International Journal of Applied Mathematics

Volume 29 No. 4 2016, 401-423

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
doi: http://dx.doi.org/10.12732/ijam.v29i4.1

WEIGHTED DOMINATION NUMBER OF CACTUS GRAPHS

Tina Novak!$, Janez Zerovnik?

L2Faculty of Mechanical Engineering
University of Ljubljana
Ljubljana, 1000, SLOVENIA

Abstract: In this paper we propose a linear algorithm for calculating the
weighted domination number of a vertex-weighted cactus. The algorithm is
based on the well known depth first search (DFS) structure. Our algorithm
needs less than 12n + 5b additions and 9n + 2b min-operations where n is the
number of vertices and b is the number of blocks in the cactus.

AMS Subject Classification: 05C69, 05C22, 05C85
Key Words: weighted domination problem, cactus graph, DFS structure

1. Introduction

The cactus graphs are interesting generalizations of trees, with numerous appli-
cations, for example in location theory [3, 17], communication networks [8, 18],
stability analysis [1], and elsewhere. Usually, linear problems on trees imply lin-
ear problems on cacti. In this paper, we study the weighted domination number
of a cactus graph with weighted vertices. It is well known that the problem of
the weighted domination number on trees is linear, [5, 12]. Actually, we also
have very general linear algorithm for computing domination-like problems on
partial k-trees [13]. The time complexity of this algorithm is O(n|L|?*1),

Received: May 5, 2016 (© 2016 Academic Publications

§Correspondence author

402 T. Novak, J. Zerovnik

where k is the treewidth and L is the set of vertex states (the different ways
that a solution to a subproblem impact to the origin vertex). In the case of
cactus graphs we have k = 2 and |L| = 3. Therefore, the time complexity of
the general algorithm [13] on cacti is O(3°n).

It is well known that cactus graphs can be recognized by running an ex-
tended version of depth first search (DFS) algorithm that results a data struc-
ture of a cactus, see for example [16]. From the data structure, the vertices
can be naturally divided into three types, i.e. each vertex either lies on a cycle
and has degree 2 or lies on a cycle and has degree > 3 or does not lie on a
cycle (see [4]). Using this structure, we design an algorithm for general cacti.
In this paper, we first illustrate the basic idea by writing a version of the al-
gorithm for trees before generalizing the approach to arbitrary cactus graphs.
Our algorithm has time complexity O(28n) which substantially improves the
constant 3° = 243. In fact, we will estimate time complexity of our algorithm
more precisely (blocks will be formally defined later).

Theorem 1. Let n be the number of vertices in a cactus and b < n be the
number of blocks. For computing the weighted domination number we need
less than 12n + 5b additions and 9n + 2b min-operations.

The rest of the paper is organized as follows. In the next section we first re-
call definitions of the domination number and the weighted domination number
of general graphs. For cacti, we introduce the classification of vertices in rela-
tion to the skeleton structure, [4]. In Section 3 we define three parameters that
are useful when considering the weighted domination problem. The simplified
version of the algorithm that is used for computing the weighted domination
number of a tree is presented in Section 4. Special cases of graphs, i.e. path-like
graphs and cycle-like graphs are considered in Section 5. We write algorithms
for calculating their weighted domination parameters and weighted domination
number. In Section 6, the algorithm for general cacti is given and its time
complexity is estimated.

WEIGHTED DOMINATION NUMBER OF CACTUS GRAPHS 403

2. Definitions and Preliminaries

2.1. A Vertex-Weighted Graph and
the Weighted Domination Number

Let G = (V, E) be a graph with a set of vertices V' = V(G) and a set of edges
E = E(G). Denote by N(v) the open neighborhood of a vertex v, i.e. the set
of vertices adjacent to the vertex v and by N|v] the closed neighborhood of a
vertex v: N[v] = {v} U N(v). Let S be any subset of the set of vertices V.
Denote by N(S) the open neighborhood of the set S, i.e. the set of vertices
adjacent to any vertex in S and similarly by N[S] the closed neighborhood of
S: N[S] = SUN(S). A subset D C V is a dominating set if N[D] = V.
A domination number (@) is the minimum cardinality among all dominating
sets of the graph G.

In this article, a weighted graph (G, w) is a graph together with a positive
real weight-function w : V' — Ry. For the vertex v; € V we shall write
w; = w(v;). The weight of a dominating set D is defined as w(D) = ZvjeD wj.
Finally, the weighted domination number (WDN) ~,,(G) of the graph G is the
minimum weight of a dominating set, more precisely

Yw(G) = min {w(D) | D is a dominating set} . (1)
2.2. Cactus Graph and its Skeleton

A graph K = (V(K), E(K)) is a cactus graph if and only if any two cycles of
K have at most one vertex in common. Equivalently, any edge of a cactus lies
on at most one cycle. Skeleton structure of a cactus is elaborated in [4], where
it is shown that the vertices of a cactus graph are of three types:

e (-vertex is a vertex on a cycle of degree 2,
e (G-vertex is a vertex not included in any cycle,

e [-vertex or a hinge is a vertex which is included in at least one cycle and
is of degree > 3.

