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Abstract: The aim of this paper is to study the characterization of delta
operator for some Sheffer polynomials. We investigate, within such context,
the characterization of the delta operator for the Euler, the Bernoulli of second
kind and the Mott polynomials. We can derive many interesting properties of
the above polynomials.
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1. Introduction

Rota’s operator approach to the finite operator calculus is a systematic study
of delta operators on the algebra of polynomials. Many interesting identities for
Sheffer polynomials are derived in [8] and [2]. Rota [11] serves as an introduction
and a guide to the combinatorics theory. It contains a detailed study of delta
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operator, basic polynomial sequence and Sheffer polynomials. Some properties
of Bernoulli and Euler are discussed and some interesting identities are derived
in a number of papers [3], [14], [12] and [16]. Several identities related to
Bernoulli polynomials of second kind are obtained in [13], [5] and [9]. Rainville
[10] and Boas and Buck [1] are fully utilized to discuss the classical polynomials
set. The definition and the properties of Mott polynomials are discussed in [15].

The aim of the present paper is to propose some results tied to the Sheffer
polynomials corresponding to the delta operator. The rest of the paper is orga-
nized in three sections. In the second section, we give some known definitions
and theorems from G.C. Rota [11]. The third section deals with discussion of
sequential representation of the delta operator [6]. This sequence is unique for
any delta operator and this representation plays a vital role in deriving many
propositions for the Sheffer polynomials. In the fourth section, we consider the
Euler, the Bernoulli of second kind and the Mott polynomials and obtain some
interesting propositions for these polynomials. Finally a table which include the
characterization of delta operator for these Sheffer polynomials is incorporated.

2. Preliminaries

The Euler and the Bernoulli polynomials possess many interesting results and
arising in many areas of Mathematics and Physics. The objective of Rota
[11] was a unified theory of special polynomials. In this section, we recall
terminology, notation, some basic definitions and results of the finite operator
calculus, as it has been introduced by Rota [11].

Let p(x) be a polynomial in one variable defined over a real number field F
of characteristic zero. The set of such polynomials is denoted by P . A sequence
of polynomials is {pn(x)/n ∈ Z

+ ∪ {0}}, where pn(x) is exactly of degree n.

Definition 1. i. An operator Ea is said to be a shift operator if Eap(x) =
p(x+ a), for all polynomials p(x) in one variable defined over the field F and
a ∈ F .

ii. A linear operator T which commutes with all shift operators is called a
shift invariant.

In symbols, TEa = EaT, ∀a ∈ F .

iii. A delta operator usually denoted by the letter Q, is a shift-invariant
operator for which Qx is a non zero constant.

Thus every delta operator Q is a shift invariant. But a shift invariant
operator need not be a delta operator.
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The forward difference operator

(∆f)(x) = f(x+ 1)− f(x)

is a delta operator.

Definition 2. Let Q be a delta operator, A polynomial sequence pn(x) is
called the sequence of basic polynomials for Q if:

i) p0(x) = 1;

ii) pn(0) = 0, whenever n > 0;

iii) Qpn(x) = npn−1(x).

The basic polynomials are a large class of polynomial sequences that include
the monomials {xn;n = 0, 1, 2, · · · }, the sequences of Lower factorials [x]n,
Upper factorials [x]n, the Abel polynomials and many others.

The proofs of the following results are skipped. But they are easily read
from the reference G.C. Rota [11].

The delta operators possess many of the properties of the usual derivative
D. The following theorems are good examples.

Theorem 1. (a) Every delta operator has a unique sequence of basic
polynomials.

(b) If Q is a delta operator, then Qa = 0 for every constant a.

(c) If p(x) is a polynomial of degree n, then Qp(x) is a polynomial of degree
n− 1.

Definition 3. A polynomial sequence sn(x) is called a Sheffer set or a set
of Sheffer polynomials for the delta operator Q, if:

1. s0(x) = c 6= 0,

2. Qsn(x) = nsn−1(x).

Thus from Definitions 2 and 3, every sequence of basic polynomials is a
Sheffer polynomial. But the Sheffer polynomials need not be a sequence of
basic polynomials.

Using the above definition, Rota [11] gives a theorem which gives a necessary
and sufficient condition for Sheffer polynomials relative to Q.

Theorem 2. Let Q be a delta operator with basic polynomial set qn(x).
Then sn(x) is a Sheffer set relative to Q if and only if there exists an invertible
shift invariant operator S such that sn(x) = S−1qn(x).
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3. Sequential Representation of Delta Operator Q

Using the expressions for Q(x2), Q(x3), Q(x4), · · · , we attempt to formulate the
delta operator in terms of a sequence of real numbers. By Theorem 1 and the
definition of the basic polynomials, we obtain the following theorem.

