International Journal of Applied Mathematics

Volume 31 No. 3 2018, 427-455

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
doi: http://dx.doi.org/10.12732/ijam.v31i3.10

LOCAL-IN-TIME SOLVABILITY OF TARGET DETECTION
MODEL IN MOLECULAR COMMUNICATION NETWORK

Hirotada Honda

1-7-11 Akabanedai, Kita-Ku, Tokyo
115-0053, JAPAN

Abstract: This paper is concerned with a model of the target detection that
is actively discussed in the study of molecular communication network these
days. We first verify the solvability of the stationary problem, and then the
existence of a strong local-in-time solution to the non-stationary problem in the
Sobolev—Slobodetskii space.
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1. Introduction

Molecular communication is one of the most attractive research areas nowa-
days. It is drastically different from the conventional information communi-
cation technologies, and a number of active discussions are held among inter-
disciplinary researchers, such as biology, mathematics, statistics, information
theory, and so forth. It is also closely interacting with another active research
area, nano-network.

Molecular communication is expected to possess various applications in en-
gineering, such as bio-engineering, medical, industrial and communications [10].

Among them, the most important application in the medical area is consid-
ered to be the drug delivery [10]. There, each bio-nanomachine detects some tar-
get area, such as tumor cells in the human body, and release the drug molecules
in appropriate area, with suitable volume and timing. Nowadays, many the-
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oretical frameworks concerning the method of target detection in molecular
communication network are proposed as well as the implementation and exper-
iments in laboratories.

One of the key factors for carrying signals in molecular communication is
molecule diffusion in the medium. The early works in this direction are found
in [1], [2], and are widely applied in the arguments of coding and encoding
methods in the molecular communication these days.

Another key factor of molecular communication is that it enables the coop-
eration between bio-nanomachines to achieve a certain objective.

For instance, Nakano et al. [11] recently proposed a model of target detec-
tion that imposes two different roles on bio-nanomachines: leader and follower.
The leader nanomachines search for a target in the human body, and release
attractant molecules upon detecting it. Follower nanomachines move according
to the concentration gradient of the attractant toward the source of it, and then
release drug molecules.

Nakano’s model utilizes the chemotaxis of bio-nanomachies. The investi-
gations in such a direction are also found in several papers as [12], [13], and
activated the modeling of bio-nanomachines based on the Keller-Segel model [8].

The discussions by Nakano et al. [11] applied the agent-based simulations
and experiments, while more theoretical study was conducted by Iwasaki [6]
recently.

In it, both the attractant and repellent exist in the model. The attrac-
tant makes bio-nanomachies be closer to the target in order to yield the drug
molecules there. On the other hand, the repellent contribute to diffusing bio-
nanomachies, and make them search for the target over the broader area. He
focused on the concentration of bio-nanomanies, attractant and repellent, and
formulated their temporal behavior. The proposed model was a couple of a
one-dimensional reaction-diffusion-type partial differential equation and two or-
dinary differential equations.

It is also to be noted that the proposed model in [6] was based on the
variant model of the Keller-Segel equation originally proposed by Okaie [12], but
the diffusion terms in equations of attractant and repellent were neglected for
simplicity. After showing the existence of a positive stationary solution, Iwasaki
numerically verified its stability. However, few theoretical analysis concerning
the proposed model were conducted in that paper. In this paper, we rigorously
discuss the well-posedness of the model, and show the following issues.

(i) Existence of a non-negative stationary solution is verified;

(ii) The global-in-time solvability of the model proposed by Iwasaki is shown
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under the smallness of data;
(iii) the non-negativeness of the non-stationary solution is shown.

The remaining part of this paper is organized as follows. In the next section,
we overview the existing mathematical arguments. In Section 3, we formulate
the problem, and in Section 4, we introduce notations used throughout this
paper. Main results of this paper are stated in Section 5, followed by their
proofs in Section 6.

2. Existing Arguments

There exist a number of works concerning the molecular communication net-
work these days, and we limit ourselves to the following arguments those con-
cerning the target detection in the human body. Nakano et al. [11] proposed
a mathematical model that describes the temporal behavior of the attractant
molecules. They proposed a model in which two roles were imposed on bio-
nanomachines, which they called the leader-follower model. They showed the
effectiveness of the proposed method through numerical simulations. They also
clarified the situations in which their proposed method worked better than the
conventional one, but few mathematically rigorous discussions were held.

Following these works, Iwasaki et al. [6] proposed a mathematical model
that concerns the non-diffusion-based mobile molecular communication net-
works. He focused only on the temporal behavior of the concentration of the
attractant, repellent, and bio-nanomachines under the assumption that the con-
centration of the target is time invariant.

Similar model was discussed in their previous paper [5], including the exis-
tence and uniqueness of the solution, and the stability of the stationary solution.
It reads

( 2
ou 0 ) 0| o .
i = gt a) —ng [“% (T“’”)“)] LR,
Ou =0 on 09I x (0,00), (1)

D

u‘tzo = (uo,vo,w()) on I.

where and hereafter I = (0,1), dI = {0} |J{1}, and Ry = (0,00). It was
proposed as a simplified version of that proposed by Okaie et al. [12] that
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is similar to the Keller-Siegel model [8] but includes the time variant target

concentration:
ou_ ou_of (o 0
at ~ oz oz |\ o T e X

ov 0%

5 = 25 + 1T (x, t)u — dv,

ow 0w .

i a3—8x2 + gou—hw in I x (0,00),
ou Ov Ow

%—%—%—O on 8.[)((0,00),

(u,v,w)‘tzo = (uo,vo,wo) on I.