By a subtree in a cactus we mean a tree induced by a subset of G-vertices and
H-vertices only. A graft is a maximal subtree in a cactus. A subgraph of a
cactus is called a block when it is either a cycle or a graft.

404 T. Novak, J. Zerovnik

2.3. Depth First Search (DFS) Algorithm

The DFS is a well known method for exploring graphs. It can be used for
recognizing cactus graphs providing the data structure (see [14], [16], [15], [17]).
Let us consider a cactus graph K. We can distinguish one vertex as a root of
K and denote it by r. After running the DFS algorithm, the vertices of K are
DFS ordered. The order is given by the order in which DFS visits the vertices.
(Note that the DFS order of a graph is not unique as we can use any vertex
as the starting vertex (the root) and can visit the neighbors of a vertex in any
order. However, here we can assume that the DF'S order is given and is fixed.)

We denote by DFN(v) the position of v in the DFS order and we set
DFN(r) = 0. DFN is called the depth first number. Following [16] and [15], it
is useful to store the information recorded during the DFS run in four arrays,
called the DFS (cactus) data structure:

e FATHER(v) is the unique predecessor (father) of vertex v in the rooted
tree, constructed with the DFS.

e ROOT(v) is the root vertex of the cycle containing v i.e. the first vertex
of the cycle (containing v) in the DFS order. If v does not lie on a
cycle, then ROOT(v) = v. We set ROOT(r) = r. (In any DFS order, if
DFN(w) < DFN(v) and w is the root of the cycle containing v and v is
the root of another cycle (it is a hinge), then ROOT(v) = w.)

e For vertices on a cycle (i.e. ROOT(v) # v), orientation of the cycle is
given by ORIEN(v) = z, where z is the son of ROOT(v) that is visited
on the cycle first. If ROOT(v) = v, then ORIEN(v) = v.

e IND(v) := |[{u| FATHER(u) = v}| is the number of sons of v in the DFS
tree.

Below we write the pseudocode of the DFS algorithm that provides the data
structure of cacti. The idea is taken from [14]. To mark a visited vertex in the
procedure, we introduce auxiliary array MARK (as in [14]). At the beginning
of the algorithm, we set MARK(v) = 0 for every vertex in K. During the
algorithm, whenever a vertex v is visited for the first time, the value MARK(v)
becomes 1 and DFN(v) is increased by 1.

The direct correspondence of the definitions of C', G, H-vertices in a rooted
cactus (K,r) and arrays FATHER, ROOT, ORIEN and IND is described in
the following lemma.

WEIGHTED DOMINATION NUMBER OF CACTUS GRAPHS 405

Algorithm 1 DFS algorithm

Data: Rooted cactus (K, r) with vertices V(K) and edges F(K);
initialize
1= 0;
For every vertex v in K set
FATHER(v) =v; MARK(v) =0; ROOT(v)=wv;
ORIEN(v) =v; IND(v) =0; DFN(v)=0;
and for the root r reset:
MARK(r) = 1;

V=T

Lemma 2 (C,G,H-vertices in DFS array).
1. For a vertex v # r the following holds:

(a) v is a C-vertex if and only if ROOT{) #v and IND@) =1,

(b) v is a G-vertex if and only if ROOT () =v and
ORIEN(@) =v and for every son u of v we have ROOT(u) # v,

(c) v is a H-vertex if and only if either (ROOT (v) = v and ORIEN(v) =
v and for at least one son u of v we have ROOT (u) = v) or (ROOT(v)
v and IND(v) > 1).

2. For the root r we have:

a) r 1s a C-vertex 1if and only 1 r) = 1 and for the son u of r
i C if and only if IND 1 and for th f
(DFN(u) = 1) we have ROOT(u) = v,

(b) r is a G-vertex if and only if for every son u of r we have ROOT(u) =
u,

(c) r is a H-vertex if and only if IND(r) > 1 and for at least one son u
of r we have ROOT (u) = r.

Remark 3. For any vertex v € V(K) and his father w = FATHER (v),
vertices with DFN’s

DFN(w), DFN(w) + 1,...,DFN(v) — 1

(and all corresponding edges induced by V(K')) form a rooted subcactus
with the root w, denote it (K, w). The graphs K,, and {v} are disjoint.

406 T. Novak, J. Zerovnik

Algorithm 2 DFS algorithm - Part 2
repeat

if all the edges incident to vertex v have already been labeled ” examined”
(v is completely scaned) then
v = FATHER(v)
else (an edge (v, w) is not labeled ”examined”)
The edge (v, w) label ”examined” and do the following
if MARK(w) = 0 then
1 =1+ 1;
DFN(w) = i;
MARK(w) = 1,
FATHER(w) = v;
IND(w) = IND(v) + 1;
v =w.
elseMARK(w) = 1, that means we have a cycle)
label the edge (w,v) ”examined”;
ROOT(v) = w;
u = FATHER(v);
repeat (assigning the root w of vertices of the cycle)
z = u;
ROOT(z) = w;
u = FATHER(z);
until u = w. (now z determines the orientation of the
cycle with the root w)
repeat (assigning the successor z i.e. the orientation
of vertices of the cycle)
ORIEN(v) = z;
v = FATHER(v);
until v = w.
v = w;
end if
end if

until v = r and all edges incident to r are ”examined”
Result: arrays FATHER, ROOT, ORIEN, IND, MARK, DFN.