Theorem 3. For the monomials {xn : n ∈ Z
+ ∪ {0}}, and for each αr an

arbitrary real number,

Q(xn) =
n
∑

r=1

(

n

r

)

αr xn−r. (1)

Proof. Take Q(x) = α1 6= 0 and construct Q(x2) = c0 x+c1. Since Q is shift
invariant, we have EaQ(x2) = QEa(x2). Solving, we get c0 = 2α1 and c1 is a
new independent constant which may be taken as α2. Hence Q(x2) = 2α1x+α2.
Thus the theorem is true for n = 1 and 2.

Let us assume that the result is true for all n = k.
Therefore,

Q(xk) =
k

∑

r=1

(

k

r

)

αr xk−r

=

(

k

1

)

α1 xk−1 +

(

k

2

)

α2 xk−2 + · · · +

(

k

r

)

αr xk−r + · · ·+ αk. (2)

Since {xn} is a basic polynomial sequence, it satisfies Qpn(x) = npn−1(x) and
hence, we have

Q(xk) = k xk−1. (3)

From (3), we see that the delta operator Q is a usual derivative D.
From (2) and (3), we get

(

k

1

)

α1 xk−1 +

(

k

2

)

α2 xk−2 + · · ·+

(

k

r

)

αr xk−r + · · · + αk = k xk−1. (4)

By comparing the corresponding terms, we have α1 = 1 and αj = 0, j =
2, 3, · · · , k.

Therefore, the result is true for n = k, and this means that

α1 = 1 and αj = 0 (j = 2, 3, · · · k). (5)

Now we have to show that this result is true for n = k + 1:

Q(xk+1) = Q(xk x) = Q(xk) x+Q(x) xk = (k + 1) xk.
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Thus we have
Q(xk+1) = (k + 1) xk. (6)

On other hand, using the property that Qpn(x) = n pn−1(x), we have

Q(xk+1) = (k + 1) pk(x) = (k + 1) xk. (7)

From equations (6) and (7), we conclude that the result is true for all n = k+1.
Thus we proved Theorem 3. �

Here, Q(xn) has n independent parameters, αi (i = 1, 2, 3 . . . n). These
parameters are unique. We conclude that any delta operator may be fixed
uniquely by equation (1).

To study the delta operator, we need analyze only this sequential represen-
tation in equation (1).

n Q(xn)

1 1α1

2 2 α1 x+ 1α2

3 3 α1 x2 + 3 α2 x+ 1α3

4 4 α1 x3 + 6 α2 x2 + 4 α3 x+ 1α4

5 5 α1 x4 + 10 α2 x3 + 10 α3 x2 + 5 α4 x+ 1α5

6 6 α1 x5 + 15 α2 x4 + 20 α3 x3 + 15 α4 x2 + 6 α5 x+ 1α6

7 7 α1 x6 + 21 α2 x5 + 35 α3 x4 + 35 α4 x3 + 21 α5 x2 + 7 α6 x5 + 1α7

Table 1. First few polynomials Q(xn), for each degree n.

The coefficients of Q(xn) are arranged by a triangular array, say delta triangle

is given below

1
2 1

3 3 1
4 6 4 1

5 10 10 5 1
6 15 20 15 6 1
. . .

Similar to the Pascal triangle, it is also a triangular arrangements of rows.
The tip of the triangle is number 1 which makes up the first row. In Pascal
triangle, each row, except first, begins and ends with a ”1”. But in delta
triangle, the consecutive rows begins with numbers 1,2,3,... respectively but
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ending with 1s. From the second row, the ”Pascal Triangle sum” result holds
good.

Equation (1) in Theorem 3 is important in deriving many results for Shef-
fer polynomials. The characterization of the delta operator is determined by
the values of α′

is (i = 1, 2, 3 · · · n). In the next section, we study more about
the delta operator in particular, the characterization of a delta operator which
corresponds to a given sequence of Sheffer polynomials.

