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Abstract: This paper is concerned with a model of the target detection that
is actively discussed in the study of molecular communication network these
days. We first verify the solvability of the stationary problem, and then the
existence of a strong local-in-time solution to the non-stationary problem in the
Sobolev–Slobodetskĭı space.
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1. Introduction

Molecular communication is one of the most attractive research areas nowa-
days. It is drastically different from the conventional information communi-
cation technologies, and a number of active discussions are held among inter-
disciplinary researchers, such as biology, mathematics, statistics, information
theory, and so forth. It is also closely interacting with another active research
area, nano-network.

Molecular communication is expected to possess various applications in en-
gineering, such as bio-engineering, medical, industrial and communications [10].

Among them, the most important application in the medical area is consid-
ered to be the drug delivery [10]. There, each bio-nanomachine detects some tar-
get area, such as tumor cells in the human body, and release the drug molecules
in appropriate area, with suitable volume and timing. Nowadays, many the-
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oretical frameworks concerning the method of target detection in molecular
communication network are proposed as well as the implementation and exper-
iments in laboratories.

One of the key factors for carrying signals in molecular communication is
molecule diffusion in the medium. The early works in this direction are found
in [1], [2], and are widely applied in the arguments of coding and encoding
methods in the molecular communication these days.

Another key factor of molecular communication is that it enables the coop-
eration between bio-nanomachines to achieve a certain objective.

For instance, Nakano et al. [11] recently proposed a model of target detec-
tion that imposes two different roles on bio-nanomachines: leader and follower.
The leader nanomachines search for a target in the human body, and release
attractant molecules upon detecting it. Follower nanomachines move according
to the concentration gradient of the attractant toward the source of it, and then
release drug molecules.

Nakano’s model utilizes the chemotaxis of bio-nanomachies. The investi-
gations in such a direction are also found in several papers as [12], [13], and
activated the modeling of bio-nanomachines based on the Keller-Segel model [8].

The discussions by Nakano et al. [11] applied the agent-based simulations
and experiments, while more theoretical study was conducted by Iwasaki [6]
recently.

In it, both the attractant and repellent exist in the model. The attrac-
tant makes bio-nanomachies be closer to the target in order to yield the drug
molecules there. On the other hand, the repellent contribute to diffusing bio-
nanomachies, and make them search for the target over the broader area. He
focused on the concentration of bio-nanomanies, attractant and repellent, and
formulated their temporal behavior. The proposed model was a couple of a
one-dimensional reaction-diffusion-type partial differential equation and two or-
dinary differential equations.

It is also to be noted that the proposed model in [6] was based on the
variant model of the Keller-Segel equation originally proposed by Okaie [12], but
the diffusion terms in equations of attractant and repellent were neglected for
simplicity. After showing the existence of a positive stationary solution, Iwasaki
numerically verified its stability. However, few theoretical analysis concerning
the proposed model were conducted in that paper. In this paper, we rigorously
discuss the well-posedness of the model, and show the following issues.

(i) Existence of a non-negative stationary solution is verified;

(ii) The global-in-time solvability of the model proposed by Iwasaki is shown



LOCAL-IN-TIME SOLVABILITY OF TARGET DETECTION... 429

under the smallness of data;

(iii) the non-negativeness of the non-stationary solution is shown.

The remaining part of this paper is organized as follows. In the next section,
we overview the existing mathematical arguments. In Section 3, we formulate
the problem, and in Section 4, we introduce notations used throughout this
paper. Main results of this paper are stated in Section 5, followed by their
proofs in Section 6.

2. Existing Arguments

There exist a number of works concerning the molecular communication net-
work these days, and we limit ourselves to the following arguments those con-
cerning the target detection in the human body. Nakano et al. [11] proposed
a mathematical model that describes the temporal behavior of the attractant
molecules. They proposed a model in which two roles were imposed on bio-
nanomachines, which they called the leader-follower model. They showed the
effectiveness of the proposed method through numerical simulations. They also
clarified the situations in which their proposed method worked better than the
conventional one, but few mathematically rigorous discussions were held.

Following these works, Iwasaki et al. [6] proposed a mathematical model
that concerns the non-diffusion-based mobile molecular communication net-
works. He focused only on the temporal behavior of the concentration of the
attractant, repellent, and bio-nanomachines under the assumption that the con-
centration of the target is time invariant.

Similar model was discussed in their previous paper [5], including the exis-
tence and uniqueness of the solution, and the stability of the stationary solution.
It reads





∂u

∂t
=

∂2

∂x2

(
au+ αu2

)
− µ

∂

∂x

[
u
∂

∂x

(
T (x)u

)]
in I ×R+,

∂u

∂x
= 0 on ∂I × (0,∞),

u
∣∣
t=0

=
(
u0, v0, w0

)
on I.

(1)

where and hereafter I ≡ (0, 1), ∂I ≡ {0}
⋃
{1}, and R+ ≡ (0,∞). It was

proposed as a simplified version of that proposed by Okaie et al. [12] that
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is similar to the Keller-Siegel model [8] but includes the time variant target
concentration:





∂u

∂t
= a1

∂2u

∂x2
−

∂

∂x

[
u

(
∂

∂x
χ1(v)−

∂

∂x
χ2(w)

)]
,

∂v

∂t
= a2

∂2v

∂x2
+ g1T (x, t)u− dv,

∂w

∂t
= a3

∂2w

∂x2
+ g2u− hw in I × (0,∞),

∂u

∂x
=

∂v

∂x
=

∂w

∂x
= 0 on ∂I × (0,∞),

(
u, v, w

)∣∣
t=0

=
(
u0, v0, w0

)
on I.

Iwasaki et al. [5] also argued the stability of the stationary solution of (1) by
constructing the Lyapunov function. We also point out that although the model
in [5] admits constructing the global-in-time solution without the smallness of
the initial data, the method does not apply to the model studied in this paper.
As for other arguments concerning the model by Okaie [12], see the review by
Iwasaki [5] and the references therein.

The model discussed in this paper is a couple of the reaction-diffusion equa-
tion and ordinary differential equations. Recently, Marciniak-Czochra et al. [16]
studied the non-stability of such systems under certain conditions. It seems
meaningful since the reaction-diffusion equation reflexes the denovo patterns or
the Turing instability.

On the other hand, Iwasaki et al. [6] numerically showed the stability of a
stationary solution of their model.

Since these models stated so far arise from the Keller-Segel model, we briefly
overview mathematical arguments concerning the Keller-Segel equations.

There exist huge number of contributions concerning the mathematical ar-
guments of Keller-Segel equations and its variations (see, for instance, [3] and
references therein), and therefore, we limit ourselves to the relational arguments
to our problem.

Schaaf [15] studied the stationary solution to the Keller-Segel equation un-
der the general non-linearity, and reduced the problem to a scalar equation by
using the bifurcation technique. She also provided a criterion for bifurcation
of solution. Osaki and Yagi [14] provided the global-in-time solution of the
classical one-dimensional Keller-Segel equation. Later, Hillen and Potapov [3]
discussed the one-dimensional chemotaxis model:
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{
ut = uxx − χ

(
uvx
)
x
,

vt = εvxx + u− av,

on a closed interval with homogeneous Neumann or periodic boundary condi-
tions. They constructed the local-in-time solution by virtue of the fixed point
theorem (it was argued for the space dimension n ≥ 1), and then constructed
the a-priori estimate by using the estimate of the heat kernel. However, this
method does not apply to our discussion because in our model depicted in (2)
in the next section does not have this term.