Observation. Assume the last vertex [in the DFS order of a cactus K
lies on a subtree 7' in K. Let w = FATHER(/) and w be the root (according to
DFS order) of any subcactus K, such that {I{} NV (K,) =0. If v € V(K,),

WEIGHTED DOMINATION NUMBER OF CACTUS GRAPHS 407

then DFN(w) < DFN(v) < DFN({). Similar but perhaps a little less obvious
fact is given in the next proposition.

Proposition 4. Assume that the last vertex | in DFS order of a cactus
K lies on a cycle C. Then the following is true:

1. The neighboring vertex of | in the cycle C, which is not the father of the
vertex [, is the root of the cycle C.

2. The vertex [is not a hinge.

3. Let w,v € C, w = FATHER (v), w is not the root of the cycle C' and w is
a hinge, i.e. the root of a subcactus K, such that V(C) NV (K) = w. For
any v € V(K), we have DFN(w) < DFN(v) < DFN(v).

Proof. 1. Denote by v a neighboring vertex of [in the cycle C', which
is not the father of I. If v is not the root of C, then DFN(v) > DFN(I).
Contradiction.

2. If [is a hinge, according to DFS order, there exists at least one vertex
with DFN > DFN(l). Contradiction.

3. According to DF'S order, the inequality DFN(w) < DFN(v) holds. Con-
sider there is v € K with DFN(v) > DFN(v). Following the DFS algo-
rithm, we have then DFN(v) > DFN(!). Contradiction.

O

3. Weighted Domination Parameters (WDP)

Let G be a graph and v any vertex in V(G). Consider the following three
parameters yielding related weighted domination parameters (defined in Chang

[5]):
Definition 5.

1. 79%(G,v) = min {w(D)| D is a dominating set of G — v} =
= Yw(G —v),

2. 75(G,v)=min{w(D) ‘ D is a dominating set of G and ve D},

408 T. Novak, J. Zerovnik

3. (G, v)=min{w(D) | Dis a dominating set of Gand v¢ D}.

It is obvious that

Y (G) = min {fyi](G,v),fygj(G,v)} . (2)

Since a dominating set of (G, which does not contain the vertex v is also a
dominating set of G — v, we have the relation

Yo (G, v) < 7(Gv). 3)

Let D be a dominating set of G —v such that w(D) = ~,(G —v). Then DU{v}
is a dominating set of G and clearly,

(G v) < w(v) + 7 (G, v). (4)

Lemma 6. Let Gy and Gy be disjoined rooted graphs with roots v, and
v respectively, and let G be a disjoint union of G; and Gy joined by the edge
vive. Then the following is true:

1. ’Y’?UO(G7/U1) = ’Y’?UO(G17U1) +’Y’LU(G2)7
2. 74,(G,v1) = 75 (G1, v1) + min {~;, (G2, v2), 70 (G2, v2) },

3. (G v1) = min {79 (G1,v1) + Yw(Ga, v2),
YR(Gr,v1) + 76 (Ga,v2) }

The proof of Lemma 6 (for the domination number) appears in [5]. A
generalization to weighted domination is straightforward and therefore omitted.
A more general situation is described by the following lemma.

Lemma 7. Let G; and G be graphs with one common vertex vy and let
G1 — vy and Go — vy be disjoined. Denote by G the union of G and G5. Then
we have:

1. 4 (G, v0) = Y (Gr, v0) + 9 (G, vo),
2. L (G v) = vL(G1,v0) + v, (Ga,v) — w(vp),

3. ¥8(G,v0) = min {70, (G1,v0) + 70 (Ga,v0),
Yo (G1,v0) + 7 (G2,v0) } -

WEIGHTED DOMINATION NUMBER OF CACTUS GRAPHS 409

Proof. 1. As Gy —vp and G — v are disjoined, it follows 72°(G, vg) =
’Y’?UO(Glu /UO) + ’Y’?UO(G27 /UO)’

2. Let D be a dominating set of G with vy € D such that w(D) = v} (G, vp).
Then D; = DNV/(G1) is a dominating set of G1 and w(D1) > ~L (G1,vo).
Similarly, Dy = D N V(G2) is a dominating set of Gy and w(Dy) >
YL (Ga,v0). Hence 7L (G,v0) > L (G1,v0) + 74 (G2, v0) — w(vg). On the
other hand, for any dominating sets D; and Ds with w(D1) > ~k (G, v0)
and w(Ds) > vL(G2,v9), D = D1 U Dy dominates G. As Dy N Dy =
{vo}, we have w(D) = w(D1) +w(D2) — w(vg) and therefore v (G, vg) <
w(D) = 74 (G1,v0) + Y, (Ga, v0) — w(vp).