Remark 1. A new form of Newton binomial is discussed in [4]. By this
method, equation (1) can be written as:

Q(xn) =
n
∑

r=1

1

r!
αr Dr xn. (8)

Therefore,

Q ≡

n
∑

r=1

1

r!
αr Dr. (9)

Putting pn(x) = pn and Drpn(x) = p
(r)
n , we have

Q(pn) =
n
∑

r=1

1

r!
αr p(r)n . (10)

By (iii) in Definition 2, the above equation (10) becomes

Q(pn) =

n
∑

r=1

1

r!
αr p(r)n = npn−1. (11)

4. Characterization of Delta Operator for Some Sheffer Polynomials

(i) The Euler Polynomials. The Euler polynomials can be defined by means
of the generating function such that

2ext

et + 1
=

∞
∑

n=0

En(x)
tn

n!
.

The nth Euler polynomial En(x) is defined as follows:

En(x) =

n
∑

k=0

(

n

k

)

Ek

2k
(x−

1

2
)n−k.
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Here, Ek, k = 0, 1, 2 · · · are Euler numbers.
It satisfies E0(x) = 1 6= 0 and hence it is a Sheffer set.

The first few Euler polynomials are:
E1(x) = x− 1

2
E2(x) = x2 − x
E3(x) = x3 − 3

2x
2 + 1

4
E4(x) = x4 − 2x3 + x
E5(x) = x5 − 5

2x
4 + 5

3x
2 − 1

2
For n = 1,

QEn = nEn−1 becomes QE1 = 1E0.

From Table 1,
QE1 = α1 and 1E0 = 1 ⇒ α1 = 1

For n = 2,
QEn = nEn−1 becomes QE2 = 2E1.

By Table 1,

QE2 = 2α1x+ α2 − α1 and 2E1 = 2x− 1 ⇒ α1 = 1 & α2 = 0.

For n = 3,
QEn = nEn−1 becomes QE3 = 3E2.

From (1) in Theorem 3,

QE3 = (3α1)x
2 + (3α2 − 3α1)x+ α3 −

3

2
α2 and 3E2 = 3x2 − 3x.

Equating the corresponding terms, we get

α1 = 1 , α2 = 0 & α3 = 0.
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By a similar procedure, we get

α1 = 1 and αr = 0 for all r ≥ 2.

Hence the characterization of the delta operator for Euler polynomials being
α1 = 1, and αr = 0 for all r ≥ 2.

Thus we obtain the following proposition.

Proposition 1. For the Euler polynomial

En(x) =

n
∑

k=0

(

n

k

)

Ek

2k
(x−

1

2
)n−k,

the characterization of delta operator being α1 = 1, and αr = 0 for all r ≥ 2.

Remark 2. Here, Q(xn) = nxn−1.

(ii) Bernoulli Polynomials. The Bernoulli polynomials of second kind
are defined by the following generating function

∞
∑

n=0

bn(x)
tn

n!
=

t

log(1 + t)
(1 + t)x. (12)

Roman (1984) defined the Bernoulli numbers of the second kind as bn =
bn(0). The first few Bernoulli numbers bn of the second kinds are:

b0 = 1, b1 =
1

2
, b2 =

−1

12
, b3 =

1

24
, b4 =

−19

720
, b5 =

3

160
, · · · .

By (12), we easily get

bn(x) =
n
∑

k=0

(

n

k

)

bk[x]n−k,

where [x]n = x(x− 1)(x− 2) · · · (x− n+ 1), n ≥ 0.
The first few Bernoulli polynomials of the second kind are:

b0(x) = 1
b1(x) =

1
2 (2x+ 1)

b2(x) =
1
6 (6x2 − 1)

b3(x) =
1
4 (4x3 − 6x2 + 1)

b4(x) =
1
30 (30x4 − 120x3 + 120x2 − 19)
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They satisfy b0(x) = 1 6= 0, and hence we have a Sheffer set.

For n = 1,
Qbn = nbn−1 becomes Qb1 = 1b0.

By Table 1,
Qb1 = α1 and 1b0 = 1 ⇒ α1 = 1.

For n = 2,
Qbn = nbn−1 becomes Qb2 = 2b1.

From Table 1,

Qb2 = 2α1x+ α2 and 2b1 = 2x+ 1 ⇒ α1 = 1 & α2 = 1.

For n = 3,
Qbn = nbn−1 becomes Qb3 = 3b2.

By Table 1,

Qb3 = 3α1x
2 + (3α2 − 3α1)x+ α3 −

3

2
α2 and 3b2 = 3x2 −

1

2
.

Equating the corresponding terms, we get

α1 = 1 , α2 = 1 & α3 = 1.

For n = 4,
Qbn = nbn−1 becomes Qb4 = 4b3(x).

From Table 1,
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Qb4 = 4α1x
3 + (6α2 − 12α1)x

2 + (4α3 − 12α2 + 8α1)x+ (α4 − 4α3 + 4α2)

and
4b3 = 4x3 − 6x2 + 1.