The existence and stability of a spike solution to the one-dimensional Keller-
Segel equation in the asymptotic limit of a large mass was studied by Kang [7].
They also discussed the global-in-time solvability of a reduced version of the
Keller-Segel equation. The latter part is conducted by using the energy method.

For reader’s convenience, we note that through surveys are provided by
Horstmann [4] and references therein.

3. Formulation

In this section, we formulate the problem to be discussed in this paper. Due to
Iwasaki et al. [6], the temporal behavior of the concentrations of bio-nanomachines,
attractant and repellent in one-dimensional space, denoted as Cb(x, t), Ca(x, t)
and Cr(x, t), respectively, are represented as follows:





∂Cb

∂t
= Db

∂2Cb

∂x2
−

∂

∂x

[
Cb

(
Va

∂Ca

∂x
− Vr

∂Cr

∂x

)]

∂Ca

∂t
= a1(x)Cb(x, t)− kaCa(x, t),

∂Cr

∂t
= a2(x)Cb(x, t) − krCr(x, t) in I

(2)

with boundary and initial conditions




∂Cb

∂x
− Cb

(
Va

∂Ca

∂x
− Vr

∂Cr

∂x

)
= 0 on ∂I,

u(x, 0) = u0(x) ≡
(
Cb0(x), Ca0(x), Cr0(x)

)T
on I.

(3)

For the sake of simplicity, we introduced a notation u =
(
Cb, Ca, Cr

)T
above.

Here, t is time, x, the location of materials on the tissue surface, a1(x) =
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gah(x)/(h(x) + Ka), a2(x) = grKr/(h(x) + Kr) with h(x) being the target
concentration, and Ka (or Kr), positive constants standing for the target con-
centration leading to the half maximum attractant (or repellent, resp.) produc-
tion rate. The notation ga (or gr) is also a positive constant representing the
maximum attractant (or repellent, resp.) production rate; In [6], the author

provided the existence of a stationary solution u(x) ≡
(
Cb(x), Ca(x), Cr(x)

)T
to (2)–(3) that is subject to:





d2Cb

dx2
−

d

dx

[
Cb

(
Va

dCa

dx
− Vr

dCr

dx

)]
= 0,

a1(x)Cb(x)− Ca(x) = 0,

a2(x)Cb(x)− Cr(x) = 0 in I,

∂Cb

∂x
−Cb

(
Va

∂Ca

∂x
− Vr

∂Cr

∂x

)
= 0 on ∂I,

∫

I
Cb(x) dx = 1.

(4)

They also showed the stability of u(x), that is, the convergence of the solution
of (2)–(3) to that of (4) through numerical simulations under specific values of
parameters.

In this paper, we study the well-posedness of (2)–(3). We first subtract u(x)
from the solution to problem (2)–(3), and consider the problem concerning

ũ(x, t) ≡
(
C̃b, C̃a, C̃r

)T
≡ u(x, t)− u(x).
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It reads





∂C̃b

∂t
= Db

∂2C̃b

∂x2
−

∂

∂x

{
Cb

(
Va

∂C̃a

∂x
− Vr

∂C̃r

∂x

)}
,

−
∂

∂x

[
C̃b

{
Va

(
∂C̃a

∂x
+

∂Ca

∂x

)
− Vr

(
∂C̃r

∂x
+

∂Cr

∂x

)}]
,

∂C̃a

∂t
= a1(x)C̃b(x, t)− kaC̃a(x, t),

∂C̃r

∂t
= a2(x)C̃b(x, t)− krC̃r(x, t) in IT ,

Db
∂C̃b

∂x
−

[
C̃b

{
Va

(
∂C̃a

∂x
+

∂Ca

∂x

)
− Vr

(
∂C̃r

∂x
+

∂Cr

∂x

)}]
,

−Cb

(
Va

∂C̃a

∂x
− Vr

∂C̃r

∂x

)
= 0 on ∂I,

ũ(x, 0) = ũ0(x) on I,

(5)

where ũ0 =
(
C̃b0, C̃a0, C̃r0

)T
.

4. Notations

In the following, let T > 0, G be an arbitrary open set in R, I ≡ (0, 1) and
IT ≡ I× (0, T ). Hereafter, C l(G) (l ∈ N) stands for sets of all functions defined
on G that have l-th order continuous derivatives. We also denote a set of
Lipschitz continuous functions with the Lipschitz coefficient L on G as C(L)(G)
with L ∈ (0, 1). L2(G) means a set of square-integrable functions defined on G,
equipped with the norm (L2-norm)

|f |2 ≡

(∫

G
|f(x)|2 dx

)1
2

.

The inner product in L2(G) is defined by

(f1, f2) ≡

∫

G
f1(x)f2(x) dx,

where z stands for the complex conjugate of z ∈ C.

Likewise, by | · |p, we denote the usual Lp norm on I:
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|f |p ≡





(∫ 1

0
|f(x)|p dx

) 1
p

, 1 < p < +∞,

ess sup
x∈I

|f(x)|, p = +∞.

For a Banach space B with the norm ‖ · ‖B , we denote the space of B- valued
measurable functions f(t) on the interval (a, b) by Lp(a, b;B), whose norm is
defined by

|f |Lp(a,b;B) ≡





(∫ b

a
‖f(t)‖pB dt

) 1
p
, p ∈ [1,+∞),

ess supa≤t≤b ‖f(t)‖B , p = ∞.

By W l
2(G) (l > 0), we mean a space of functions u(x), x ∈ G equipped with

the norm ‖u‖2
W l

2(G)
=
∑

|α|<l

|Dαu|22 + ‖u‖2
Ẇ l

2(G)
, where





‖u‖2
Ẇ l

2(G)
=
∑

|α|=l

|Dαu|22 =
∑

|α|=l

∫

G
|Dαu(x)|2 dx if l is an integer,

‖u‖2
Ẇ l

2(G)
=
∑

|α|=[l]

∫

G

∫

G

|Dαu(x)−Dαu(y)|2

|x− y|n+2{l}
dxdy if l is a non-integer,

l = [l] + {l}, 0 < {l} < 1.

Next, for arbitrary T > 0, we introduce anisotropic Sobolev–Slobodetskĭı
spaces [18]:

W
l, l

2
2 (GT ) ≡ W l,0

2 (GT )
⋂

W
0, l

2
2 (GT ) (GT ≡ G × (0, T )),

whose norms are defined by

‖u‖2
W

l, l2
2 (GT )

=

∫ T

0
‖u(·, t)‖2

W l
2(G)

dt+

∫

G
‖u(x, ·)‖2

W
l
2
2 (0,T )

dx

≡ ‖u‖2
W l,0

2 (GT )
+ ‖u‖2

W
0, l2
2 (GT )

.