3. As we consider only dominating sets with vy € D, vy has to be dominated
by some other vertex. We distinguish three cases: either vy is dominated
by D1 = DN V(Gl) ,or Dy = DN V(Gg), or by both D; and Ds.
Assuming w(D) =) (G, vp), and recalling that Y0 (G;,v0) < Y0 (G;, vo
for i = 1,2, it follows:

Y (G, v0) = min {7y (G1,v0) + 75 (G2, v0),
Yo (G1,v0) + Y (G2,v0), Yoy (G1,v0) + Ve (G2, v0) }
>min {7,(G1,v0) + Yy (G2, v0), Y (G1,v0) + Yap (G2, v0) }.-

On the other hand, we can construct dominating sets of G by taking
a union of two dominating sets Dy and Dy of G7 and G9 respectively.
At least one of Dq, Dy (or both) must dominate vg. Taking either
(w(D1) = 74, (G1,v) and w(Da) = g (G2,v0)) or (w(D1) = v (G1,v0)
and w(Dz) = 79 (G2,v0)), we conclude that

min {79 (G1,v0) + 75 (G2, v0), vy (G1,v0) + 7 (G2, v0)

Y(G1,v0) + 79 (Ga,v0)} >
> min {7y, (G1,v0) + 75 (G2,v0), Yy (G1,v0) + 7 (G2, v0)} >
> P)/S)(Gav())

4. Algorithm for Trees

In this section, let G = (V,E) be a vertex-weighted tree, and let T be an
associated rooted tree with root r (r can be arbitrary but fixed vertex in V(G)).

410 T. Novak, J. Zerovnik

In [12], the authors write the algorithm for calculating the weighted domination
of a vertex-edge-weighted tree. It can of course be applied to a vertex-weighted
tree, the case of interest in this paper. Another algorithm for calculating the
weighted domination number of a tree appears in [5]. We write a new algorithm
for weighted domination number of a weighted tree based on the DFS data
structure here in order to illustrate the main idea on a well understood special
case in order to clarify the development of the general algorithm in the following
sections.

Ty

Figure 1: The rooted subtree

Denote by (7,,v) the rooted subtree with the root v as is shown in Figure
1. In our algorithm we use the DFS order of vertices (i.e. the DFS cactus
data structure provided by the DFS algorithm). We supplement the DFS data
structure by four arrays of the initial values of the parameters 720, 41 ~9 and
Yw- Initially, we set for every vertex v

'ygjo(v) =0, 'yi] = w(v), 'ygj =00 and (V) =w(v). (5)

The algorithm’s starting point is the last vertex v in the DFS order with the
corresponding parameters Y0 (v), v (v), 49 (v) and 7, (v). In the data structure
we find the father of v and call it w. If DFN(w) # DFN(v) —1 (i.e. DFN(w) <
DFN(v) —1), there exists rooted subtree (T}, w) (see Remark 3). The algorithm
calls itself recursively for the subtree T, and then accordingly updates the
parameters Yy (w) = Y (T, w), Yoo () = Y(Tow, w), vy (w) = 70, (T, w) and
Y (W) = Yw(Tyw). When w and v are the last two vertices in the DFS order, the
parameters at w are computed according to Lemma 6, and the computation
continues regarding w as the last vertex. For pseudocode of the algorithm see
Algorithm 3.

Proposition 8 (Time complexity of TREE). Algorithm TREE needs 4(n—
1) additions and 3(n — 1) min-operations.

WEIGHTED DOMINATION NUMBER OF CACTUS GRAPHS 411

Figure 2: Subtrees T, fw and T,

Algorithm 3 TREE

Data: A rooted tree (T, r) with DFS ordered vertices in the DFS table
initialize 72 (v) = 0, v} (v) = w(v), 72 (v) = 0o and 7, (v) = w(v) for every
vertex v in the DFS table
set v is the last vertex in the DFS order;
repeat
w = FATHER(v);
if DFN(w) # DEN(v) — 1 then
call algorithm TREE for the rooted tree on vertices with
DFN = DFN(w),...,DFN(v) — 1 and the root w (we obtain
new values for 2% (w), ¥4 (w), A4 (w) and 7 (w))
end if
Yo (W) = 7 (W) + 7w (v);
2 (w) = 7 (w) + min{y (0), 1% ()}
30 (w) = min{y (1) + 7 (0), 700 (w) + 7L (0)}:
w(w) = min{ryg, (w), 7 (w) };
v = w;

until v =r
Result: v (T, r (v) for *=00,1,0;

= Yo
Y (T) = Y (v)

Proof. Using Lemma 6 and the equation

Yo (Tw) = min{'yi} (T, w), 721 (T, w)}

412 T. Novak, J. Zerovnik

in a step of the algorithm for rooted subtrees (7,,w) and (T},,v) (where w =
FATHER(v)), the calculation demands 4 additions and 3 min-operations. The
algorithm sticks rooted subtrees (Ty,,w) and (T,,v) for every existing edge
(w,v). O

5. Some More Basic Algorithms

The algorithm for cactus graph should exploit the tree structure obtained from
DFS representation. It would be meaningful to preserve the form of algorithm
TREE if the current vertex of a cactus lies on a tree. Special attention should
be paid to the current vertex on a cycle. In this section we prepare subalgorithm
CYCLE-LIKE for the rooted cycle (C,), which calculates parameters 700 (C, r),
Yw(Cs7), 1y (Cs7) and 7y (O).

