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Abstract: In this paper, we introduce the class SZ:i(B), consisting of analytic
functions defined by a generalized operator. We derive coefficient inequalities,
growth and distortion theorem, extreme points and Fekete-Szeg6 problem for
functions in this class.
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1. Introduction

Let A denote the class of functions f(z) normalized by f(0) = 0 and f'(0)—1 =0
in the form of

f(2) :z—i—Zakzk, (1)
k=2

which are analytic in the open unit disk U= {z: 2 € C and |z| < 1}.
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An analytic function is said to be in the class of starlike functions of order
B in U, denoted by S*(3), if it satisfies the following condition:

/
%(ZJ{(S)>>B (zeU; 0<pB<). (2)

Note that S*(5) C S % (0) =: S, where S is the well-known class of starlike
functions with respect to the origin in U.

Applications of some linear integral and differential operators play a vi-
tal role in geometric function theory. Salagean [11] defined and studied the
derivative operator denoted as D" f(z). Then, Al-Oboudi [1] generalized the
Salagean operator. Srivastava and Attiya [12] introduced a convolution operator
Jsp(f)(2) that is defined by the Hadamard product in terms of the Hurwitz-

Lerch Zeta function, ¢(z,s;b) = Z;":Oﬁ. Liu [7], then generalized the
operator, Js;(f)(2). Several interesting subclasses of analytic functions defined
by associating the above mentioned operators are introduced and investigated
in literature. (See for example [3, 2, 10, 9]). For further extensions of similar
studies, related to operators of generalized fractional calculus, see for example,
Kiryakova [5], [6] and many references therein.

Recently, Yunus et. al [13] introduced the operator ¥, 3 f(2) : A — A
defined by:

TR - (140
A =2+ 30— N0 -0 (i) @

where 0 <A <1, 0<a<1l, beC/Z;, secC, necNy Observe that
when:

(i) n=0, ﬁg’f)\f(z) is the Srivastava—Attiya operator [12[;

(i) s =0,A =0, ¥0f(2) is the Al-Oboudi operator [1];

(i) s =0,A =0, =1, ¥, f(2) is the Salagean differential operator [11].

In this paper, by applying the operator 9} f(2), we introduce a subclass
of A denoted by S73(8).
Namely, we define f € A to be in the class S"3(8), if 93 f(z) is in the

class S*(f3), that is, if
2(0,5f(2))
we{ G W
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(zeU;0<8<1;0<A<1,0<a<1,beC/Zy,s € C,n € Ny).

The properties of the above class such as coefficient estimates, growth and
distortion theorems, extreme point and Fekete-Szegd problem are investigated.
2. Coefficient estimates

We obtain a sufficient condition for function f(z) € A to be in the class S, (5).

Theorem 1. Let f(z) € A begiven by (1). f < <1, 0<A<1,0<
a<l1l, beC/Z;, s€C, neNy and
1+b\°
k+b

Y (k=B —al = N1~ k)"

k=2

then f(z) € SZ:i(ﬁ)

k| <1 -8, ()

Proof. Suppose that condition (5) is satisfied for g € [0,1). For f(z) € A,
we define the function G(z) by

(05 f(2))
Vs f(2)

In order to prove that f(z) € S"3(6), it suffices to show that

G(z) = — 8. (6)

'G(z) 1

m‘<1, (ZEU)

Making use of (3), we have

0= g5
2R (2) = (L4 85 f(2)
ARGV

24 Yo k(1 — a1 = N)(1 = k)" (5) ar
| OB+ (0 - a1 = N0 = k)" (553) anz")
T R k(- a(l = A (1 k) (D) e

(1= B)(z + (1 — a1 = A) (1 — k)" (1) ayzh)
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B2+ SR+ — )1~ a(l ~ A)(1 k)" (,ﬁi;g)sakzk

2=08)z+> 1 -B+k)(1—-a(l-XN1—-k < b> apzk

Blzl+ 22521+ B = k)1 — (1 = A)(1 = k)"

S S

2 Bl + 50— B+ B)(1—a(l - N)(1 - k)" (ﬁ) agllz*

B4 3,14 — k)L —a(l — N1~ B)" (ﬁ‘,) el

< S

(2 8)+ 55,0 — B4 K1 —all — A1 — K" %‘,) el
<1,

provided that
S NaERAN
3304800 a0 -0 07| (55) s
-84 3o 840 - al -0 | (5 )l

k=2
which is equivalent to hypothesis (5) in Theorem 1. So this completes the proof
of Theorem 1. O

The next theorem aims to provide coefficient inequalities so that the func-
tion f(z) belongs to S.'3(5).