The set of functions with vanishing initial data,
◦
W

l, l
2

2 (GT ) is defined as [9]:
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◦
W

l, l
2

2 (GT ) =

{
u∈W

l, l
2

2 (GT )

∣∣∣∣∣
∂ku

∂tk

∣∣∣
t=0

= 0

(
k=0, 1, 2, . . . ,

[ l
2

]
− 1

)}
.

For simplicity, we shall use the following notations:

W (l)
u (T ) ≡ W

l, l
2

2 (IT )×W
l, l

2
2 (IT )×W

l, l
2

2 (IT ),

W
(l)
f (T ) ≡ W

l−2, l−2
2

2 (IT )×W
l−2, l−2

2
2 (IT )

×W
l−2, l−2

2
2 (IT )×W

l
2
− 3

4
2 (0, T ),

◦
W

(l)

u (T ) ≡
◦
W

l, l
2

2 (IT )×
◦
W

l, l
2

2 (IT )×
◦
W

l, l
2

2 (IT ),

◦
W

(l)

f (T ) ≡
◦
W

l−2, l−2
2

2 (IT )×
◦
W

l−2, l−2
2

2 (IT )

×
◦
W

l−2, l−2
2

2 (IT )×
◦
W

l
2
− 3

4

2 (0, T ).

We also use notations like

W (l)
u (t1, t2) ≡ W

l, l
2

2 (I × (t1, t2))×W
l, l

2
2 (I × (t1, t2))×W

l, l
2

2 (I × (t1, t2)).

The norms of these spaces are denoted in such ways as ‖ · ‖
W

(l)
u (T )

, and so

forth. The norms of product spaces are defined in the usual manner.

Hereafter, c’s with suffixes represent constants in the estimate of some quan-
tities. When we denote c(t) with suffixes, it depends on t.

5. Main Results

In this section, we state the main results of this paper, and prove it. First, we
discuss the solvability of (4).

5.1. Solvability of Stationary Problem

In this section, we discuss the solvability of (4). Before discussing the non-
stationary problem, we first consider the stationary problem (4). In the fol-
lowings, f ′(x) denotes the derivative of a function f(x) with respect to x in
general.
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Theorem 1. Assume that F (x) ≡ Vaa1(x)−Vra2(x) satisfies F
′(x) 6= 0 on

Ī, the closure of I. We also assume aj ∈ C2(Ī) (j = 1, 2), h(x) ∈ C2(Ī). Then

there exists a unique solution
(
Cb, Ca, Cr

)
∈ C2(I) to (4). It also satisfies

Cb ≥ 0 on I.

Iwasaki [5] discussed a similar problem, but their method does not work well
here, because they assume the positiveness of the solution from the beginning.
Instead, we rely on the standard existence argument of ordinary differential
equation.

Proof. Problem (4)1 can be written as

DbC
′
b − Cb

(
FCb

)′
= 0. (6)

Actually, this holds on Ī by virtue of the boundary conditions (4)4. Rewrite
(6) as

(
Db − FCb

)
C

′
b = F ′C

2
b . (7)

In virtue of the assumption of the theorem, we then have

1− FCb 6= 0 on I.

Thus, due to the existence theorem of ordinary differential equation yields the
desired result. The latter part of the statement is proved as follows. Assume
there exists a local minima x0 ∈ I such that Cb(x0) < 0. Then, we have

C
′
b(x0) = 0, and so F ′

(
Cb(x0)

)2
= 0 due to (7). But this contradicts the

assumption. Next, we consider the case Cb < 0 and C
′
b < 0 at x = 1. But then,

there exists a certain point x1 ∈ I such that Cb(x1) = 0 and Cb(x1) < 0, which
contradicts (7).

The following is the main result of this paper.

Theorem 2. Let T1 > 0 be an arbitrary number, and l > 5/2, and assume

(i) Cb0 ∈ W l−1
2 (I), Ca0, Cr0 ∈ W l

2(I),

(ii) aj(x) ∈ C2(Ī) (j = 1, 2).

In addition, let the compatibility conditions of order [(l − 1)/2] be satisfied.

Then, there exists a certain T∗ > 0 and ũ(x, t) =
(
Cb, Ca, Cr

)T
∈ W

(l)
u (T∗)

that satisfies (5) over the time interval (0, T∗).
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In order to prove Theorem 2, we first consider the linear problem. Next, we
make use of the multiplicative inequalities and the iteration method to verify
the unique existence of a local-in-time solution.

5.2. Linear Problem

In this subsection, we first prove the solvability of the linear problem associ-
ated with (5), and then Theorem 2. We first consider the following linearized
problem.





∂C̃b

∂t
−Db

∂2C̃b

∂x2
+

∂

∂x

{
C̃b

(
Va

∂Ca

∂x
− Vr

∂Cr

∂x

)}

+
∂

∂x

{
Cb

(
Va

∂C̃a

∂x
− Vr

∂C̃r

∂x

)}
= F1,

∂C̃a

∂t
= a1(x)C̃b(x, t)− kaC̃a(x, t),

∂C̃r

∂t
= a2(x)C̃b(x, t)− krC̃r(x, t) in I,

Db
∂C̃b

∂x
− C̃b

(
Va

∂Ca

∂x
− Vr

∂Cr

∂x

)

−Cb

(
Va

∂C̃a

∂x
− Vr

∂C̃r

∂x

)
= F2 on ∂I,

ũ(x, 0) = ũ0(x) at t = 0,

(8)

where ũ0 =
(
C̃b0, C̃a0, C̃r0

)T
. We have the following theorem.

Theorem 3. Let T1 > 0 be an arbitrary number, and l > 5/2. We

also assume aj ∈ C2(Ī) (j = 1, 2), ũ0 ∈ W l−1
2 (I), F1 ∈ W

l−2, l−2
2

2 (IT1), and

F2 ∈ W
l
2
− 3

4
2 (0, T1). In addition, let the compatibility conditions up to order

[(l−1)/2] be satisfied. Then, there exists a unique solution ũ ∈ W
(l)
u (T1) to (8)

satisfying

‖ũ‖
W

(l)
u (T1)

≤ c51

(
‖F1‖

W
l−2, l−2

2
2 (IT1 )

+ ‖F2‖
W

l
2−

3
4

2 (0,T1)
+ ‖ũ0‖W l−1

2 (I)

)
. (9)

Since the sufficient compatibility conditions are satisfied, we first consider
(8) with vanishing initial data. More precisely, introducing notations f1 =
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(
F1, 0, 0

)T
,

L
(
x,

∂

∂x

)
ũ =




Db
∂2C̃b

∂x2
−

∂

∂x

{
C̃b

(
Va

∂Ca

∂x
− Vr

∂Cr

∂x

)}

−
∂

∂x

{
Cb

(
Va

∂C̃a

∂x
− Vr

∂C̃r

∂x

)}

a1(x)C̃b(x, t)− kaC̃a(x, t)

a2(x)C̃b(x, t)− krC̃r(x, t)




,

B
(
x,

∂

∂x

)
ũ = Db

∂C̃b

∂x
− C̃b

(
Va

∂Ca

∂x
− Vr

∂Cr

∂x

)

− Cb

(
Va

∂C̃a

∂x
− Vr

∂C̃r

∂x

)
,

we construct a sequence of functions u(j) (j = 0, 1, 2, . . . , [l/2]) in the following
manner:

u(0)(x) = ũ0(x), u
(1)(x) = L

(
x,

∂

∂x

)
ũ0(x) + f1(x, 0),

u(j+1)(x) =
∂j

∂tj
L
(
x,

∂

∂x

)
u+

∂jf1

∂tj

∣∣∣∣∣
t=0

= L
(
x,

∂

∂x

)
u(j) +

∂jf1

∂tj

∣∣∣∣∣
t=0

(j = 2, 3, . . . , [l/2]).