5.1. Path-Like Cactus
Let {v1,...,v,} be a path and (G1,v1),...,(Gn,v,) disjoined rooted graphs as

is shown in Figure 3. Denote the obtained graph by G and consider it as a
rooted graph (G, vy,).

Figure 3: Path-like cactus

Lemma 9. Let Gy,Gs,...,G, be disjoined graphs with specific vertices
v1,V9,...,0, respectively and let G be the disjoint union of G1,Ga,...,G,,
joined by the edges viva, vavs, ..., Un_1U,. For every i € {1,...,n}, denote by

WEIGHTED DOMINATION NUMBER OF CACTUS GRAPHS 413

Algorithm 4 PATH-LIKE

Data: a path-like cactus (P,r) with the DFS ordered path’s vertices and
corresponding parameters 720, v1 49 and ~,, (i.e. WDP and WDN of rooted
subgraphs (Gj,v;) as is shown in Figure 3)

set v is the last vertex in the DFS order;

repeat
w = FATHER(v);
Yo (W) = 750 (W) + Y0 (v);
Yo (W) = Yy (w) + min{y, (v), 7 (V) }5
Yy (w) = min{yy (w) + vu (), 70 (w) + 7 (V) };
Yu(w) = min{y, (w), 7 (w)};

until v =r.
Result: ~} (P,r) =~} (v) for *=00,1,0;

FYw(P) - Vw(v)'

H; the union of graphs G1,...,G;, i.e. H; = (U;‘:l G]> @] (U;;ll(vj,vj+1)>. If
1 > 1, the following is true:

Yoo (Hiyvi) = v (G, vi) + v(Hio1), (6)

Yoo (Hiy 0i) = 7oy (Giyvi) +min{yy, (Hi-1,vi-1), v (Hi1,vi-1) } (7)
Yor(Hy, vi) = min {7(Gs,v5) + Yo (Hi-1),

YOGy, vi) + Yoy (Hi—1,vi-1) }, (8)

Yo (Hi) = min {~y, (Hy, v5), ve,(Hi, v) } - 9)

Proof. Look at the graph H; as the disjoint union of subgraphs G; and H;_;
with roots v; and v;_; respectively and joined by the edge v;_iv;. These are
exactly the assumptions of Lemma 6. U

Proposition 10 (Time complexity of PATH-LIKE). Algorithm PATH-
LIKE needs 4(n — 1) additions and 3(n — 1) min-operations.

Proof. By counting all operations in (6), (7), (8) and (9), the proposition
follows. O

414 T. Novak, J. Zerovnik

5.2. D-Closed Path-Like Cactus
Let {vi,...,v,} be a path and (G1,v1),...,(Gp,v,) disjoined rooted graphs.

We require that both vy and v,, are members of a dominating set. Such a graph
G is drawn on Figure 4.

Vn

A\ /\
— .

Figure 4: D-closed path-like cactus

Vn-1
-

To calculate the weighted domination parameters and the weighted domi-
nation number with the condition that v; € D, we introduce some additional
notation (for u # vy):

Yoo (G) = 74(G,o1)
Yoror (Go1) = Yoy (G —)
Yo (Gow) = min{w(D)| {u,v1} C D}
Yo (Gou) = min{w(D)| v € D,u¢ D},

In the new algorithm for calculating the WDN of a D-closed path-like cactus
we have to provide that the first vertex (v1) is a member of a dominating set.
We apply algorithm PATH-LIKE and make changes in the first step of the loop
repeat-until. According to Figure 3 and Figure 4, this means

Yy (Ha,v2) = 400(Ga,va) + i (Hy,v1) (10)
Yoo (H2,v2) = 70 (Ga,v2) + 7y (Hy, v1) (11)
Yery (H2,02) = Y (Ga2,v2) + v (Hy, v1) - (12)

The other steps do not need corrections and the vertex v; on Figure 4 (the
last vertex in the DFS order in the algorithm below) on a path remains in a
dominating set.

WEIGHTED DOMINATION NUMBER OF CACTUS GRAPHS 415

Algorithm 5 D-CLOSED PATH-LIKE

Data: D-closed path-like cactus (P,r): with DFS ordered path’s vertices
and corresponding parameters 720, 41 42 and 7, i.e. WDP and WDN of
rooted subgraphs (G, v;)

set v is the last vertex in DFS order;

[= v;
w = FATHER(v);
Yoy (W) = 1 (W) +74,(v);
Yoo (W0) = Y (W) + 73 ()5
Yo (W) = 7 (w) + 75, (v);
() = min{o (), 13 (w)
v = w;
repeat
w = FATHER(v);
Yoy (W) = 7 (w) + Yo (v);
Yoy (W) = Y (w) +min{y, (v), 7 (v) 5
Yoo (w) = min{yg, (w) + 7 (v), Yoy (W) + 74 () };
o (w) = min{ryg, (w), 7 (w) };
v = w;
until v = r.
Result: v (P, r) =~;(v) for *=00,1,0;

Vw1 (P) = 7w (V).