Iwasaki et al. [5] also argued the stability of the stationary solution of (1) by
constructing the Lyapunov function. We also point out that although the model
in [5] admits constructing the global-in-time solution without the smallness of
the initial data, the method does not apply to the model studied in this paper.
As for other arguments concerning the model by Okaie [12], see the review by
Iwasaki [5] and the references therein.

The model discussed in this paper is a couple of the reaction-diffusion equa-
tion and ordinary differential equations. Recently, Marciniak-Czochra et al. [16]
studied the non-stability of such systems under certain conditions. It seems
meaningful since the reaction-diffusion equation reflexes the denovo patterns or
the Turing instability.

On the other hand, Iwasaki et al. [6] numerically showed the stability of a
stationary solution of their model.

Since these models stated so far arise from the Keller-Segel model, we briefly
overview mathematical arguments concerning the Keller-Segel equations.

There exist huge number of contributions concerning the mathematical ar-
guments of Keller-Segel equations and its variations (see, for instance, [3] and
references therein), and therefore, we limit ourselves to the relational arguments
to our problem.

Schaaf [15] studied the stationary solution to the Keller-Segel equation un-
der the general non-linearity, and reduced the problem to a scalar equation by
using the bifurcation technique. She also provided a criterion for bifurcation
of solution. Osaki and Yagi [14] provided the global-in-time solution of the
classical one-dimensional Keller-Segel equation. Later, Hillen and Potapov [3]
discussed the one-dimensional chemotaxis model:
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Ut = Ugy — X(uvx)xa
UVt = EVgy + U — AV,

on a closed interval with homogeneous Neumann or periodic boundary condi-
tions. They constructed the local-in-time solution by virtue of the fixed point
theorem (it was argued for the space dimension n > 1), and then constructed
the a-priori estimate by using the estimate of the heat kernel. However, this
method does not apply to our discussion because in our model depicted in (2)
in the next section does not have this term.

The existence and stability of a spike solution to the one-dimensional Keller-
Segel equation in the asymptotic limit of a large mass was studied by Kang [7].
They also discussed the global-in-time solvability of a reduced version of the
Keller-Segel equation. The latter part is conducted by using the energy method.

For reader’s convenience, we note that through surveys are provided by
Horstmann [4] and references therein.

3. Formulation

In this section, we formulate the problem to be discussed in this paper. Due to
Iwasaki et al. [6], the temporal behavior of the concentrations of bio-nanomachines,
attractant and repellent in one-dimensional space, denoted as Cy(z,t), Cy(z,t)
and C,(z,t), respectively, are represented as follows:

OC B 82Cb 0 oC, oC,

W_Db o2 _8_95 Cb<VaW_VT 890)

aaci,:a = al(x)Cb(x, t) - k’aca(xv t), (2)
O = wa(@)Cola, 1)~k Cola,t) i I

with boundary and initial conditions
8Cb 6Ca 86~’7‘ _
%_cb(va% Vr%) =0 on 0,
u(z,0) = uo(z) = (Co(x), Can(x), Cro(x)) " on I.

3)

For the sake of simplicity, we introduced a notation u = (C’b, Cy, C’T)T above.
Here, t is time, x, the location of materials on the tissue surface, a;(x) =
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gah(x)/(h(z) + K,), as(x) = ¢.K,/(h(z) + K,) with h(xz) being the target
concentration, and K, (or K, ), positive constants standing for the target con-
centration leading to the half maximum attractant (or repellent, resp.) produc-
tion rate. The notation g, (or g,) is also a positive constant representing the
maximum attractant (or repellent, resp.) production rate; In [6], the author
provided the existence of a stationary solution w(x) = (6b(x),6a(x),6r(:c))T
to (2)—(3) that is subject to:

d’C, d |- dc, dC,

T (Vaa ‘”ra) -0
a1 ()Cy(x) — Calw) =0,
az(x)Cy(z) — Cr(z) =0 in I, (4)
¢y, —= aC, aoc,\

8—x_cb<va o Vrax>—0 on OI,

Cyp(z)do =1
I

They also showed the stability of w(z), that is, the convergence of the solution
of (2)—(3) to that of (4) through numerical simulations under specific values of
parameters.

In this paper, we study the well-posedness of (2)—(3). We first subtract w(x)
from the solution to problem (2)—(3), and consider the problem concerning

u(z,t) = (éb,éa,ér)T = u(x,t) —u(x).
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It reads
. _ _ _
aC,  9C, 9 |~ oC, oC,
o e %{Cf(%% T )}
a9 |~ oc, oC, oC,. 90,
oz Cb{va<%+ or > _VT< ox + or >} ’
aacta = a1(2)Cy(x, 1) — koCylx, 1)
% _ (5)
88?« = az(x)Cy(z,t) — kyCp(z,t) in Ip,
oc, |~ oc, oC, oC,. aC,
Do~ Cb{”(%* oa ) ‘Vr<ax "o )} |
_ oC, aC,
—Cb <Va8—x — ‘/7’ o =0 on 6[,
[ u(z,0) =ug(r) onl,

where il:() = (ébo, 5{107 éro)T.

4. Notations

In the following, let 7" > 0, G be an arbitrary open set in R, I = (0,1) and
I = I x(0,T). Hereafter, C'(G) (I € N) stands for sets of all functions defined
on G that have [-th order continuous derivatives. We also denote a set of
Lipschitz continuous functions with the Lipschitz coefficient L on G as C (L) (9)
with L € (0,1). L2(G) means a set of square-integrable functions defined on G,
equipped with the norm (Ly-norm)

fla = ( /g (@) do:) .

