)^s \left(\frac{3+b}{2+b}\right)^s$$

and

$$\sigma_2 = \frac{2-\beta}{2(1-\beta)} \left(\frac{D_1^2}{D_2}\right)^n \left(\frac{1+b}{2+b}\right)^s \left(\frac{3+b}{2+b}\right)^s.$$

The result is sharp.

Proof. Suppose $f(z) \in S_{\alpha,\lambda}^{n,s}$, let

$$p(z) = \frac{1}{1 - \beta} \left\{ \frac{z(\vartheta_{\alpha,\lambda}^{n,s} f(z))'}{\vartheta_{\alpha,\lambda}^{n,s} f(z)} - \beta \right\} = 1 + c_1 z + c_2 z^2 + \dots$$

Then, by virtue of equation (3) and with the help of (9), we have

$$a_2 = \frac{(1-\beta)c_1}{D_1^n} \left(\frac{2+b}{1+b}\right)^s$$
$$a_3 = \frac{1-\beta}{2D_2^n} \left(\frac{3+b}{1+b}\right)^s (c_2 + (1-\beta)c_1^2).$$

We obtain

$$a_3 - \mu a_2^2 = \frac{(1-\beta)}{2D_2^n} \left(\frac{3+b}{1+b}\right)^s (c_2 + (1-\beta)c_1^2) - \mu \frac{(1-\beta)^2}{D_1^{2n}} \left(\frac{2+b}{1+b}\right)^{2s} c_1^2$$
$$= \frac{(1-\beta)}{2D_2^n} \left(\frac{3+b}{1+b}\right)^s (c_2 - \nu c_1^2),$$

where

$$\nu = (1 - \beta) \left(2\mu \frac{D_2^n}{D_1^{2n}} \left(\frac{2+b}{1+b} \right)^s \left(\frac{2+b}{3+b} \right)^s - 1 \right).$$

By inserting ν in Lemma 5, we have

$$|c_2 - \nu c_1^2| \le \begin{cases} -4(1-\beta) \left(2\mu \left(\frac{D_2}{D_1^2}\right)^n \left(\frac{2+b}{1+b}\right)^s \left(\frac{2+b}{3+b}\right)^s - 1\right) + 2, & \text{if } \mu \le \sigma_1, \\ 2, & \text{if } \sigma_1 \le \mu \le \sigma_2, \\ 4(1-\beta) \left(\left(2\mu \frac{D_2}{D_1^2}\right)^n \left(\frac{2+b}{1+b}\right)^s \left(\frac{2+b}{3+b}\right)^s - 1\right) - 2, & \text{if } \mu \ge \sigma_2. \end{cases}$$

Applying the lemma, the result asserted by Theorem 6 follows.

In addition, if $\mu < \sigma_1$ or $\mu > \sigma_2$, then the equality holds true if and only if

$$\vartheta_{\alpha\lambda}^{n,s} f(z) = \frac{z}{(1 - e^{i\theta}z)^{2(1-\beta)}} \quad (\theta \in \mathbb{R}).$$

If $\sigma_1 < \mu < \sigma_2$, the equality holds true if and only if

$$\vartheta_{\alpha\lambda}^{n,s} f(z) = \frac{z}{(1 - e^{i\theta} z^2)^{1-\beta}} \quad (\theta \in \mathbb{R}).$$

If $\mu = \sigma_1$, then the equality holds true if and only if

$$\vartheta_{\alpha\lambda}^{n,s} f(z) = \left(\frac{z}{(1 - e^{i\theta}z)^{2(1-\beta)}}\right)^{(1+\omega)/2} \left(\frac{z}{(1 + e^{i\theta}z)^{2(1-\beta)}}\right)^{(1-\omega)/2}$$
$$= \frac{z}{[(1 - e^{i\theta}z)^{1+\omega}(1 + e^{i\theta}z)^{1-\omega}]^{1-\beta}}.$$

If $\mu = \sigma_2$, then the equality holds true if and only if $\vartheta_{\alpha\lambda}^{n,s}f(z)$ satisfies the condition below:

$$\frac{z(\vartheta_{\alpha\lambda}^{n,s}f(z))'}{\vartheta_{\alpha\lambda}^{n,s}f(z)} = (1-\beta)p(z) + \beta,$$

where

$$\frac{1}{p(z)} = \left(\frac{1+\omega}{2}\right) \left(\frac{1+z}{1-z}\right) + \left(\frac{1-\omega}{2}\right) \left(\frac{1-z}{1+z}\right) \quad (0 \le \omega \le 1).$$

Acknowledgments

The first author would like to thank Universiti Teknologi MARA (UiTM) and Ministry of Higher Education (MOHE) Malaysia for the PhD fellowship scheme.

References

- [1] F.M. Al-Oboudi, On univalent functions defined by generalized Salagean operator, *International J. of Mathematics and Mathematical Sci.*, **2004**, No 27 (2004), 1429-1436.
- [2] S. Bulut, Some properties for an integral operator defined by Al-Oboudi differential operator, *JIPAM*, **9**, No 4 (2008), 5.
- [3] L. Dileep, S. Latha, A note on Salagean type functions, Global J. of Mathematical Sciences: Theory and Practical, 2, No 1 (2010), 29-35.
- [4] P.L. Duren, Univalent Functions, Springer-Verlag, New York (1983).
- [5] V. Kiryakova, Generalized Fractional Calculus and Applications, Longman & J. Wiley Sons Inc, Harlow N. York (1994).
- [6] V. Kiryakova, The operators of generalized fractional calculus and their action in classes of univalent functions, In: "Geometric Function Theory and Applications' 2010" (Proc. of International Symp. GFTA 2010, Sofia, 27-31.08.2010), 29-40; available at: http://www.math.bas.bg/complan/tmsf/gfta2010/proceedings.php.
- [7] J.L. Liu, Subordinations for certain multivalent analytic functions associated with the generalized Srivastava-Attiya operator, *Integral Transforms and Special Functions*, **19**, No 12 (2008), 893-901.
- [8] W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: *Proc. of the Conference on Complex Analysis*, Z. Li, F. Ren, L. Yang and S. Zhang (Eds), Int. Press (1994), 157-169.
- [9] J.K. Prajapat, S.P. Goyal, Applications of Srivastava-Attiya operator to the classes of strongly starlike and strongly convex functions, *J. of Math. Inequalities*, **3**, No 1 (2009), 129-137.
- [10] D. Raducanu, H.M. Srivastava, A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch Zeta function, *Integral Transforms and Special Functions*, 18, No 12 (2007), 933-943.

- [11] G.S. Salagean, Subclasses of univalent functions, In: Complex Analysis-Fifth Romanian-Finnish Seminar, Springer, Berlin - Heidelberg (1983), 362-372.
- [12] H.M. Srivastava, A.A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, *Integral Transform and Special Functions*, **18**, No 3 (2007), 207-216.
- [13] Y. Yunus, A.B. Akbarally, S.A. Halim, Strongly starlike functions associated with a new operator, In: *AIP Conf. Proc.*, **1870**, No 1, Art. 040001, AIP Publishing.