Proposition 11 (Time complexity of D-CLOSED PATH-LIKE). Algorithm
D-CLOSED PATH-LIKE needs less than 4(n — 1) additions and 3(n — 1) min-
operations.

Proof. In the first step of the algorithm we have 3 additions and one min-
operation. For the loop we need 4(n—2) additions and 3(n —2) min-operations.

O

5.3. Cycle-Like Cactus
We now consider the case when the specific vertices vy, ..., v, in a graph are ver-
tices of a cycle. Let (C),,v,,) be a rooted cycle with vertices vy, ..., v, and cor-

responding weights wy, ..., w,, and let (G1,v1),...,(Gp-1,v,—1) be disjoined
rooted graphs (in our case cacti). Denote by (K, v,) the union of (Gy,v1),...
oy (Gp—1,v5-1) and vy, joined by the edges viva, vovs, ..., Uy_10, and vyv;.

416 T. Novak, J. Zerovnik

Graph (K,,v,) is depicted in Figure 5.

Figure 5: Cycle-like cactus

Let (K], v,) be the path-like cactus with specific vertices on the weighted
path {v),,v1,...,v,}, where we additionally define w(v],) = wy,. Graph (K, v,)
is obtained from (K, vy) as is shown in Figure 6.

O
\ V-1
oy
\ Vp—2
R _

- V3

o \i\ Vo
\ vy ’
\Ovn

Figure 6: Graph (K, v,) obtained from (K, v,)

Lemma 12. For a rooted cycle-like cactus (K,,v,), the weighted domi-
nation parameters and the weighted domination number are the following:

730(Knvvn) = Yw(Kn — vn),

’Yzlu(Knv'Un) = ’Yi;,ygl (K} vp) — wn,

’ng(Km vp) = min {’Yi;(Kn — Un, 'Ul)a’Yi;(Kn — Un, Un—l)}a
Yw(Kn) = min {’Yi;(Kmvn)v’Yg;(Knvvn)} .

WEIGHTED DOMINATION NUMBER OF CACTUS GRAPHS 417

Algorithm 6 CYCLE-LIKE

Data: a rooted cycle (C r): with DFS ordered vertices and corresponding
parameters 7', 41 ~9 and 7, i.e. WDP and WDN of rooted subgraphs
(Gi,vi)
set v is the last vertex in DFS order;

r is the first vertex in DFS order;

s = ORIEN(v);

[= v;

Algorithm 7 CYCLE-LIKE - Part 2

set new vertex 7’ in the DFS table with:
DFN(r’) = DFN(v) + 1
FATHER(?“/) =
(MARK(r") =1, ROOT(r') =/, ORIEN(r') = 1/,
IND(r") = 1);
Yo (1) = (1), (') = 7 (r), (') =5 (r) and
Yw (T/) = Yu(r)-

calculate
e 7, (C —7) and 7. (C — r,5) using PATH-LIKE on DFS ordered path’s
vertices {s,...,v}
e 7! (CU{r'},r) using D-CLOSED PATH-LIKE on DFS ordered path’s
vertices {r,s,...,v,r'}
® Yy (C — 1) using D-CLOSED PATH-LIKE (v € D) on DFS ordered
path’s vertices {s,...,v}

Result: Y20 (C,r) = 7, (C — r);
(CT)_’YW(CU{T'}) = Yoo (7);
PYw(C T) = min {’Yw ?”,8), v(_T)};
FYw(C) = min {%}U(C r 7721 C? }

Proof. The lemma is a direct consequence of the construction of the graph
K, the definition of ’y " and the properties of the parameters 0 and v

Recall that the Welghted domination parameters 72 (K, v,), vL (Kn,vn)
and 72 (K,,v,) can be calculated using the previous two lemmas. O

Proposition 13 (Time complexity of CYCLE-LIKE).

418 T. Novak, J. Zerovnik

If a cycle C hasn vertices, the algorithm CYCLE-LIKE needs less than 12(n—1)
additions and 9(n — 1) min-operations.

Proof. Using algorithms PATH-LIKE and D-CLOSED PATH-LIKE we ob-
tain:

e For calculating the parameters 7,,(C — r) and 7. (C — r, s) using PATH-
LIKE algorithm on n — 1 vertices, we need 4(n —2) additions and 3(n — 2)
min-operations.

e For calculating the parameter 7% (C' U {r'},r) using D-CLOSED PATH-
LIKE algorithm on n + 1 vertices, we need 4n additions and 3n min-
operations.

e For calculating 7,,(C — r) using D-CLOSED PATH-LIKE algorithm on
n — 1 vertices, we need 4(n — 2) additions and 3(n — 2) min-operations.