As we will see in Section 5.3, this {u(j)}j satisfies

‖u(j)‖
W l−1−2j

2 (I)
≤ c510

(
‖f1‖

W
l−2, l−2

2
2 (IT1 )

+ ‖ũ0‖W l−1
2 (I)

)

(j = 0, 1, 2, . . . , [l/2]).

We then construct a function v(x, t) ∈ W
l, l

2
2 (RT1) which satisfies

∂jv

∂tj

∣∣∣
t=0

= u(j) (j = 0, 1, 2, . . . , [l/2]), (10)



LOCAL-IN-TIME SOLVABILITY OF TARGET DETECTION... 439

and define ŭ = ũ− v. Obviously ŭ satisfies





∂ŭ

∂t
− L

(
x,

∂

∂x

)
ŭ = f ′

1 in I,

B
(
x,

∂

∂x

)
ŭ = F ′

2 on ∂I,

ŭ
∣∣
t=0

= 0 on I,

(8)′

where

f ′
1 ≡

(
F ′
1, 0, 0

)T
= f1 − L

(
x,

∂

∂x

)
v, F ′

2 = F2 −B
(
x,

∂

∂x

)
v.

To (8)′, we advocate

Theorem 4. Let T1 > 0 be an arbitrary number, l > 5/2, and let us

assume aj ∈ C2(Ī) (j = 1, 2), F1 ∈
◦
W

l−2, l−2
2

2 (IT1), and F2 ∈
◦
W

l
2
− 3

4

2 (0, T1). In

addition, let the compatibility conditions of order [(l−1)/2] be satisfied. Then,
there exists a number τ0 > 0, dependent on aj (j = 1, 2), Cb, Ca and Cr, and

a unique solution ŭ ∈
◦
W

(l)

u (τ0) to (8)′ satisfying

‖ŭ‖
◦

W
(l)

u (τ0)
≤ c52

(
‖f ′

1‖
◦

W
l−2, l−2

2

2 (Iτ0 )

+ ‖F ′
2‖

◦

W

l
2−

3
4

2 (0,τ0)

)
. (11)

Since (8)′ consists of equations and boundary conditions with variable co-
efficients, we appeal to the method of regularizer [9].

Let A be a linear operator defined on
◦
W

(l)

u (T1), that associates ŭ with(∂ŭ
∂t

− Lŭ, Bŭ
)
. It is obvious that A is bounded. Then, (8)′ is interpreted as

an abstract problem

Aŭ = f

for f =
(
F1, 0, 0, F2

)T
∈

◦
W

(l)

f (T1). Therefore, we have to show the existence of
the bounded inverse operator A−1. In the sequel, we construct an operator R

that acts from
◦
W

(l)

f (T1) to
◦
W

(l)

u (T1), and that satisfies

ARf = f + Sf , (12)

RAŭ = ŭ+ Eŭ, (13)



440 H. Honda

for any f ∈
◦
W

(l)

f (T1) and u ∈
◦
W

(l)

u (T1), where S and E are bounded operators

in spaces
◦
W

(l)

f (T1) and
◦
W

(l)

u (T1), respectively. We will show that their norms
become small if we take T1 sufficiently small. The overview of the proof reads
as follows.

(i) We construct a covering of I;

(ii) In each piece of the covering, we consider the model problem in the whole
or half-lines;

(iii) We construct operators S and E above, and show the smallness of their
norms under small T1;

(iv) We show the existence of A−1 under small T1.

5.2.1. Covering of I

We first introduce a covering of I, on which we construct the regularizer [9].
Let us introduce two systems of coverings of I, say, {ω(k)} and {Ω(k)}. They
are constructed for any small number λ ∈ (0, 1) satisfying:

(i) ω(k) ⊂ Ω(k) ⊂ Ω ∀k,
⋃

k

ω(k) =
⋃

k

Ω(k) = I;

(ii) For any ξ ∈ Ω, there exists ω(k) such that y ∈ ω(k) and dist(x, I\ω(k)) ≥
β1λ with a certain β1 > 0. Here, the notation dist(x,A) is the distance
between a point x ∈ Ω and a set A ⊂ Ω in general;

(iii) There exists a natural number N0 independent of λ such that

N0+1⋂

k=1

Ω(k) =

φ;

(iv) If Ω(k)
⋂

∂I = φ, then ω(k) and Ω(k) are the open intervals with the
same center ξ(k) and with the length of their intervals equal to λ

2 and
λ, respectively. In this case, we represent k ∈ N1;

(v) In case Ω(k)
⋂
{x = 0} 6= φ, we represent k ∈ N2;

(vi) In case Ω(k)
⋂
{x = 1} 6= φ, we represent k ∈ N3.
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Next, let us introduce a smooth partition of unity {ζ(k)(x)} subordinated to
{ω(k)} and {Ω(k)} having the following properties for α ≥ 0:

0 ≤ ζ(k)(x) ≤ 1,
∣∣∣
dα

dxα
ζ(k)(x)

∣∣∣ ≤
cα
λα

, ζ(k)(x) =

{
1 for x ∈ ω(k),

0 for x ∈ I\Ω(k),

with some constant cα independent of k and λ. By virtue of the property (iii)

of Ω(k), 1 ≤
∑

k

(
ζ(k)(x)

)2
≤ N0, and it is possible to take the functions

η(k)(x) ≡
ζ(k)(x)

(∑
j ζ

(j)(x)
)2 , k ∈

3⋃

i=1

Ni,

having the properties

η(k)(x) = 0 in I\Ω(k),

∣∣∣
dα

dxα
η(k)(x)

∣∣∣ ≤
cα
λα

(α = 1, 2, . . .),

∑

k

η(k)(x)ζ(k)(x) = 1.

5.2.2. Problems in whole and Half-Lines

Now we consider the model problems in the whole and half-lines for each af-
filiation of k. In the followings, let T1 be an arbitrary positive number. We
introduce following notations to represent the coordinate system of coefficients
and the derivatives of operators explicitly:

L0

(
x,

∂

∂x

)
ũ ≡

(
Db

∂2C̃b

∂x2
, a1(x)C̃b − kaC̃a, a2(x)C̃b − krC̃r

)
,

B0

(
x,

∂

∂x

)
ũ = Db

∂C̃b

∂x
− C̃b

(
Va

∂Ca

∂x
− Vr

∂Cr

∂x

)
.