Theorem 2. Let 3 € [0,1). If f(2) € S;\(8), then

(G52, o

‘ak‘ < 2(1_/8)
T (k=DIA =l = X1 = k)|

with k € N/{1}.
The result is sharp.

Proof. Let f(z) € Sy3(B). Set

RSN ECAE)
PO =15 e

—B}—l—l—clz—i—cQzQ—l—... (8)
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Then p(z) is analytic with
p(0) =1 and Re{p(z)} >0, (z€0).
Rearranging (8), we get
2(055f(2))" = [(1 = B)p(2) + BIYL

and by virtue of (3), we get

(k—1)(1 - a(l = \)(1 — k)" (;—j;‘)k

) k-1 o [(1HDY° ®)
= (1 - B)ep_1 + ]Z:;(l = Blew—j(1 —a(l =X - 7)) <m> “

By using Caratheodory’s lemma [4], |cx| < 2, so we have

14+5b\°
k+b
k—1

<21=B) {14+ (1—a(l =N)(1—-j)"

=2

(k—1DA—-a(l-=XN1—-kK)"

|ak|

1+0b\°
Jj+b
Using the principle of mathematical induction, we will prove that the inequality

(7) holds true for k € N/{1}. Define formally the summation, 3 7" d; and
product, [[7L, h; as follows:

id-* 0, if n > m,
e+

(10)

|aj]

j=n " j=n+1 it m > n,
and
ﬁ By — L, if n > m,
et 7 hn HT:nJrl hj, if m > n,
respectively.
If £ =2 in (10), then we have
1+0\°
L+a(l=N)" (577 <201-
(+a -0 |(357) flesl <20 - 9

2(1-5)

92l < T e

24+0b\°
14+b6) |’
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Therefore for k& = 2 the statement is true.
Assume that (7) is true for £ < m. Then, for k = m+ 1, from (7) and (10),

we obtain
1+b \?
kK+14+0b

(m+1-1)1-a(l=A)(1-=(m+1))))" |t |
<2(1-p5) 1+:§(1—a(1—)\)(1—j))” (j—iZ)s |a;]
<2(1-pB) 1+J§2(1:15)Z;:(1+221:16)>
1
_2(1—5)j1;[2(1+2(1 P)
that is
(@m+1] < (m+1—1)(1—204((11_—6)\))(1—(m+1)))” <m1++1b+b>

m+1—1

X sz (1+%>. (11)

Therefore (7) holds true for K = m + 1. Hence, by principle of mathematical
induction, it is true for all k € N/{1}.
The result is sharp for the function f(z) given by

2(1 - B) k+0b\°
(k=11 —a(l=X)1—Fk)" (1+b>
T (. 20-8)Y &

O

f(z)=2z+

3. Growth and distortion inequalities

Distortion inequalities for the functions in this class are given by the following
theorem.
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Theorem 3. Let f(z) € S;'5(8), 0< B <1 and |z| =r < 1. Then,

E+b\°
1+0

00 1
r—2(1-p ?”222 E—1)1—a(l—XN(1 k)"

J=2 J-1
<|fR) <
00 1 k+0b\°
r4+201-8 TQ;; D1 —a(l =1 k)" (Hb)
k—1 2(1_5)
xjH2(1+ =1 >
and
e o] k. k‘+b B
1—2(1_6)rk222(k—l)(l—oz(l—)\)(l_k))n <1+b>
k—1 2(1_5)
><j22<1—|— i1 )
<|f(2)l <
[ee] k k+b B
1+2(1-p "”Z (I —a(l=X)(1—-Fk)" (1+b)

k:2

xH(1+ 3—15))

Proof. Let f(z) € A in the form of (1). Then by Theorem 2, we obtain
F(2)] < 2l + 32720 lax] "]
E+0b
1+0b

(4

2(1-5)
<"”+7"2Z D —a(l =N — k)"
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=r+ 21— 3 1 Ire
=7+ 2r°(1 m};(k—l)(l—a(l—)\)(l_k»" (1+b>‘
k-1 2(1_5)
xj2(1+ =1 >
and o)
72 |2 = 3l
k=2
T—TQOO 2(1-p5) kb
> ;Q(k_l)(l—a(l—)\)(l—k))n <1+b>‘
k-1 2(1_5)
Xj2( ' J-1 >
=r—2r%(1— y 1 T4E
- 2r4(1 5);(;6_1)(1_@(1—)\)(1—@)” (l—i-b)'
k-1 2(1_5)
xj];[Q<1+ o1 )

for |z] =r < 1.
From (1), upon differentiating

IF'(2) <1+ klag]]z" "]

k=2

00 2(1_6) k—+b
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(53)

X jl_[:<1+2(j1__15)>

1
=14201-8)r)_ (k—1)(1 —a(l = \)(1 - k)"