Additionally, at the end of the algorithm, we need one addition and two min-
operations. Adding up all operations, we confirm

dn—2)+4n+4n—-2)+1=12n—-15<2(n —1) (17)
additions, and
3n—2)+3n+3n—2)+2=9n—-10<9(n —1) (18)

min-operations. U

6. Algorithm for Weighted Domination of Cacti

As we indicated in the previous sections, the general algorithm for calculating
WDN of a cactus graph can be seen as an upgrade of the algorithm TREE. The
input data of the main algorithm is the DFS cactus data structure, which is
supplemented by four arrays of the initial values of the parameters 720, v1 ~9
and 7, for every vertex. The starting point (vertex) of the algorithm is the last
unread vertex in the DFS order. If the last vertex lies on a tree, we proceed like
in the algorithm TREE. (Some care must be taken for the root of the tree, to
correct its parameters following Lemma 7.) However, if the last vertex lies on
a cycle, we have to read and remember all cycle’s vertices. Following Remark 3

and Proposition 4, the algorithm calls itself for rooted subcacti, for which the

WEIGHTED DOMINATION NUMBER OF CACTUS GRAPHS 419

Algorithm 8 CACTUS

Data: A rooted cactus (K,r) with DFS ordered vertices in the DFS table;
initialize 72°(v) = 0, 7} (v) = w(v), 79 (v) = 0o and 7, (v) = w(v) for every
vertex v in the DFS table;
set v is the last vertex in the DFS order

Last = v;
while Last # r do

if Last does not lie on a cycle then

repeat
w = FATHER(v);
U = v;

if (ROOT(w) =w) and (DFN(w) < DEN(v) — 1) then
do CACTUS of the rooted subcactus on vertices in the
DFS table with DFN = DFN(w), ..., DEN(v) — 1 and
the root w (we get new values Y00 (w), i (w), 79 (w),
Yolw))
end if
Yo (W) = 7 (W) + 7w (v) 5
3 (w) = 7 (w) + min{a) (0), 70 (@)}
Yoo (w) = min{ryp, (w) + v (v), 70 () + 7 (V) };
Yltw) = mingyd (1), 19 (w)
v = w;
until (ROOT(v) # v) or (DFN(v) = 0)
else (see next page)
end if

roots are hinges of the cycle. This forces the hinges to obtain new values of
parameters where all subcacti rooted at the hinges are considered. Then the
algorithm calls subalgorithm CYCLE-LIKE and applies Lemma 7 to correct
the values of the parameters of the root of cycle. The algorithm continues until
the last unread vertex in the DFS order is the root of the cactus. Pseudocode
is given below (Algorithm 8).

Denote by b the number of blocks, i.e. the total number of cycles and grafts.

Proposition 14. Algorithm CACTUS properly calculates the weighted
domination number of a cactus.

Proof. Recall that by definition we have two essential situations. If the

420 T. Novak, J. Zerovnik

Algorithm 9 CACTUS - Part 2

if Last does not lie on a cycle then see previous page
else
v = Last ;
repeat (mark the roots of the cycle and correct WDP and
WDN arrays of hinges on a cycle)
w = FATHER(v);
if DFN(w) < DFN(v) — 1 then
do CACTUS of rooted subcactus on vertices in the DFS
table with DFN = DFN(w),...,DFN(v) — 1 and the
root w (new values . (w), * = 00,1,0 and v, (w))
end if
v = w;
until v = ORIEN(v).
u = v;
w = FATHER(v); (w is now the root of the cycle)
Make cycle table:
C =0
v = Last;
C = DFS(v);
repeat
v = FATHER (v);
CUDFS(v);
until v = w.
Do CYCLE-LIKE algorithm on the rooted cycle (C,v) with
vertices in the table C'. We obtain parameters of the cycle
C: Y (Cy0), 1, (Cyv), 74, (C,v) and 7, (C);
Yo (W) = 7 (W) + 75 (C, v);
o (w) = 3(w) + 7L (C,v) ~ WEIGHT (w);
Yo (w) = min{yy, (w) + 722 (C,v), 7 (w) + 75, (C,0)} 5
Yo(w) = min{al, (w), 70 (1) };
end if
Last is determined by DFN(Last) = DFN(u) — 1.
Result: v} (K,r) =~} (w) for %=00,1,0;
(K = 7 (w).

current vertex v is a G-vertex on a subtree or a root of a cycle, the algorithm

WEIGHTED DOMINATION NUMBER OF CACTUS GRAPHS 421

CACTUS calculates the WDP and the WDN of the subcactus of all vertices
with DFN > DFN(v). In particular, when v = r the algorithm CACTUS
calculates the WDP and the WDN of the given cactus and we have

FYw(K) - 7111(74) : (19)
]

Below we show that algorithm CACTUS needs less than 12n + 5b additions
and 9n + 2b min operations and thus prove Theorem 1.