First, we show the case k ∈ N1. We consider the problem





∂ũ(k)

∂t
− L0

(
ξ(k),

∂

∂x

)
ũ(k) = f

(k)
1 in R,

ũ(k)
∣∣
t=0

= 0 on R,

(14)
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for a certain ξ(k) ∈ I and f
(k)
1 = ζ(k)f1 ∈

◦
W

(l)

f (T1) with f1 =
(
F1, 0, 0

)T
. It is an

elementary fact that the problem (13) has a unique solution ũ(k) ∈
◦
W

(l)

u (T1) [9].
Hereafter, we denote by R(k) the operator that corresponds this solution ũ(k)

to f
(k)
1 in (13).
Next, we consider the case k ∈ N2. We consider the following initial bound-

ary value problem in the half-line:





∂ũ(k)

∂t
− L0

(
0,

∂

∂x

)
ũ(k) = f

(k)
1 in R(+),

B0

(
0,

∂

∂x

)
ũ(k) = F

(k)
2 ≡ ζ(k)F2 on x = 0,

ũ(k)
∣∣
t=0

= 0 on I.

(15)

This problem also has a unique solution ũ(k) ∈
◦
W

(l)

u (T1) by applying the
Fourier-Laplace transform [9], and we denote by R(k) the operator that as-

sociates with f (k) = (f
(k)
1 , F

(k)
2 ) ∈

◦
W

(l)

f (T1) the solution of the problem (15).

In a similar manner, we define R(k) for k ∈ N3 that associates with f (k) =

(f
(k)
1 , F

(k)
2 ) ∈

◦
W

(l)

f (T1) the solution of the problem (15) with the region relaced
by (−∞, 1).

Now define an operator R, which associates f = (f1, F2) ∈
◦
W

(l)

f (T1) with
the following items:

RH =
∑

k

η(k)(x)ũ(k)(x, t),

Hereafter we use notations

ũ(k)(x, t) =





R(k)ζ(k)f1

(
k ∈ N1

)
,

R(k)
(
ζ(k)f1, ζ

(k)F2

) (
k ∈ N2

⋃
N3

)
.

By virtue of the classical result of the half-space problem, we have the estimates

‖R(k)f1‖
◦

W
l, l2

2 (RT1
)

≤ c53‖f1‖
◦

W
l−2, l−2

2

2 (RT1
)

for k ∈ N1, (16)

‖R(k)(f1, f2)‖
◦

W
l, l2

2

(
R+×(0,T1)

)

≤ c54(2)

{
‖f1‖

◦

W
l−2, l−2

2

2

(
R+×(0,T1)

) + ‖f2‖
◦

W

l
2−

3
4

2 (0,T1)

}
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for k ∈ N2, (17)

‖R(k)(f1, f2)‖
◦

W
l, l2

2

(
(−∞,1)×(0,T1)

)

≤ c54(3)

{
‖f1‖

◦

W
l−2, l−2

2

2

(
(−∞,1)×(0,T1)

) + ‖f2‖
◦

W

l
2−

3
4

2 (0,T1)

}

for k ∈ N3. (18)

By making use of (16)–(18), we easily obtain the following

Lemma 1. For arbitrary T1 > 0, R is a bounded operator acting from

the space
◦
W

(l)

f (T1) into the space
◦
W

(l)

u (T1), and is subjected to the estimate

‖Rf‖
◦

W
(l)

u (T1)
≤ c55‖f‖ ◦

W
(l)

f (T1)
. (19)

Now we construct operators S and E which are shown to be bounded on

the spaces
◦
W

(l)

f (T1) and
◦
W

(l)

u (T1), respectively. We define

A0ũ = (L0ũ, B0ũ|∂I)
T, A1ũ = (L1ũ, B1ũ|∂I)

T,

where B1 = B −B0. It is to be noted that

( ∂

∂t
− L0

(
x,

∂

∂x

))
Rf =

∑

k

[( ∂

∂t
− L0

(
x,

∂

∂x

))
η(k)ũ(k)

]

=
∑

k

η(k)
∂ũ(k)

∂t
−
∑

k

[
L0

(
x,

∂

∂x

)
η(k)ũ(k) − η(k)L0

(
x,

∂

∂x

)
ũ(k)

]

−
∑

k

η(k)
[
L0

(
x,

∂

∂x

)
− L0

(
ξ(k),

∂

∂x

)]
ũ(k)

−
∑

k

η(k)L0

(
ξ(k),

∂

∂x

)
ũ(k)

= F1 + S1f ,

where

S1f ≡ −
∑

k

[
L0

(
x,

∂

∂x

)
η(k)ũ(k) − η(k)L0

(
x,

∂

∂x

)
ũ(k)

]

−
∑

k

η(k)
[
L0

(
x,

∂

∂x

)
− L0

(
ξ(k),

∂

∂x

)]
ũ(k). (20)
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In analogous way, we have

BRf = F2 + S2f ,

where

S2f ≡ B1Rf

∣∣∣
∂I

+
∑

k∈N2

(
B0η

(k)ũ(k) − η(k)B0ũ
(k)
)∣∣∣

∂I

+
∑

k∈N2

η(k)
[
B0

(
x,

∂

∂x

)
−B0

(
ξ(k),

∂

∂x

)]
ũ(k)

∣∣∣
∂I
.

Thus, (11) holds with

Sf = (S1f , S2f)
T.

Take T1 = λχ2 with a certain number χ > 0. Then, by combining (16)–(20),
we have the estimate [9]

‖Sf‖ ◦

W f (T1)
≤ c56φ01(χ, λ)‖f‖ ◦

W f (T1)
, (21)

where φ01 is a homogeneous polynomial of its argument.

In a similar manner, we have (13) with

Eŭ ≡ RA1ũ+
∑

k∈N1

η(k)R(k)
[
L0

(
ξ(k),

∂

∂x

)
ζ(k)ŭ− ζ(k)L0

(
ξ(k),

∂

∂x

)
ŭ
]

+
∑

k∈N1

η(k)R(k)ζ(k)
[{

L0

(
ξ(k),

∂

∂x

)
− L0

(
x,

∂

∂x

)}
ũ

]

+
∑

k∈N2
⋃

N3

η(k)R(k)

[
L0

(
ξ(k),

∂

∂x

)
ζ(k)ŭ− ζ(k)L0

(
ξ(k),

∂

∂x

)
ŭ,

ζ(k)B0ŭ−B0ζ
(k)ŭ

]

+
∑

k∈N2
⋃

N3

η(k)R(k)ζ(k)
[{

L0

(
ξ(k),

∂

∂x

)
− L0

(
x,

∂

∂x

)}
ŭ, B0ŭ

]
.

Then, by virtue of Lemma 1, we easily have the estimate

‖Eũ‖
◦

W
(l)

u (T1)
≤ c57φ02(λ, χ)‖ũ‖ ◦

W
(l)

u (T1)
(22)
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with a homogeneous polynomial φ02. Let us show a part of the estimate. For
instance, we have

∥∥∥∥∥L0

(
ξ(k),

∂

∂x

)
ζ(k)ŭ− ζ(k)L0

(
ξ(k),

∂

∂x

)
ŭ,

∥∥∥∥∥
W

l−2. l−2
2

2 (IT1 )

≤ c58
(
λ−2 + λ−1

)(
ε+ CεT1

)
‖C̆b‖

W
l, l2
2 (IT1 )

.