The inner product in Ly(G) is defined by
(ot = | @R dr

where Z stands for the complex conjugate of z € C.
Likewise, by | - |,, we denote the usual L, norm on I:
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1 v
. </0 ]f(x)]pdx> L 1<p<+oo,
)=

esssup | f(z)|, p=+oo.
zel

For a Banach space B with the norm || - ||, we denote the space of B- valued
measurable functions f(¢) on the interval (a,b) by Ly(a,b; B), whose norm is
defined by

| flLy(ab:B)

(/ (Mol dt , pe[l,+00),
ess sup, <<y ||.f (¢ )HBa b= oc.
By W(G) (I > 0), we mean a space of functions u(x), z € G equipped with

the norm ||uHWl(g) > Dl + Hu|| , where

lal<l

”uHWl(g) Z |D%ul3 = Z / |D*u(z)|? dz if [ is an integer,

|af=l |al=l

|Da Du(y)|? - .
||uH Wi(G) g | | Y dxdy if [ is a non-integer,
r—y"
lal=[1)

I=T1]+{l}, 0<{l} <1.

Next, for arbitrary T° > 0, we introduce anisotropic Sobolev—Slobodetskii
spaces [18]:

L 1
Wy2(Gr) = Wi(Gr) (Y Wy 2 (Gr) (Gr = G x (0,T)),
whose norms are defined by

T
2 _ 2 2
”ung’%(ng/o Hu(.,t)uwé(g)dw/gHu(x,-)HW%(O,T)dx

2
_ 2 2
= ||U , =+ [lu 1 .
g0y + 1% g

oLt

The set of functions with vanishing initial data, W, (Gr) is defined as [9]:
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ol

'3 1
Wy (Gr) = {ueW£’2<gT>

%Lozo (k:0,1,2,..., [é] - 1) }

For simplicity, we shall use the following notations:

1L L 1L
WINT) = W2 (Ir) x Wy (Ir) x Wy (Ir),
(1) o A-2,52 1-2,152
Wi(T) =W, (Ir) x W, (Ir)
1—92 =2 1_3
x Wy 72 (I) x Wy *(0,T),
o (1) ok oLk ok
W, (I)=Wy (Ir) x Wy (I7) x Wy (I1),
o (1) o 1-2,52 o 1-2,52
ol-2l5 o 4o

We also use notations like

1 1 1
WD (b1, t0) = Wy (I x (t1,12)) x Wa? (I x (t1,t2)) x W (I x (t1,12)).

The norms of these spaces are denoted in such ways as || - || and so

wi(T)’
forth. The norms of product spaces are defined in the usual manner.
Hereafter, ¢’s with suffixes represent constants in the estimate of some quan-

tities. When we denote ¢(t) with suffixes, it depends on t.

5. Main Results

In this section, we state the main results of this paper, and prove it. First, we
discuss the solvability of (4).

5.1. Solvability of Stationary Problem

In this section, we discuss the solvability of (4). Before discussing the non-
stationary problem, we first consider the stationary problem (4). In the fol-
lowings, f’(x) denotes the derivative of a function f(z) with respect to x in
general.
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Theorem 1. Assume that F(z) = Vya1(x)—V,az(x) satisfies F'(x) # 0 on
I, the closure of I. We also assume a; € C*(I) (j = 1,2), h(z) € C*(I). Then

there exists a unique solution (G,,Ua,a) € C?(I) to (4). It also satisfies
Cy,>0onl.

Iwasaki [5] discussed a similar problem, but their method does not work well
here, because they assume the positiveness of the solution from the beginning.
Instead, we rely on the standard existence argument of ordinary differential
equation.

Proof. Problem (4); can be written as
DyC, — Cy(FCy) = 0. (6)

Actually, this holds on I by virtue of the boundary conditions (4);. Rewrite
(6) as

(Db - F@) C,=FC.. (7)
In virtue of the assumption of the theorem, we then have

1-FC,#0 onl.

Thus, due to the existence theorem of ordinary differential equation yields the
desired result. The latter part of the statement is proved as follows. Assume
there exists a local minima zq € I such that Cy(z9) < 0. Then, we have
Cy(zo) = 0, and so F’(@b(yco))2 = 0 due to (7). But this contradicts the
assumption. Next, we consider the case C}, < 0 and U’b < 0at x =1. But then,
there exists a certain point z; € I such that Cy(z1) = 0 and Cy(z1) < 0, which
contradicts (7). O

The following is the main result of this paper.

Theorem 2. Let T} > 0 be an arbitrary number, and | > 5/2, and assume
(i) Cyo € WETH(I), Cup, Cro € Wi(I),
(i) a(z) € C2I) (j = 1,2).

In addition, let the compatibility conditions of order [(I — 1)/2] be satisfied.
Then, there exists a certain Ty, > 0 and u(z,t) = (Cb, Ca, CT)T € Wél)(T*)
that satisfies (5) over the time interval (0,T}).
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In order to prove Theorem 2, we first consider the linear problem. Next, we
make use of the multiplicative inequalities and the iteration method to verify
the unique existence of a local-in-time solution.

