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Abstract: Let A be the class of functions f that are analytic in the unit disk
and normalized by f(0) = f’(0) —1 = 0. The classes U(u) and U(X, ) (> 0
and 0 < XA < 1) consist of functions f from A that satisfy

ReU(f,p;2) >0 (2 €D),

and respectively
U(f,pu;2) =1 <X (2 €D),
where
5 1+p /( )
U(fs 5 2) = [—} f(2).
f(2)
In this paper, using methods from the theory of first order differential sub-
ordinations, sufficient conditions (some of them sharp) are obtained in terms

of the analytical representations of starlikeness and convexity that embed a
function f from A in the class U(\, p) or U(p).
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1. Introduction

Let A denote the class of functions f that are analytic in the unit disk D =
{z : |z| < 1} and normalized by f(0) = 0 and f’(0) = 1, i.e., such that
f(z)=z+a®+---.

A function f € A is said to be starlike, if and only if

Re [ZJ{ES)] >0, zeD.

We denote by S the class of all such functions. Also, we denote by I the class
of convex functions, i.e., the class of functions f(z) € A for which

2f"(2)
f'(2)

Both these classes are subclasses of the class of univalent functions in I and
even more, L C S*. For details, see [2]. We will just recall their geometrical
characterizations. A function f is convex if, and only if, it maps the unit disk
onto a convex region, i.e.,

Re[l—i— }>0, z € D.

w1, Wy € f(]D) = twy + (1 — t)w2 S f(]D) (0 <t< 1).

Fixing we = 0 gives the geometrical characterizations of starlike functions, that
is: f is starlike if, and only if, tw € f(D) for all w € f(D) and all ¢ € [0, 1], i.e.,
for all z € D, f(z) is visible from the origin.

Further, for f € A and p being a real number, let us define the operator

. 1+p ,
%] - f(2)

which is closely related to the expression involved in the analytical definition
of starlikeness. Using this operator, the following class is defined

U(f,u;Z)Z[

z

() = {f € i

#0and ReU(f,u;2) >0, z € ]D)},
and further 2/ = U(1).

For u = 0 we obviously have a subclass of the class of starlike functions,
and for p < 0 we receive a subclass of the class of Bazilevi¢ functions, which
is also widely studied. On the other hand, the case when p > 0 still attracts
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attention and offers interesting open problems. For example, the subclass of

U (), defined by

)

where 0 < A < 1, is widely studied in the past decades, especially the cases
UN) =UNT) andU =U(L1) =U(1,1) (see [1], [3], [7T]-[15]).

It is known [1],[15] that functions in U(\) are univalent if 0 < A < 1, but
not necessarily univalent if A > 1. Further, Fournier and Ponnusamy [3] proved
that assuming Re p < 1 the following equivalency holds:

U()\,,u):{fE.A: # 0 and |U(f,,u;z)—1|<)\,z€]D},

11— p
(1—p)?+p?

i.e., in general case, U(\, p) is not a subset of S*. In particular,

UNp) TS & 0<A<

Ul,p)cS* < pu=0,

i.e., U ¢ 8*, which can be also verified by the function

f(2)

z

=———clU\S".
1+1z4 323 \

As already stated, the classes U defined above are relatively new and at-
tract interest among authors working in the area. One direction of their study
is finding sufficient conditions for a function to be in U(\, ) and/or U(yu).
In this paper we obtain sharp sufficient conditions in terms of the analytical
representations of starlikeness and convexity, that is in terms of

/" /
G g HC)
f(z) f(2)
For that purpose we will make use of results from the theory of first order

differential subordination. Here are some basic definitions and results from the
theory.

1+

Let f(z) and g(z) be analytic in the unit disk. We say that f(z) is subor-
dinate to g(z), and we write f(z) < g(2), if g(2) is univalent in D, f(0) = ¢(0)
and f(D) C g(D). Further, we use the method of differential subordination
introduced by Miler and Mocanu [4, 5]. In fact, if ¢ : C> — C (C is the com-
plex plane) is analytic in domain D C C, if h(z) is univalent in I, and p(z)
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is analytic in D with (p(z), 2p'(2)) € D, when z € D, then we say that p(z)
satisfies a first-order differential subordination if

¢(p(2), 2p'(2)) < h(2). (1)
The univalent function ¢(z) is called a dominant of the differential subordination
(1) if p(z) < q(z) for all p(z) satisfying (1). If ¢(z) is a dominant of (1) and
q(#) < q(z) for all dominants of (1), then we say that ¢(z) is the best dominant
of the differential subordination (1).

A remarkable result from the theory of first order differential subordination
is the following one due to Miller and Mocanu [4, 6].

Lemma 1. Let g be univalent in the unit disk D, and let 6(w) and ¢(w)
be analytic in a domain D containing q(DD), with ¢p(w) # 0 when w € ¢(D). Set

Q(2) = z¢'(2)0(q(2)), h(z) = 0(q(2)) + Q(2), and suppose that:
(1) Q is starlike in the unit disk D,

3 Mz _p [0a(z) | 2Q(2) B
6 il PP T s
If p is analytic in D, with p(0) = ¢(0), p(D) C D and
0(p(2)) + 20" (2)p(p(2)) < 0(q(2)) + 2¢'(2)p(q(2)) = h(=), (2)

then p(z) < q(z), and q is the best dominant of (2).

2. Main results and consequences

First we prove a useful lemma that describes the behaviour of the operator U
and will be applied for obtaining results over the class U.