This is derived from the fact

L0

(
ξ(k),

∂

∂x

)
ζ(k)ŭ− ζ(k)L0

(
ξ(k),

∂

∂x

)
ŭ

=

[
d2ζ(k)

dx2
C̆b +

dζ(k)

dx

dC̆b

dx
, 0, 0

]T
,

and the estimate
∥∥∥∥∥
d2ζ(k)

dx2
C̆b

∥∥∥∥∥
W

l−2, l−2
2

2 (IT1 )

≤ c59

∥∥∥∥∥
d2ζ(k)

dx2

∥∥∥∥∥
W

l, l2
2 (IT1 )

∥∥C̆b

∥∥
W

l−2, l−2
2

2 (IT1 )
,

for instance. The estimates (21)–(22) lead us to conclude that both S and E

are bounded operators in the spaces
◦
W

(l)

f (T1) and
◦
W

(l)

u (T1), respectively, and
their norms are small if we take T1 sufficiently small. Now, it is possible to
make the operator norms of S and E satisfy

‖S‖
L
(

◦

W
(l)

f (T1);
◦

W
(l)

f (T1)
) < 1, ‖E‖

L
(

◦

W
(l)

u (T1);
◦

W
(l)

u (T1)
) < 1

by taking T1 small enough, where

‖ · ‖L(W1;W2)

is the operator norm of a linear operator from a function space W1 into W2 in
general.

Then, by virtue of the contraction mapping principle, it is possible to con-
clude that there exist (I + S)−1 and (I + E)−1. By replacing f in (12) by
(I + S)−1f , and applying (I + E)−1 to both sides of (13), we have

AR(I + S)−1f = f ,

(I + E)−1RAũ = ũ.

This means that A−1 = R(I + S)−1 = (I + E)−1R exists on the time interval
(0, T1). This is equivalent to the boundedness of the operator A−1, which is
obvious by virtue of the estimate
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‖A−1‖
L
(

◦

W
(l)

f (T1);
◦

W
(l)

u (T1)
)

≤ ‖(I + S)−1‖
L
(

◦

W
(l)

f (T1);
◦

W
(l)

f (T1)
)‖R‖

L
(

◦

W
(l)

f (T1);
◦

W
(l)

u (T1)
).

If we take T1 so small, say, τ0, that ‖S‖
L
(

◦

W
(l)

f (T10);
◦

W
(l)

f (τ0)
) ≤ 1

2 , then ‖(I +

S)−1‖
L
(

◦

W
(l)

f (τ0);
◦

W
(l)

f (τ0)
) ≤ 2, and

‖A−1‖
L
(

◦

W
(l)

f (τ0);
◦

W
(l)

u (τ0)
) ≤ 2‖R‖

L
(

◦

W
(l)

f (τ0);
◦

W
(l)

u (τ0)
).

Note that the right-hand side of above inequality is estimated by Lemma 1.
This completes the proof of Theorem 4.

5.3. Proof of Theorem 3

Now, we are in a position to prove Theorem 3. We first state that u(j) con-
structed in Section 5.2 satisfies u(j) ∈ W l−1−2j

2 (I) and

‖u(j)‖
W l−1−2j

2 (I)
≤ c510

(
‖f1‖

W
l−2, l−2

2
2 (IT1 )

+ ‖ũ0‖W l−1
2 (I)

)
. (23)

Actually, in case j = 1, we have

‖u(1)‖W l−3
2 (I) ≤ ‖Lũ0‖W l−3

2 (I) + ‖f1
∣∣
t=0

‖W l−3
2 (I)

≤ ‖ũ0‖W l−1
2 (I)

+ ‖f1‖
W

l−2, l−2
2

2 (IT1 )
. (24)

In case j ≥ 1, we have

‖u(j)‖
W l−1−2j

2 (I)
≤ ‖f1

∣∣
t=0

‖
W l−1−2j

2 (I)

+

j−1∑

k=0

j−1Ck

∥∥L(j−1−k)u(k)
∥∥
W l−1−2j

2 (I)

≤ ‖f1‖
W

l−2j,
l−2j
2

2 (IT1 )
+ c511

j−1∑

k=0

∥∥u(k)
∥∥
W

l−1−2(j−1)
2 (I)

≤ ‖f1‖
W

l−2j,
l−2j
2

2 (IT1 )
+ c511

j−1∑

k=0

∥∥u(k)
∥∥
W l−1−2k

2 (I)
. (25)
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Thereby, the estimate of ‖u(j)‖
W l−1−2j

2 (I)
reduces to the estimates of

{‖u(k)‖W l−1−2k
2 (I)}

j−1
k=0.

But u(0) = ũ0 and together with (24), (25), we arrive at (23).
In virtue of the well-known method, it is possible to construct a function

v that satisfies (10) and the following inequality (see, for instance, Theorem
IV.4.3 in [9], p.298):

‖v‖
W

l, l2
2 (RT1

)
≤ c512

[(l/2]∑

j=0

‖û(j)‖
W l−2j

2 (R)

≤ c513

[(l/2]∑

j=0

‖u(j)‖
W l−2j

2 (I)

≤ c514
(
‖f1‖

W
l−2, l−2

2
2 (IT1 )

+ ‖ũ0‖W l−1
2 (I)

)
. (26)

Here, û(j) are the extension of u(j) onto R satisfying

‖û(j)‖
W l−1−2j

2 (R)
≤ c515‖u

(j)‖
W l−1−2j

2 (I)
.

Now, for τ0 derived in Theorem 4, we have the estimate of ũ, which is the
solution to (8), as follows:

‖ũ‖
W

(l)
u (τ0)

≤ ‖ŭ‖
W

(l)
u (τ0)

+ ‖v‖
W

l, l2
2 (Iτ0 )

≤ ‖ũ0‖W l−1
2 (I) + ‖f ′

1‖
W

l−2, l−2
2

2 (Iτ0 )

+ ‖f1‖
W

l−2, l−2
2

2 (Iτ0 )
+ ‖F ′

2‖
W

l
2−

3
4

2 (0,τ0)

≤ ‖ũ0‖W l−1
2 (I)

+ ‖F1‖
W

l−2, l−2
2

2 (Iτ0 )
+ ‖F2‖

W
l
2−

3
4

2 (0,τ0)
.

Since u ∈ W
(l)
u (τ0), we have

φ(j)(x) ≡
∂ju

∂tj

∣∣∣
t=

τ0
2

∈ W l−2j
2 (I) (j = 1, 2, . . . , [l/2]).

Then, we can construct a function v′ ∈ W
l, l

2
2 (RT1) in such a way that

∂jv′

∂tj

∣∣∣
t=

τ0
2

= φ(j)(x) on I (j = 0, 1, 2, . . . , [l/2]),
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and

‖v′‖
W

l, l2
2 (IT )

≤ c516

[l/2]∑

j=0

‖φ(j)‖
W

(l−2j)
2 (I)

hold. This is achieved by the same way as we constructed v earlier. Then, the
function ũ′′ ≡ ũ− v′ satisfies





∂ũ′′

∂t
− L

(
x,

∂

∂x

)
ũ′′ = f1 − L

(
x,

∂

∂x

)
ṽ′ ≡ f ′′

1 in I,

B
(
x,

∂

∂x

)
ũ′′ = F2 −B

(
x,

∂

∂x

)
ṽ′ ≡ F ′′

2 on ∂I,

ũ′′
∣∣
t=

τ0
2
= 0 on I.