5.2. Linear Problem

In this subsection, we first prove the solvability of the linear problem associ-
ated with (5), and then Theorem 2. We first consider the following linearized

problem.
- _
G {Cb<v TRET >}
6:1:{Cb (V 3:1: B Vr%)} -
6act’a = al(x)éb(x,t) - k‘aéa({lf,t),
88(/1} = a3(2)Cy(x,1) — kCp(z,t) in I, o
855 80 867‘
wa - Cb (Va ox r Ox )
aC, .. oC,

_Cb(v o _Vr%> _FQ on 8[,

ﬂ(x7 0) = ’leo(af) at t = 0,

where ug = (ébo, 5(10, GTO)T. We have the following theorem.

Theorem 3. Let 1Ty > 0 be an arbitrary number, and | > 5/2. We

l,
also assume a; e C¥I) (j = 1,2), wp € W), Fy € WQI . 2 (Iry), and

F € VV2 (0 Ty). In addition, let the compatibility conditions up to order

[(I—1)/2] be satisfied. Then, there exists a unique solution u € qul)(Tl) to (8)
satisfying

Il < st (IR a1 + litollys-1r))- (9)

1_3
2 2 (ITl) 2 Z(Ole)

Since the sufficient compatibility conditions are satisfied, we first consider
(8) with vanishing initial data. More precisely, introducing notations f; =
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(Fla 070)T7
[ 0%C, 0 |~ (. oC, aC, |
Y042 0 {Cb<V“W_VT B >}
0 o [~ (. aC, aC,
—)u = —1C( Va Vr
1o L) 2{a(ui v )} |,
a1(2)Cy(z,t) — kaCalz, 1)
| as(x)Cy(z, ) — ko Cp(, 1) |
d\ - aC, aC, aC,
B(z,—)a=0D - ey
("3’ ax)“ ) Cb<V“ oz " om )
_ (. aC, aC,
—Cy <Va% - V;‘a—>7
we construct a sequence of functions u¥) (5 =0,1,2,...,[l/2]) in the following
manner:
u® (@) = fig (). uV(e) = L (2. 2 )iiole) + fi(.0)
) ’63:‘ b b
. Ry 0 & fy
(3+1) - -
w(a) = g5 (o5 Jut »
0 N0 .
_ R V)] =
L(:):, 8x)u + 55 y G=2.3,....[/2]).

As we will see in Section 5.3, this {u7)}; satisfies

DN, . < (
[t lyyi-1-21 7y < €510 Hfl\IWQl

(j=0,1,2,...,[1/2)).

g+ ol )
2,75 Tl) Wy (1)

: L3 : :
We then construct a function v(x,t) € W, 2 (Ry,) which satisfies

dlv N
w o :u(]) (] :0717277[l/2])7 (10)
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and define & = u — v. Obviously % satisfies

ou ON. . .
E_L(x’ﬁ_x)u_fl in I,
INe (8)
B(x,%>U—F2 on 01,
ul,_,=0 on I,
where
0

)v, F,=F — B({L‘, 2)1}

fi= (7,007 = fi - L(w. -

dx

To (8)’, we advocate

Theorem 4. Let 71 > 0 be an arbitrary number, | > 5/2, and let us
_ o 1*271772 o é*
assume a; € C*(I) (j = 1,2), Fy € W, (I1y), and F» € Wy (0,71). In
addition, let the compatibility conditions of order [(I —1)/2| be satisfied. Then,
there exists a number 19 > 0, dependent on a; (j = 1,2), Cy, Cy and C,, and
o (l
a unique solution u € Wi)(m) to (8)" satisfying

W

lal o <es(IfAl, o2 +IBIL g ) (D)
W, (r0) Wy 7 (1) Ws (0m)

Since (8)" consists of equations and boundary conditions with variable co-
efficients, we appeal to the method of regularizer [9].

o ()
Let A be a linear operator defined on W, (77), that associates @ with
Py
(8—? — L, B'EL). It is obvious that A is bounded. Then, (8) is interpreted as

an abstract problem

Au = f

o (1)
for f = (Fl, 0,0, FQ)T € Wy (T1). Therefore, we have to show the existence of

the bounded inverse operator A~!. In the sequel, we construct an operator R
o () o (1)
that acts from W, (T1) to W,, (1), and that satisfies

ARFf = f+Sf, (12)
RAG = 0 + Eu, (13)
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o (D) o (1)
for any f € Wy (T1) and w € W, (T1), where S and & are bounded operators

o (1 o ()
in spaces W, (T1) and W, (T1), respectively. We will show that their norms
become small if we take T} sufficiently small. The overview of the proof reads
as follows.

(i) We construct a covering of I;

(ii) In each piece of the covering, we consider the model problem in the whole
or half-lines;

(iii) We construct operators S and £ above, and show the smallness of their
norms under small T7;

(iv) We show the existence of A~ under small 7.
5.2.1. Covering of I

We first introduce a covering of I, on which we construct the regularizer [9].
Let us introduce two systems of coverings of I, say, {w®} and {Q(*)}. They
are constructed for any small number A € (0, 1) satisfying:

i) w® ca® ca vk | Jo® = Jo® =1,
k k

(ii) For any & € €, there exists w®*) such that y € w®) and dist(z, I\w®*)) >
1A with a certain 51 > 0. Here, the notation dist(x, A) is the distance
between a point x € 2 and a set A C 2 in general;

No+1
(iii) There exists a natural number Ny independent of A such that ﬂ k) —

k=1
®;

(iv) If Q¥ NAI = ¢, then w® and Q*) are the open intervals with the
same center £%) and with the length of their intervals equal to % and
A, respectively. In this case, we represent k € Ni;