Equating the corresponding terms, we get

α1 = 1 , α2 = 1 , α3 = 1, & α4 = 1.

Therefore, the characterization of delta operator for the second kind of Bernoulli
polynomials being αr = 1 for all r ≥ 1.

Thus we obtain the following proposition.

Proposition 2. For the second kind of Bernolli polynomials

bn(x) =

n
∑

k=0

(

n

k

)

bk(x)n−k,

the characterization of delta operator being αr = 1 for all r ≥ 1.

(iii) Mott Polynomials. The Mott polynomials sn(x) are defined by

sn(x) = (−1)n
1

2nxn
(n− 1)!

h(n/2)
∑

k=0

x−2k

k! (n− k)! (n− 2k − k)!
,

where

h(n/2) =

{

n/2 if n is even

(n/2)− (1/2) if n is odd
.

Since s0(x) = 1 6= 0, we have a Sheffer set.

The first few Mott polynomials are:

s1(x) = −
1

2
x

s2(x) =
1

4
x2

s3(x) =
−3

4
x−

1

8
x3

s4(x) =
3

2
x2 +

1

16
x4
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s5(x) =
−15

2
x−

15

8
x3 −

1

32
x5

s6(x) =
225

8
x2 +

15

8
x4 +

1

64
x6.

For n = 1, Qsn = nsn−1 becomes Qs1 = 1s0.
From Table 1,

Qs1 = −
1

2
α1 and 1s0 = 1 ⇒ α1 = −2.

For n = 2, Qsn = nsn−1 becomes Qs2 = 2s1.
By Table 1,

Qs2 = (
1

2
α1)x+

1

2
α2 and 2s1 = (−1)x ⇒ α1 = −2 & α2 = 0.

For n = 3, Qsn = nsn−1 becomes Qs3 = 3s2. From Table 1,

Qs3 = (−
3

8
α1)x

2 + (−
3

8
α2)x+ (−

3

4
α1 −

1

8
α3) and 3s2 = (

3

4
)x2.

Equating the corresponding terms, we get

α1 = −2, α2 = 0 & α3 = 12.

For n = 4, Qsn = nsn−1 becomes Qs4 = 4s3. From Table 1,

Qs4 = (
1

4
α1)x

3 + (
8

3
α2)x

2 + (3α1 +
1

4
α3)x+ (

3

2
α2 +

1

16
α4)

and

4s3 = (−3)x+ (−
1

2
)x3.

Comparing the corresponding terms, we get

α1 = −2, α2 = 0 α3 = 12 & α4 = 0.

For n = 5, Qsn = nsn−1 becomes Qs5 = 5s4. By Table 1, finding values for
Qs5 & 5s4 and equating the corresponding terms, we get

α1 = −2, α2 = 0 α3 = 12 α4 = 0 & α5 = −240.

Applying the same procedure for n = 6, n = 7 and n = 8, we get

α1 = −2 = −2(1!) α2 = 0

α3 = 12 = 2(3!) α4 = 0

α5 = −240 = −2(5!) α6 = 0

α7 = 10080 = 2(7!) α8 = 0.
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Thus we have the following proposition.

Proposition 3. For the Mott polynomials

sn(x) = (−1)n
1

2nxn
(n− 1)!

h(n/2)
∑

k=0

x−2k

k! (n− k)! (n− 2k − k)!
,

the characterization of delta operator being

αr =











0 if r is even

(−1)2(r!) if r = 1, 5, 9, · · ·

2(r!) if r = 3, 7, 11, · · ·

.

From the above discussion, we get a way opened to study the Sheffer poly-
nomials by a new approach of finding definite delta operator numerically. All
the results are shown vividly in the following table.

Polynomials Characterization of Delta Operator

Euler α1 = 1 and αr = 0, for all r ≥ 2.

Bernoulli II αr = 1 r ≥ 1.

Mote αr = 0 if r is even
αr = (−1)2(r!) if r = 1, 5, 9 · · · .
αr = 2(r!) if r = 3, 7, 11 · · ·

Table 2. Delta operators for Different Sheffer polynomials

5. Status and Further Directions

An attempt is made to introduce a new approach to the Sheffer polynomials via
sequential representation of the delta operator. The basic polynomial sequence
in q-monodiffric sense with its q-delta operator is discussed and analyzed in
Maheswaran [7]. This is the good starting point for further investigation of the
characterization of the q-delta operator for q-Sheffer polynomials.
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