(27)

Again, in virtue of Theorem 4, we can assert that (27) has a solution ũ′′ on
( τ02 ,

3τ0
2 ), which satisfies

‖ũ′′‖
W

(l)
u (

τ0
2
,
3τ0
2

)
≤ ‖f ′′

1 ‖
W

l−2, l−2
2

2 (I×(
τ0
2
,
3τ0
2

))
+ ‖F ′′

2 ‖
W

l
2−

3
4

2 (
τ0
2
,
3τ0
2

)
.

Thus, problem (8) has a solution ũ on (0, 3τ02 ), which satisfies

‖ũ‖
W

(l)
u (

3τ0
2

)
≤ ‖f ′′

1 ‖
W

l−2, l−2
2

2 (I 3τ0
2

)
+ ‖F ′′

2 ‖
W

l
2−

3
4

2 (0,
3τ0
2

)

+ ‖u0‖W l−1
2 (I).

By iterating this procedure repeatedly, we can extend the upper time of
existence up to the desired T > 0. This completes the proof of Theorem 3.

5.4. Proof of Theorem 2

Now we are in a position to prove Theorem 2. First, we prepare some lemmas.

5.5. Nonlinear Problem

Next, we consider the nonlinear problem. Before proceeding to the detailed
arguments, we prepare some lemmas. The following lemma is well known (see,
for instance, [17].)

Lemma 2. Let r ∈ (1/2, 1). Then, the following issues hold:
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(i) For f, g ∈ W 1+r
2 (I),

‖fg‖W 1+r
2 (I) ≤ c517‖f‖W 1+r

2 (I)‖g‖W 1+r
2 (I).

(ii) For f ∈ W 1+r
2 (I) and g ∈ W r

2 (I) in general,

‖fg‖W r
2 (I)

≤ c518‖f‖W 1+r
2 (I)‖g‖W r

2 (I)
.

Next, we state the following lemma to evaluate nonlinear terms.

Lemma 3. Assume that l > 5/2, and C̃a0, C̃r0 ∈ W l
2(I). Let ũ =(

C̃b, C̃a, C̃r

)T
be a solution to (5). Then, for arbitrary T > 0, the following

estimates hold with a certain ε > 0.

∥∥∥∥∥
∂

∂x

[
C̃

(n)
b

∂C̃
(n)
a

∂x

]∥∥∥∥∥

2

W
l−2, l−2

2
2 (IT )

≤
(
ε+ CεT

)∥∥C̃(n)
b

∥∥2
W

l, l2
2 (IT )

+ c512,

∥∥∥∥∥
∂

∂x

[
C̃

(n)
b

∂C̃
(n)
r

∂x

]∥∥∥∥∥

2

W
l−2, l−2

2
2 (IT )

≤
(
ε+ CεT

)∥∥C̃(n)
b

∥∥2
W

l, l2
2 (IT )

+ c513.

Here, Cε > 0 is a constant that depends on ε decreasingly.

Proof. By (5)2, we have

∂C̃
(n)
a

∂x
= e−kat ∂C̃a0

∂x
+ a1(x)

∫ t

0
e−ka(t−s) ∂C̃

(n)
b

∂x
(x, s) ds

+ a′1(x)

∫ t

0
e−ka(t−s) ∂C̃

(n)
b

∂x
(x, s) ds.

Therefore, we have

∂

∂x

[
C̃

(n)
b

∂C̃
(n)
a

∂x

]
=

∂C̃
(n)
b

∂x

{
e−kat∂C̃a0

∂x

+ a1(x)

∫ t

0
e−ka(t−s) ∂C̃

(n)
b

∂x
(x, s) ds

}

+ a′1

∫ t

0
e−ka(t−s) ∂C̃

(n)
b

∂x
(x, s) ds
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+ C̃b

{
e−kat∂

2C̃a0

∂x2
+ a′′1(x)

∫ t

0
e−ka(t−s) ∂C̃

(n)
b

∂x
(x, s) ds

+ 2a′1(x)

∫ t

0
e−ka(t−s) ∂

2C̃
(n)
b

∂x2
(x, s) ds

+ a1(x)

∫ t

0
e−ka(t−s) ∂

2C̃
(n)
b

∂x2
(x, s) ds

}
. (28)

We shall show the estimates of some terms in (28). By the assumption and
Lemma 2, it is easy to see

∥∥∥∥∥
∂2C̃a0

∂x2
C̃

(n)
b (t)

∥∥∥∥∥

2

W l−2
2 (I)

≤ c519

∥∥∥∥∥
∂2C̃a0

∂x2

∥∥∥∥∥

2

W l−2
2 (I)

∥∥∥C̃(n)
b (t)

∥∥∥
2

W l−1
2 (I)

.

Therefore, by using the interpolation inequality of the Sobolev–Slobodetskĭı
spaces, we have

∫ T1

0

∥∥∥∥∥
∂2C̃a0

∂x2
C̃

(n)
b (t)

∥∥∥∥∥

2

W l−2
2 (I)

dt

≤ c520

∥∥∥∥∥
∂2C̃a0

∂x2

∥∥∥∥∥

2

W l−2
2 (I)

∥∥∥C̃(n)
b

∥∥∥
2

L2(0,T1;W
l−1
2 (I))

≤ (ε+ CεT1)
2
∥∥∥C̃(n)

b

∥∥∥
2

W
l, l2
2 (IT1 )

.

Next, we show the estimate of

∥∥∥∥∥C̃
(n)
b a′1(x)

∫ t

0
e−ka(t−s) ∂C̃

(n)
b

∂x
(x, s) ds

∥∥∥∥∥
W

l−2, l−2
2

2 (IT )

.

Thanks to Lemma 2 again, we have

∥∥∥∥∥C̃
(n)
b (·, t)

∫ t

0
e−ka(t−s) ∂C̃

(n)
b

∂x
(·, s) ds

∥∥∥∥∥
W l−2

2 (I)

≤
∥∥C̃(n)

b (t)
∥∥
W l−1−δ

2 (I)

∥∥∥∥∥

∫ t

0
e−ka(t−s) ∂C̃

(n)
b

∂x
(·, s) ds

∥∥∥∥∥
W l−2

2 (I)

,
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with δ > 0 sufficiently small. Then,

∫ T1

0

∥∥C̃(n)
b (t)

∥∥2
W l−1−δ

2 (I)

∥∥∥∥∥

∫ t

0
e−ka(t−s) ∂C̃

(n)
b

∂x
(·, s) ds

∥∥∥∥∥

2

W l−2
2 (I)

dt

≤ sup
t∈(0,T1)

∥∥C̃(n)
b (t)

∥∥2
W l−1−δ

2 (I)

×

∫ T1

0

∥∥∥∥∥

∫ t

0
e−ka(t−s) ∂C̃

(n)
b

∂x
(·, s) ds

∥∥∥∥∥

2

W l−2
2 (I)

dt. (29)

By the Cauchy-Schwarz inequality, we have

∥∥∥∥∥

∫ t

0
e−ka(t−s) ∂C̃

(n)
b

∂x
(·, s) ds

∥∥∥∥∥

2

W l−2
2 (I)

≤
1

2ka

∥∥∥∥∥
∂C̃

(n)
b

∂x

∥∥∥∥∥

2

W l−2,0
2 (It)

.