(v) In case Q¥ N{z = 0} # ¢, we represent k € No;

(vi) In case QW) N{z = 1} # ¢, we represent k € N3.
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Next, let us introduce a smooth partition of unity {¢*)(x)} subordinated to
{w®} and {Q®)} having the following properties for a > 0:

d” c 1 forzewh
< B () < A k) ‘<_a (K) () — ;
0sP@ =L |3acm @< 50 V@ =g foraeno®,
with some constant ¢, independent of k and A. By virtue of the property (iii)
2
of Q) 1 < Z(((k) (:):)) < Ny, and it is possible to take the functions
k 3
¢®) (z
1@ = ke U
(Z;¢0@)) =1

having the properties

n®)(z)=0 in 1\QW,
4
dx®

Y 1" (@)W () =1.
k

Ca
1@ <3 (a=12,..),

5.2.2. Problems in whole and Half-Lines

Now we consider the model problems in the whole and half-lines for each af-
filiation of k. In the followings, let 17 be an arbitrary positive number. We
introduce following notations to represent the coordinate system of coefficients
and the derivatives of operators explicitly:

O\~ 2C,, ~ ~ ~ ~
Ly (ac, %)u = <DbW, a1(z)Cp — kaCq,az(x)Chy — erT>,

d\-. . 9C, =~(. 8C, _ 9C,
BO(‘”’%)“_Db%_C”(V“%_WW)

First, we show the case k € Nj. We consider the problem

du®)
ot

~(k
a!l )|t:0 =0 on R,

9
(e D Naw _
Lo(e®. )@ = 57 R (14)



442 H. Honda

o (1)
for a certain £*) e I and fl(k) =C¢Wf e W (T1) with f; = (Fl,O,O)T. It is an

o (1)
elementary fact that the problem (13) has a unique solution a*) € W, (17) [9].

Hereafter, we denote by R*) the operator that corresponds this solution %)
to £ in (13)

A .

Next, we consider the case k € N3. We consider the following initial bound-
ary value problem in the half-line:

ou®) 0
_ a®) — k)
T L0<0, 8x)u fi7 in Ry,
0
I\ag® = W) = B R _ (15)
BO(O, 8x)u y =C¢"Fy on z=0,

ﬁ(k)‘t:o =0 on I
_ o ()
This problem also has a unique solution a*) € W, (T}) by applying the
Fourier-Laplace transform [9], and we denote by R*) the operator that as-

o ()
sociates with f(*¥) = (fl(k), FQ(k)) € W (T1) the solution of the problem (15).
In a similar manner, we define R®) for k € N3 that associates with f*) =

o (1)
(fl(k), FQ(k)) € W (1) the solution of the problem (15) with the region relaced
by (—o0,1).
o (1)
Now define an operator R, which associates f = (f1, F2) € W, (11) with

the following items:

RH =Y M ()@ (z,1),
k
Hereafter we use notations

ROCOF (ke ),
a®) (x,t) =

R®) (g<k> 11, g<k>F2) (k: e Ny UNS).

By virtue of the classical result of the half-space problem, we have the estimates

HR(k:)fln L < es3l| £l g L2 for ke M, (16)

Wy (Rry) Wy T (Ray)

IR® (f1, o)l ot

W, (Rex(0,11))

< C54(2){Hf1|| L2152

sl 4y}
W, R x(0T1)) W

(0,7%)
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for k€ No, (17)
RS (f1, )l 1
W, ((—o0,1)%(0,11))
< sy Il 2 + [ fell 2 s
{ Wy 7 ((—e0,)x(0,11)) W 4(0,T1)}
for ke Ns. (18)

By making use of (16)—(18), we easily obtain the following

Lemma 1. For arbitrary 17 > 0, R is a bounded operator acting from
o () l

o

the space W (T1) into the space W,, (T1), and is subjected to the estimate

IRFloy  <essllfllow - (19)
Wu (Tl) Wf (Tl)

Now we construct operators § and £ which are shown to be bounded on
O]

o (! o (1)
the spaces W (T1) and W, (11), respectively. We define

Aou = (Low, Boulor)", Ava = (Liu, Bialor)",
where B = B — By. It is to be noted that

(2 o )Rt =S  rle )i

" ox
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In analogous way, we have

BRf =F,+ Saf,

where

Sof = BIR f‘al +Y ( Bon®a®) — ) BO&(k))‘

keN> o
F 3l ) s )],
keN>

Thus, (11) holds with
Sf = (Sif, Sof)".

Take T7 = A\x? with a certain number x > 0. Then, by combining (16)—(20),
we have the estimate [9]

ISFIl.e < es6901 06 M) Fl

< , (21)
W (T1) W (Th)

where ¢g1 is a homogeneous polynomial of its argument.
In a similar manner, we have (13) with

9 9

= RAG ) RO Lo (e®), L)W — c® Ly (e, 2 )

Eu_RAlu—i—];eN:n RO [Lo(9, =)W — (WL (69, = )i
1

3 [ffet 8) (- )

keN:

keNs UNg

9 o\y.
+ keﬂ%ﬂ/g 8 R () [{LO (€9, ) = Lo(. 5 ) fu Bou} ,

Then, by virtue of Lemma 1, we easily have the estimate

|Eull , o < es7do2(N, x)||wl| 5 (22)
Wu (Tl) Wu (Tl)
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with a homogeneous polynomial ¢go. Let us show a part of the estimate. For
instance, we have

2

2 (ITl )

< A2t 1) ||C .
<es(\ AT+ CR)IG, g

This is derived from the fact
0 0
(k) k) m (k) k) “ \x
Lo (€M), 5= )W — (M Lo (M), )

N T
az2c® o qe® g
:[ o X dG )

dz? bt dz dzx

and the estimate

dz¢®)

d2¢ )
dx? Co

da?