Lemma 2. Let f € A with f'(z) # 0 for all z € D and q be univalent
unction that does not vanish on the unit disk with ¢(0) = 1 and

«'(2)  2d(2)]

Re [1 + 70 ) | >0 (z e D). (3)
If for some real p,
2f"(z) 2f'(2)] 2q(2) _
1+ 53 - e 35 < 5 =hen) W
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then
U (f,p12) < q(2), (5)

and q is the best dominant of (4).
Proof. Let p(z) = U (f,p;2), (w) = 0 and ¢(w) = 1/w. Then 6(w) and

¢(w) are analytic with domain D = C\ {0} which contains ¢(ID) and ¢(w) # 0
when w € ¢(D). On the other hand,

q(2)
and
Q) _ ) L ) )
Q)  Qz) 7(z)  q(z)’
Q)] '(2)  2d(2) .
Re [T ) =R [ i g 0 eem

So, conditions (i) and (ii) from Lemma 1 are satisfied.

Further, p is analytic in D and p(0) = ¢(0) = 1. Also, p(z) # 0 for all
z €D, ie p(D)C D, since f'(z) # 0 for all z € D (condition of the theorem);
z2/f(z) =1# 0 for z =0 (because f € A) and f(z) has no poles on D. Hence
from Lemma 1 and the fact that

2f"(2)
f'(2)

2f'(2)

1+ —(1+u)[f(z)}+u

= D) 2 ) 4 ()9 (olz
= =y = ) + 2 (0 a2)

we obtain p(z) < ¢(z), i.e. relation (5), and we also receive that ¢(z) is the best
dominant of (4). O

Using Lemma 2 and the definition of subordination we receive the main
result of the paper.

Theorem 1. Let f € A with f'(z) # 0 and z/f(z) # 0 for all z € D.
Also, let pn > 0.
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(i) If0 <a<1/2 and

2f"(2) 2f'(2)
f'(2) f(z)
then f € U(\(a), n), where A(a) = a/(1 — a). This result is sharp, in the

sense that for fixed > 0 and 0 < a < 1/2, X(a) is the smallest number
such that the implication holds.

1+

—(1+u)[ }+u‘<a (z € D), (6)

(ii) If

. //(z)
f'(z)

then [ € Zj(u)

2f'(2)
f(2)

1+

—<1+u>[ }we@\{m:\xrzl} (zeD)., ()

Proof. (i) In the beginning let us note that A(a) increases from 0 to 1, as a
goes from 0 to 1/2. Next, for ¢(z) = 1+ A(a)z,
L) )1
d(z)  a(z)  1+Xa)z
and the condition (3) holds. Next, the function h(z) = z¢'(2)/q(z) = X a)z/(1+
A(a)z) defined by the expression (4) is univalent in the unit disk such that

min{|h(z)| : |z| = 1} = % =a

So, the disk {w : |w| < a} is contained in h(ID) which, having in mind the def-
inition of subordination, means that inequality (6) implies subordination (4).
Further, from Lemma 2 follows subordination (5), which is equivalent to

U(f,12) = 1] < Aa) (z€D).

Even more, Lemma 2 says that ¢(z) = 1+ A(a)z is the best dominant of (4).

In order to prove the sharpness of the result let us assume the opposite, i.e.,
there exists Ay, 0 < Ay < A(a), such that inequality (6) implies

U (f,us2) =1 <A (z€D),

ie.
U(fim2) <1+ Az = qu(2).
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On the other hand, inequality (6) implies subordination (4) with best dominant
q(z), meaning that g(z) < g«(z). This is a contradiction to the assumption
A« < A(a) which proves the sharpness of the result.
(ii) Similarly as in (i) for ¢(z) = (14 2)/(1 — 2), we receive
2q"(z)  z2¢/(z) 1+ 22

S oo R o Rl

i.e., (3) holds and further, h(z) = 2¢'(2)/q(z) = 22/(1 — 2?) is univalent in the
unit disk and maps it onto C\ {iz : [z[ > 1}. So, (7) is equivalent to (4),
implying (5), i.e., f € U(p). O

Specifying values for p and/or a gives the following corollary.

Corollary 1. Let f € A with f'(z) #0 and z/f(z) # 0 for all z € D.

(i) If for some 0 < a < 1/2,

1420 o |0 <o e

then f € U(N(a)), where A(a) = a/(1—a) (obtained for ;s =1 in Theorem
1(i)). Especially, fixing a = 1/2 brings that

R[] <} een

implies f € U.

(it) If for some real and positive p,

I R

then f € U(u) (obtained from Theorem 1(ii)).

(iii) If for some real and positive y,

2f"(2)
f'(2)

then f € U(u) (obtained from (ii)).

2f'(2)
f(2)

‘1+ —(1+u)[ ]+u'<1 (z e D),
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All results are sharp.

Now we will apply the results obtained in this paper on specific functions
f from A, and obtain some interesting conclusions.

Example 1.

(i) For the function f(z) = ze®*, 0 < o < 1/2, it is easy to check that f € A,
and that f'(z) # 0 and z/f(z) # 0 for all z € D. Further,

£ o4 -

0<a<1/2and

042

=a,

i

1l -«

a Oé2

)\(a)zl—azl—a—oﬁ'

So, Corollary 1(i) brings ze®* € U(A\(«)) and ze*/? € U.

(it) For the function

z
I&) =T
we have f”( ) f/( ) 0.2
V4 z V4 z z
") —2{f<z)}+1—22_4a

which, after using Corollary 1(iii) (with ju = 1) implies that f € U.
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