Thus, with the aid of the Sobolev embedding theorem and the interpolation
inequality, the right-hand side of (27) is estimated by

sup
t∈(0,T1)

∥∥C̃(n)
b (t)

∥∥2
W l−1−δ

2 (I)
×

1

2ka

∫ T1

0

∥∥∥∥∥
∂C̃

(n)
b

∂x
(·, s)

∥∥∥∥∥

2

W l−2
2 (I)

ds

≤ T1(ε+ CεT1)
2
∥∥C̃(n)

b

∥∥4
W

l, l2
2 (IT1 )

.

Other terms in the right-hand side of (28) are estimated similarly. These
yield the desired first inequality of Lemma 3. The second one is estimated in a
similar manner.

Now, we prove Theorem 2. We define a successive sequence {ũ(n)}+∞
n=0 with

ũ(n) =
(
C̃

(n)
b , C̃

(n)
a , C̃

(n)
r

)T
. For n = 0, we define ũ(n) = ũ0. For n ≥ 1, we
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define it inductively:




∂C̃
(n+1)
b

∂t
−Db

∂2C̃
(n+1)
b

∂x2
+

∂

∂x

[
C̃

(n+1)
b

(
Va

∂Ca

∂x
− Vr

∂Cr

∂x

)]

+
∂

∂x

{
Cb

(
Va

∂C̃
(n+1)
a

∂x
− Vr

∂C̃
(n+1)
r

∂x

)}

= −
∂

∂x

{
C̃

(n)
b

(
Va

∂C̃
(n)
a

∂x
− Vr

∂C̃
(n)
r

∂x

)}
≡ J

(n)
1 ,

∂C̃
(n+1)
a

∂t
= a1(x)C̃

(n+1)
b (x, t)− kaC̃

(n+1)
a (x, t),

∂C̃
(n+1)
r

∂t
= a2(x)C̃

(n+1)
b (x, t)− krC̃

(n+1)
r (x, t) in IT ,

Db
∂C̃

(n+1)
b

∂x
− C̃

(n+1)
b

(
Va

∂Ca

∂x
− Vr

∂Cr

∂x

)

+Cb

(
Va

∂C̃
(n+1)
a

∂x
− Vr

∂C̃
(n+1)
r

∂x

)

= C̃
(n)
b

(
Va

∂C̃
(n)
a

∂x
− Vr

∂C̃
(n)
r

∂x

)
≡ J

(n)
2 on ∂I,

ũ(n+1)(x, 0) = ũ0(x) on I.

(30)

We also introduce notions E0 ≡
∥∥ũ0

∥∥
W l−1

2 (I)
, and

E(n)(t) ≡
∥∥ũ(n)

∥∥
W

(l)
u (t)

(n ≥ 1). Then, by virtue of Theorem 4, we have the

estimate

E(n+1)(t) ≤ c521

(
‖J

(n)
1 ‖

W
l−2, l−2

2
2 (IT1 )

+ ‖J
(n)
2 ‖

W
l
2−

3
4

2 (0,T1)
+
∥∥ũ0

∥∥
W l−1

2 (I)

)
.

By applying Lemma 3 to the estimates of nonlinear terms, we have

E(n+1)(t) ≤ c522
(
ε+ CεT2

)
φ51

(
E(n)(t)

)
+ c523.

Here, φ51

(
·
)
is a homogeneous polynomial of at most two degree of its argument.

Take a constant M51 such that M51 > E0 holds. Then, assume that

E(n)(t) ≤ M51.

holds for a certain n. Take ε first so that

εc522φ51

(
M51

)
+ c523 < M51
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holds, and then T51 small enough so that

c522CεT51φ51

(
M51

)
< M51 − εc522φ51

(
M51

)
− c523

holds. Then, we obtain

E(n+1)(T51) ≤ M51

from the assumption E(n)(T51) ≤ M51. Thus, by induction, the sequence {ũ
(n)}n

is well-defined in W
(l)
u (T51).

Next, we have to verify it certainly converges in W
(l)
u (T52) with a certain

T52 ∈ (0, T51]. In order to show that, we define ŭ(n) =
(
C̆

(n)
b , C̆

(n)
a , C̆

(n)
r

)T
≡

ũ(n) − ũ(n−1) for n ≥ 1, and subtract (30) with n replaced with n − 1 from
itself. Then, we consider the following problem:





∂C̆
(n+1)
b

∂t
−Db

∂2C̆
(n+1)
b

∂x2
+

∂

∂x

[
C̆

(n+1)
b

(
Va

∂Ca

∂x
− Vr

∂Cr

∂x

)]

+
∂

∂x

{
Cb

(
Va

∂C̆
(n+1)
a

∂x
− Vr

∂C̆
(n+1)
r

∂x

)}
= J

(n)
1 − J

(n−1)
1

∂C̆
(n+1)
a

∂t
= a1(x)C̆

(n+1)
b (x, t)− kaC̆

(n+1)
a (x, t),

∂C̆
(n+1)
r

∂t
= a2(x)C̆

(n+1)
b (x, t)− krC̆

(n+1)
r (x, t) in I,

Db
∂C̆

(n+1)
b

∂x
− C̆

(n+1)
b

(
Va

∂Ca

∂x
− Vr

∂Cr

∂x

)

−Cb

(
Va

∂C̆
(n)
a

∂x
− Vr

∂C̆
(n)
r

∂x

)
= J

(n)
2 − J

(n−1)
2 on ∂I,

ŭ(n)(x, 0) = 0 on I.

(31)

Introduce a notion Ĕ(n)(t) ≡
∥∥ŭ(n)

∥∥
W

(l)
u (t)

. Then, by virtue of Theorem 3,

we have the estimate

Ĕ(n+1)(t) ≤ c524
(
ε+ Cεt

)
φ52

(
E(n−1)(t), E(n)(t)

)
Ĕ(n)(t).

Take ε sufficiently small first so that

c524εφ52(M51,M51) < 1

holds, and then T52 so that

c524CεT52φ52(M51,M51) < 1− c524εφ52(M51,M51)
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holds with this ε. For these ε and T52, we have

Ĕ(n+1)(T52) ≤ dĔ(n)(T52), d = c524
(
ε+ CεT52

)
φ52

(
M52,M52

)
∈ (0, 1).

Therefore , we can conclude that {ũ(n)}n forms a Cauchy sequence inW
(l)
u (T52).

Thus, the limitation

ũ ≡ lim
n→+∞

ũn

exists in the same function space, which is our desired solution. This T52 is the
very T∗ we have seeked for. Uniqueness is easily seen by the similar argument,
and we omit it here. These complete the proof of Theorem 2.

6. Conclusion

In this paper, we provided the local-in-time solvability of the one-dimensional
non-stationary problem of the target detection model in the molecular com-
munication network, in the Sobolev–Slobodetskĭı space. We shall extend our
study to the two-dimensional case, and also consider the stability arguments in
the near future.
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