<ec
1—2 = ©59
z (ITl)

160l i,

1,4 2 (ITl)

-2, s
W2 2 (ITI)

w,

for instance. The estimates (21)—(22) lead us to conclude that both S and &
o (D) o (D

are bounded operators in the spaces W (T1) and W, (T1), respectively, and

their norms are small if we take 77 sufficiently small. Now, it is possible to

make the operator norms of S and £ satisfy

<L €l o0 o <1
(1)) c

ISI o ow
c (W, @w, (1h)
by taking 77 small enough, where

(W (0w

| - HL(Wl;Wz)
is the operator norm of a linear operator from a function space Wi into Ws in
general.
Then, by virtue of the contraction mapping principle, it is possible to con-
clude that there exist (I + S)~! and (I + &)~!. By replacing f in (12) by
(I +8)~1f, and applying (I + €)' to both sides of (13), we have

AR(I+8)"'f = f,
(I+&'RAG = .

This means that A™! = R(I + 8)~! = (I + £)"!'R exists on the time interval
(0,71). This is equivalent to the boundedness of the operator A~!, which is
obvious by virtue of the estimate
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AT oo ow
c(wy (W, (1))
<NT+S)™M o0 s ARI e oo -
c(wy @w, () c(w, @yw, (1)
If we take Ty so small, say, 79, that [|S| .o o () < 1, then [|(I +
ﬁ(Wf (Tlo);Wf (7'0))

S .o Lo <2, and
E(Wf (T());Wf (7'0))

||A_1||L N0

N0 2RI . LW
(W (o)W, (1)) c

(W (o)W, ()
Note that the right-hand side of above inequality is estimated by Lemma 1.
This completes the proof of Theorem 4.

5.3. Proof of Theorem 3

Now, we are in a position to prove Theorem 3. We first state that ul) con-
structed in Section 5.2 satisfies u¥) € WL"%(I) and

D121y < c510(||f1\lw2l_2,%2(h1) Flaolyr).  (23)

Actually, in case j = 1, we have

HU(I)HWQFS(I) < ”LaOHWQl*i”(]) + Hf1|t:0”W21*3(1)

< Vol + Il iz (24)
2 1

N

In case j > 1, we have

||u(j)HW2l—1—2j(]) < ||.f1|t:0||wgl—1—27'([)
j—1
i—1-k), (k
+kZ j=1Ck[| LVl )ng—l—%u)
=0

j—1
. (k) .
< ”.fl”wgl,gj,lf%(l ) + ¢511 I;)HU HW21—1—2(]—1)(I)

Ty

< .
= ||.f1||W21_2j,l—22—7(I

T

7—1
: + c511 kZOHu(k) HW21—172I€(I). (25)
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Thereby, the estimate of |Ju7) szquj( 1) reduces to the estimates of
2

{1 - gy Hb

But u(®) = @y and together with (24), (25), we arrive at (23).
In virtue of the well-known method, it is possible to construct a function

v that satisfies (10) and the following inequality (see, for instance, Theorem
IV.4.3 in [9], p.298):

[(1/2]

vl 1 < cs12 Z (RS2 -
Wy % (R, gt W, Y (R)

[(1/2] '
< ¢513 Z HU(J)HWQZ—%(I)
=0
< C514(Hfl”W21_2’l_5_2 . + HﬂoHWQM(I)). (26)

Ty

Here, @) are the extension of () onto R satisfying

[ < c515|ul

P2z P21y

Now, for 7y derived in Theorem 4, we have the estimate of w, which is the
solution to (8), as follows:

12l ) < Wl gy + 100
< Wolhwry + 1910 a2,
ML L2 IS P
< [lwollyy-2 () + HFlHW;—?’l—E—Q([TO) - HFQHWQ%_%(OWOY

Since u € W (70), we have

()= 2

= @(t:m eWlH(I) (j=1,2,....[1/2)).

. Ly .
Then, we can construct a function v’ € W, 2 (Ry,) in such a way that

v’
ot

—¢W(z) on I (j=0,1,2,...,[1/2)),

_70
t= 2
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and
(/2] "
’U, i S cC J o
| HW;,Q(IT) 516;\@ =20 1)

hold. This is achieved by the same way as we constructed v earlier. Then, the
function @’ = u — v’ satisfies

6;”— (x,%)ﬂ":fl—L<x,%)ﬁ’E 7 in I,
B(x,%)ﬁ”—Fg—B(x, x)ﬁ’EFQ/’ on OI, (27)
N”|t_70 =0 on [

Again, in virtue of Theorem 4, we can assert that (27) has a solution @” on
(T2, 370 which satisfies

2772
~I " /!
u < - + || .
1 sy S i+ U6
Thus, problem (8) has a solution @ on (0, 22¢), which satisfies
ﬂ < " _ _|_ F//
L e L By
2

+ [t 1

By iterating this procedure repeatedly, we can extend the upper time of
existence up to the desired 1" > 0. This completes the proof of Theorem 3.

5.4. Proof of Theorem 2
Now we are in a position to prove Theorem 2. First, we prepare some lemmas.
5.5. Nonlinear Problem
Next, we consider the nonlinear problem. Before proceeding to the detailed
arguments, we prepare some lemmas. The following lemma is well known (see,

for instance, [17].)