2

0
k=

and

/') 2 1= klagll=*]
k=2

kE+b
140

- 2(1 - )
>1-r), TED DR

k=2

= 1
—1-201- B)TZ:: kD1 —al N1 _k)"

k=2

4. Extreme points

Let S75(B) be subclass of S75(8) that consists of all functions f(z) € A which

satisfy the inequality (5). Then the extreme points of S'Zi(ﬁ) are given as
follows:

Theorem 4. Let
fi(z) =2
and
1—-p

e =2 G el NI R

E+4+b\°
1+b6/) |’
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Then
fesyiB)

if and only if it can be expressed in the following form:

= Ztkfk:(z) (tk > 0; Ztk = 1) .
e =1

Proof. Suppose that

:Ztkfk:(z)
—Z+Ztk 15

(k—=B)(1—a(l=X)(1—-Fk)"

Then

Therefore, by the definition of class SZi(B), we get

fFeSB) (0<p<).

Conversely, suppose that

feSuiB) (0<p<).

14+5b6\"
k+0b

Then, by using equation (5), we may set

t=(k=B)(1 —a(l =A)(1-k))" (ke N/{1})
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(o]
t1=1-— Ztk.
k=2

We note that f(z) = > po; txfx(z) and the proof of Theorem 4 is thus com-
pleted. O

5. Fekete-Szego problem

The aim of this section is to obtain the Fekete-Szegd inequality for functions in
the class S’} provided

s>0, b>0, 0<p<1.

To derive the results, we recall the lemma from [8].

Lemma 5. Ifp(z) =1+ c1z + cp2? + ... is an analytic function in U such
that Re{p(z)} > 0 for z € U, then

—dv+2, ifv<0
lcg —ved| < {2, ifo<v<l1
4v — 2, ifv>1.

When v < 0 or v > 1 the equality holds true if and only if

14z
1=z

p(z)
or one of its rotations. If 0 < v < 1, then the equality holds true if and only if

B 1+ 22

p(z) = 1_ .2

or one of its rotations. If v = 0, the equality holds true, if and only if

= () () () (152) o=es

or one of its rotations. If v = 1, then the equality holds true if and only if p(z)
is the reciprocal of one of the functions such that the equality holds true in the
case v = (.
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Theorem 6. Let s >0, b>0, and 0< 3 <1.If f(z) € S5, then

(1_m2_3 34D0\T  dp 24D\
Dy \1+0b D2 \1+b

1 34+b\°
if <
*u—MD3@+w>}’l =

;

1-58) (34+b\° .
laz — pal] < (Dg <1——|—b>’ if o1 <p <oy,
(gl A (250 2 (3+4b)°
D2 \1+b Dy \1+b
1 3+b\°
- if >
\ a—mD3Q+w>}’l =
where

Di=14+a(l—=X) and Ds=1+2a(l—-2N),

1 (DI\" (140b\" [(3+b)°
n=3(5) (3) ()
2—-8 (D? 1+b\°[/3+b\°
e %1/ﬂ< )(?ﬁ><?ﬁ>'

The result is sharp.

and

Proof. Suppose f(z) € S3, let

75,71,5 /
p(z) = 1 i 3 {Z(ﬁigjf((:))) - 5} =1+cz+c2 + ...

Then, by virtue of equation (3) and with the help of (9), we have

a2_(1—ﬂk1(2+b>5

D7 \1+b
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We obtain
N s - 2 2s
o na = G2 (157) v -n)d - nU 5 (250)

2Dr \1+b D \1+b
(1—5) (3+b\°
-5 (13) v
2

where

Dy (24b\° (24b\°
=(1-08)(2u—=2 —1).
V= 5)<”D%”(1+b> <3+b> )
By inserting v in Lemma 5, we have
n S S
- ()" (2)' (1) 1) o2 e
lco —ved| <42, if o1 < p <oy,
n S S
o () (62) () ) 2 waze
Applying the lemma, the result asserted by Theorem 6 follows.
In addition, if u < o1 or p > o9, then the equality holds true if and only if

(=

z

onf(z) = (1 — €if2)20-P)

(0 € R).

If 01 < p < o9, the equality holds true if and only if
z

If ;4 = o1, then the equality holds true if and only if

. - (14w)/2 . (1-w)/2
Vox f(z) = ((1 _ 6i92)2(1—5)> ((1 + ei92)2(1—5)>

z
= [(1 _ eiéz)ler(l + eiez)lfw]lfg'

If 4 = o9, then the equality holds true if and only if ¥)¥ f(z) satisfies the

condition below: nos ,

Iorf(2)

o () (5) () () wsesn

= (1-08)p(2) + 85,

where
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