Proof. (of Theorem 1.) Let By,..., By be blocks in the cactus and denote
by n; the number of vertices in the block B; for each j = 1,...,b. Since a hinge
can be the root of more than one block, the number of hinges is less or equal
b. Therefore, we have the inequality

ni+no+...+np—-b<n. (20)

Since the algorithm requires much more time for a cycle block (in comparison
with a graft), we can estimate that for each block B; we need less than 12(n;—1)
additions and 9(n; — 1) min-operations. Furthermore, 5 additions and 2 min-
operations are needed for sticking blocks in a hinge. Summing up all operations
for all blocks in the cactus, we get

b b
> 12(n; — 1) +5b =12(> _n; —b) +5b < 12n + 5b
j=1 i=1
and
b
> 9(nj — 1) +2b < 9n+2b.
j=1
O

Remark 15. In the proof above, we have assumed that the DFS data
structure of the cactus is given. The reason is that the algorithm for k-trees
[13] assumes the structural information of a partial k-tree is given. It is however
well-known that the DFS algorithm is linear in the number of edges of a graph,
which for trees and cactus graphs implies that it is also linear in the number of
vertices. More precisely, 4m operations are needed when traversing the graph
during DFS that provides the DFS cactus data structure: the DFS search has
to be followed by a traversal in the opposite DFS order and, in addition. each
cycle has to be traversed two more times to assign the roots and the successors
to all vertices of a cycle.

422

T. Novak, J. Zerovnik

Acknowledgments

This work was supported in part by Slovenian Research Agency ARRS (Grant
number P1-0285-0101).

1]

2]

[10]

References

M. Arcak, Diagonal stability on cactus graphs and application to network
stability analysis, IEEE Trans. Autom. Control, 56 (2011), 2766-2777.

N. Betzler, R. Niedermeier and J. Uhlmann, Tree decompositions of graphs:
Saving memory in dynamic programming, Discrete Optimization, 3 (2006),
220-229.

B.-M. Boaz, B. Binay and S. Qiaosheng, Efficient algorithms for the
weighted 2-center problem in a cactus graph, Algorithms and Computa-
tion, 16th Int. Symp., ISAAC 2005 Lecture Notes in Computer Science,
3827 (2005), 693-703; doi:10.1007/11602613_70.

R.E. Burkard and J. Krarup, A linear algorithm for the Pos/Neg-Weighted
1-Median problem on a cactus, Computing, 60 (1998), 193-215.

G.J. Chang, Algorithmic aspects of domination in graphs, In: Handbook
of Combinatorial Optmization (2013), 221-282.

E. Cockayne, S. Goodman and S. Hedetniemi, A linear algoithm for the
domination number of a tree, Information Processing Letters, 4 (1975),
41-44.

P. Dankelmann, D. Rautenbach and L. Volkmann, Weighted domination
in triangle-free graphs, Discrete Mathematics, 250 (2002), 233-239.

B. Elenbogen and J.F. Fink, Distance distributions for graphs modeling
computer networks, Discrete Applied Mathematics, 155 (2007), 2612-2624.

S.T. Hedetniemi and R.C. Laskar, Bibliography and domination in graphs
and some basic definitions of domination parameters, Discrete Mathemat-
ics, 86 (1990), 257-277.

S.T. Hedetniemi, R. Laskar and J. Pfaff, A linear algorithm for finding a
minimum dominating set in a cactus, Discrete Applied Mathematics, 13
(1986), 287-292.

WEIGHTED DOMINATION NUMBER OF CACTUS GRAPHS 423

[11]

Y. Lan, Y. Wang and H. Suzuki, A linear-time algorithm for solving the
center problem on weighted cactus graphs, Information Processing Letters,
71 (1999), 205-212.

K.S. Natarajan and L.J. White, Optimum domination in weighted trees,
Information Processing Letters, 7 (1987), 261-265.

J.A. Telle and A. Proskurowski, Practical algorithms on partial k-trees
with an application to domination-like problems, Lecture Notes in Com-
puter Science, 709 (1993), 610-621.

K. Thulasiraman and M.N.S. Swamy, Graphs: Theory and Algorithms,
John Wiley & Sons, Inc. (1992).

B. Zmazek and J. Zerovnik J, The absolute center problem on weighted cac-
tus graph, In: SOR ’01 Proceedings Lenart, Zadnik Stirn and Drobne Ljubl-
jana: Slovenian Society Informatika, Section for Operational Research,
(2001), 189-194.

B. Zmazek and J. Zerovnik, Computing the weighted Wiener and Szeged
number on weighted cactus graphs in linear time, Croat. Chem. Acta, 76
(2003), 137-143.

B. Zmazek and J. Zerovnik, The obnoxious center problem in weighted
cactus graphs, Discrete Applied Mathematics, 136 (2004), 377-386.

B. Zmazek B and J. Zerovnik, Estimating the traffic on weighted cactus
networks in linear time, In: Ninth International Conference on Information
Visualisation (IV’05) (2005), 536-541; doi:10.1109/IV.2005.48.

424