Lemma 2. Let r € (1/2,1). Then, the following issues hold:
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(i) For f.g € Wy™"(I),
HngW21+r(I) < 0517”f”W21+T(1)”9HW21+T(1)-
(ii) For f € W, ™" (I) and g € W3 (I) in general,
1 f9llwy ) < C518||f||W21+T(1)||9HW2T(1)~
Next, we state the following lemma to evaluate nonlinear terms.

Lemma 3. Assume that | > 5/2, and 5a07 Cro € WE(I). Let u =
.~ T
(Cb,Ca,Cr> be a solution to (5). Then, for arbitrary T' > 0, the following

estimates hold with a certain € > 0.

r (T 112
9 | An) actgn) ~(n) |12
- C < CET C 1 ’
|0 Or | Wi gy <6+ >H ’ HW5’5<IT>+C512
r (T 112
E ~(n) 8(}7@") ~(n) |12
—~ _cb o WQ‘Q’ZTQ(MS <6+CET>HCb Hwﬁ(mﬂm.

Here, C. > 0 is a constant that depends on € decreasingly.

Proof. By (5)2, we have

acs™ ., 9Cu, t o, oc™
a_ _ . —ka al —kq(t—s) b
e e —I—al(x)/o e pe (x,s) ds

Therefore, we have

acm™
ox

0

~(n)
ox Cy

_0G" [ 4t 9Cu
- Oz ox
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- 92C, ¢ ac™
+Cb{e_k“t—ax20+ '1'(56)/0 o kalt—s) 82: (x,s) ds

825(”)
+ ay(z) / e Rl ——b (5 5) ds}. (28)
0 aIE

We shall show the estimates of some terms in (28). By the assumption and
Lemma 2, it is easy to see

2 2

92C.0 2

¢ 0x2

ox2 0 (*)

[e o
w53 (1)

< ¢519

H 8261(10 ~(n)
Wy ()

Wity

Therefore, by using the interpolation inequality of the Sobolev—Slobodetskii
spaces, we have

- 2
T || 52 ~
/ aacgo C™(t) at
o Wi
a26&0 ’ ~(n) 2
< G520 Ox? ch Lo (0,T1; WD)
Wi=2(1) B
~ (12
< 2|~ () _
<+ nyq Wit (1)
Next, we show the estimate of
N t aé(")
C,Sn)a/l(x)/ e*k“(t*s)a—b(x,s) ds L
0 v Wy T (1)
Thanks to Lemma 2 again, we have
N t 85(")
Ci ) [ eI s) ds
0 ! Wi
~(n b 86(”)
< |G )(t)leflf‘S(I) / e hell s)a—b("s) ds )
: 0 ! Wi ()
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with § > 0 sufficiently small. Then,

1o [t
Cy" () ||5i-1-5 / e el 2 (. 5) ds dt
0 b Wy (1) 0 Ox w2
< sup H(?’é”)<t)|!3w—1—m>
te(0,T1) 2
T t aé(n) 2
X / / eI 5) ds d. (29)
o 17 ’ W)
By the Cauchy-Schwarz inequality, we have
t ~(n) 2 ~(n) 2
/ eka(ts)%(.’s) ds < 2}{ 821) .
0 x WQl*Q(I) a €r WQZ_Q’O(It)

Thus, with the aid of the Sobolev embedding theorem and the interpolation
inequality, the right-hand side of (27) is estimated by

ac™
. d
Ox (59) o s
Wy (D)
4
1L .
WQ,Q (ITI)

N(n) 2 1 n
165" Ollwg-r-ser % ﬁ/o

< Ti(e+C.T)?||C)|

Other terms in the right-hand side of (28) are estimated similarly. These
yield the desired first inequality of Lemma 3. The second one is estimated in a
similar manner. O

Now, we prove Theorem 2. We define a successive sequence {ﬁ(") :i% with

N o~y o~ T
a = (C’én),Cén),Cin)) . For n = 0, we define ™ = @g. For n > 1, we



452 H. Honda

define it inductively:

(1) 2G(+1) ) _ _
8Cb . DbE? Cb g CISTH-I) VaaCa V 60
ot Ox? Ox 9z
("Jrl) n+1
3 ox
0 [ aw(,, oC (j("
: _%{Cb (Va el ral EEEE
S(n+1) i )
8Cgt — al(x)cb(”“)(x,t) - kanHrl)(x,t),
S(n+1) - )
802% :ag(x)cb(nﬂ)(g;,t) — kO (,8) in I, (30)
e NN e) 6@
Dy =G Ve — Vi
~(n+1) (n+1)
—|—6b Vaac 80 >
ox
_ & V80<">_V o o
o0 “ Oz r 8::: =2 ;
a"™(z,0) = Up(z) on I.

We also introduce notions Ey = HﬂOHWl*( 1 and
2

Eqy(t) = Hﬁ(”)me(t) (n > 1). Then, by virtue of Theorem 4, we have the
estimate

Eny1)(t) < cso <HJ1”)H otz )

L_3
W, 7% (Iry) wy 4

(0.71) + HaOHWQl—1(1)>'

By applying Lemma 3 to the estimates of nonlinear terms, we have

E(ni1)(t) < 522 (2 4+ C-T2) ¢51 (Ey () + 523

Here, ¢51 () is a homogeneous polynomial of at most two degree of its argument.
Take a constant M5 such that M5, > Ey holds. Then, assume that

Em) (t) < Ms;.
holds for a certain n. Take ¢ first so that

ecs2¢51 (Ms1) + cs23 < My
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holds, and then 75; small enough so that
c522C:T51051 (Ms1) < Ms1 — ecs2051 (Ms1) — 503
holds. Then, we obtain
Eni1)(T51) < M
from the assumption £, (751) < Ms;. Thus, by induction, the sequence {a},
is well-defined in W (T51).

