SOLVING THE NONLINEAR PENDULUM EQUATION
WITH NONHOMOGENEOUS INITIAL CONDITIONS

Abstract

In this work we solve the simple pendulum nonlinear second order differential equation with nonhomogeneous initial conditions, obtaining a closed-form solution in terms of the Jacobi elliptic functions, and of the incomplete elliptic integral of the first kind. Such a modeling problem can be used to introduce concepts like elliptic integrals and functions to advanced undergraduate students.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 30
Issue: 3
Year: 2017

DOI: 10.12732/ijam.v30i3.5

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] A. Belendez, A. Hernandez, A. Marquez, T. Belendez, C. Neipp, Analytical approximations for the period of a nonlinear pendulum, Eur. J. Phys., 27 (2006), 539-551.
  2. [2] A. Belendez, A. Hernandez, T. Belendez, C. Neipp, A. Marquez, Application of the homotopy perturbation method to the nonlinear pendulum, Eur. J. Phys., 28 (2007), 93-103.
  3. [3] A. Belendez, C. Pascual, D.I. Mendez, T. Belendez, C. Neipp, Exact solution for the nonlinear pendulum, Rev. Bras. Ens. Fis., 29 (2007), 645-648.
  4. [4] P.F. Byrd, M.D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer-Verlag, New York (1971).
  5. [5] G.R. Fowles, G.L. Cassiday, Analytical Mechanics, Saunders College Publishing, USA (1999).
  6. [6] D. Halliday, R. Resnick, J. Walker, Fundamentals of Physics, Wiley, USA (2007).
  7. [7] R.B. Kidd, S.L. Fogg, A simple formula for the large-angle pendulum period, Phys. Teach., 40 (2002), 81-83.
  8. [8] L.E. Millet, The large-angle pendulum period, Phys. Teach., 41, (2003), 162-163.
  9. [9] L.M. Milne-Thomson, Elliptic integrals, In: Handbook of Mathematical Functions (M. Abramowitz and I. A. Stegun, Editors), Dover Publications, New York (1972).
  10. [10] S.T. Thornton, J.B. Marion, Classical Dynamics of Particle Systems, Fifth Edition, Brooks/Cole - Thomson Learning, USA (2003).
  11. [11] A. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Dover Publications, New York (1944).