Next, we have to verify it certainly converges in qul)(T 52) with a certain
Tso € (0,Ts1]. In order to show that, we define (™ = (é’b(n),é’én),é’r(n))T =
™ — a1 for n > 1, and subtract (30) with n replaced with n — 1 from
itself. Then, we consider the following problem:

(o0 DbaQéb(nH) L O gy, 8Ca 8@)
ot Ox? ox | ° “ Ox " Ox
. (% {@ (Va 86’557;“) B Wac“ér;ﬂ)) } R
wét) = ar(@) " (1) — kO a1,
“é’l“) = ax(@) "V (@) = ke O D (@ t) i L, .
—Cy (va agj(:) - Wagi">> =JM - gD on o,

{ @™ (2,0)=0 on I.
Introduce a notion E(n) (t) = Hﬁ(")HWy)(t). Then, by virtue of Theorem 3,

we have the estimate

E(n+1)(t) < es24(e + Cet) sa (En—1) (), By (t))E(n) (t).
Take e sufficiently small first so that
c524€P52(Ms1, Ms1) < 1
holds, and then 752 so that
c524CTra¢52(Ms1, Ms1) < 1 — cs248h52( M1, M351)
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holds with this . For these € and Txo, we have
B (Ts2) < dE(Tsa), d = csoa(e + CTs2) 52 (Msz, Msz) € (0,1).

Therefore , we can conclude that {@(™},, forms a Cauchy sequence in qul)(Tg,Q).
Thus, the limitation
u= lim u,
n——+0o
exists in the same function space, which is our desired solution. This T5s is the
very T, we have seeked for. Uniqueness is easily seen by the similar argument,
and we omit it here. These complete the proof of Theorem 2.

6. Conclusion

In this paper, we provided the local-in-time solvability of the one-dimensional
non-stationary problem of the target detection model in the molecular com-
munication network, in the Sobolev—Slobodetskii space. We shall extend our
study to the two-dimensional case, and also consider the stability arguments in
the near future.

References

[1] A. Einolghozati, M. Sardari, A. Beirami and F. Fekri, Capacity of discrete
molecular diffusion channels, In: Proc. IEEE International Symposium on
Information Theory (2011).

[2] A. Einolghozati, M. Sardari and F. Fekri, Capacity of diffusion-based
molecular communication with ligand receptors, In: Proc. IEEE Infor-
mation Theory Workshop (2011).

. Hillen an . P. Potapov, e one-dimensional chemotaxis model :

(3] T. Hill d A. P. Potap Th di ional ch i del
global existence and asymptotic profile, Math. Methods Appl. Sci., 27
(2004), 1783-1801.

[4] D. Horstmann, From 1970 until present: the Keller-Segel model in chemo-
taxis and its consequences, 1., Jahresber. Dtsch. Math.- Verein., 105 (2003),
103-165.

[5] S. Iwasaki, Convergence of solutions to simplified self-organizing target-
detection model, Sci. Math. Jpnonicae. e-2016 (2016).



LOCAL-IN-TIME SOLVABILITY OF TARGET DETECTION... 455

[6]

[17]

[18]

S. Iwasaki and T. Bak, A mathematical model of non-diffusion-based mo-
bile molecular communication networks, IEEE Comm. Lettr., 65 (2017),
203-230.

K. Kang and T. Kolokolnikov, The stability and dynamics of a spike in
the 1D Keller-Segel model, IMA J. Appl. Math., 72 (2007), 140-162.

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30
(1971), 225-234.

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural’ceva, Lin-
ear and Quasi-linear Equations of Parabolic Type, Translations of Mathe-
matical Monographs 23, American Mathematical Society (1968).

T. Nakano, et al., Molecular Communication, Cambridge University Press,
Cambridge (2013).

T. Nakano, et al., Performance evaluation of leader-follower-based mobile
molecular communication networks for target detection applications, IEFE
Trans. Comm., 65 (2017), 663-676.

Y. Okaie, et al. Modeling and performance evaluation of mobile bio-
nanocensor networks for target tracking, In: Proc. IEEE ICC, (2014),
3969-3974.

Y. Okaie, et al. Cooperative target tracking by a mobile bionanosensor
network, IEEE Trans. Nanobioscience, 13 (2014), 267-277.

K. Osaki and A. Yagi, A Finite dimensional attractor for one-dimensional
Keller—Segel equations, Funkcialaj Ekvacioj, 44 (2001), 441-469.

R. Schaaf, Stationary solutions of chemotaxis systems, Trans. Amer. Math.
Soc., 292 (1985), 531-556.

A. Marciniak-Czochra, G. Karch and K. Suzuki, Instability of turing pat-
terns in reaction-diffusion-ODE systems, J. Math.Biol., 74 (2017), 583~
618.

N. Tanaka and A. Tani, Surface waves for a compressible viscous fluid,
J. Math. Fluid Mech., 5 (2003), 303-363.

J. Wloka, Partielle Differentialgleichungen, B. G. Teubner (1982).



456



