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Abstract: In this paper we apply a moving mesh method to a numerically
challenging problem namely, the nonlinear Schrodinger (NLS) equation. This
problem arises from applications where it has been used to describe the motion
of a vortex filament in incompressible fluids and also to model fractal fibre ar-
chitecture of aortic heart valve lea ets in the study of the human heart. Our
aims are to show the existence and the properties of the numerical solution of a
nonlinear shrodinger’s equation. This method is used to investigate with highly
resolved numerics the solution’s behavior for small dispersion parameters. Nu-
merical simulations has shown that this scheme is very efficient to solve this
problem.

AMS Subject Classification: 65L12, 656M20, 656N40, 656M50
Key Words: moving mesh, nonlinear Shrédinger’s equation (NLS), finite
difference methods (FDMs), monitor functions

1. Introduction

We are interested to the numerical scheme that we developed to solve some
nonlinear Shrodinger’s equation. The problem under consideration is as follows:
determine a function u = u(z,t), to be a solution of:
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e the partial differential equation (PDE)

iy + Uz, + quu?| =0, —oo<z< 400, t>0, (1)

e verifying the initial condition (IC)

u(z,0) = u’(2), z€R, (2)

e and artificial conditions (BCs) boundary (21, 2r) type homogeneous Dirich-
let

u(zr,t) = u(zr,t) =0, t>0, (3)

where ¢ is a real constant and u” a given function with complex values.

This equation arises in a number of physical situations including (see e.g.
[13] and the references therein) the propagation of a laser beam in a medium
whose index of refraction is sensitive to the wave amplitude, the modulational
stability of water waves, helical motion of a very thin vortex filament, the
propagation of heat pulses in anharmonic crystals, nonlinear modulation of
plasma waves and self-trapping of a light beam in a colour-dispersive system.

When the function u is split into its real parts v and w complex, the form
u(z,t) = v(z,t) +iw(z,t), the problem amounts to finding two v and w func-
tions, real-valued, such as

(4)

(®)

( (6)

w(z,0) = w’(2), (7)
(8)

(9)

We will consider here two special cases: a soliton propagation and interac-
tion of two solitons.

The nonlinear Schrodinger equation (SNL) appears in many phenomena
Physical for describing nonlinear waves, [5, 6], such as:

e the propagation of a laser beam in a medium whose refractive index is
responsive to the magnitude of the wave,

e the modulational instability aquatic waves,
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e the propagation of vibrations in heat nonharmonic crystals,
e and the non-linear modulation of plasma waves.

The equation (NLS) has risen considerable interest in the last two decades
[1, 3, 7]. The difficulties in solving such equations lie on the fact that classical
numerical schemes often produce instabilities and do not point out the time
where the solution blows out, for example Backward Euler method.

Since the computational domain has to be a large spatial interval to avoid
boundary effects (we assume here that ug(x) decays rapidly to zero or that it
has compact support) uniform meshes become inefficient.

The small length scale, the localization of the solution, and the need of a
relatively large computational domain call for an adaptive method. Moving
mesh methods are difficult to apply in the non-singular but highly dispersive
one-dimensional NLS. In addition to the capability of concentrating sufficient
points about regions of rapid variation of the solution, a satisfactory moving
mesh method should be simple, easy to program, and reasonably insensitive to
the choice of its adjustable parameters.

Here, we study a stable and cost efficient moving mesh method for (1)-(3).
Our building block is the mesh generator proposed by [3, 9, 15] combined with a
semi-implicit second order time discretization and a fourth order approximation
of the mesh advection term.

The organization of this paper is as follows. The nonlinear Schrodinger
equation is presented in Section 2. In Section 3 the numerical method is de-
scribed in detail and the issues of time and spatial discretizations are discussed
as they affect stability and performance. The numerical results are presented
in Section 4 and some concluding remarks are given in Section 5.

2. The Nonlinear Schrodinger Equation

2.1. Analytical Considerations

The analytical properties of (1)-(3) are well known and are mentioned here for
completeness. The linear Schrodinger equation

i®, + D, =0, (10)

provides a model for the propagation of dispersive waves. The general solution
of (10) is given by
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+o0
O(z,t) = G(k) expli(kx — k*t)].

—0o0
The problem has been shown to possess an infinite number of conservation laws
the most common of which are the charge P, and the energy R, given by

P /OO (e, )2 dz, R— /oo (!u(x,t)]Q - g]u(x,t)]4> de, (1)

) —00

where P is just the square of the Ly norm and its conservation can be deduced
by multiplying both sides of (1)-(3) by @ and equating the imaginary parts,
while the conservation is obtained by taking the real part of the product of u,
[10, 15].

2.2. Propagation of Single Soliton: SNL1

In the case of the propagation of single soliton, the initial condition is given by

u’(z) = \/% expli0,5s(z — zp)] sech [\/E(z — zo)} (12)

obtained from the exact solution given by:

u(z,t) = \/% expli0, 5s(z — 29) — (0,25s% — a)t] sech[v/a(z — z — st)]. "
1

The artificial boundary of the spatial domain were fixed to z;, = —30 and
zr = —70 and the time interval [0,30] with a time step At = 5. The module
|u(z,t)| represents a wave initially located at point z = zy and which moves at

the speed s in the positive direction of z. Its amplitude , /27“ is determined by

the real parameter a. Here we take ¢ = 1, a = 1, s = 1 and 2y = 0 as the
problem parameter [11, 13, 14].

2.3. Interaction of Two Solitons: SNL2

We now consider an initial condition (IC) given by

ul(2) = \/Zzl exp [iO, 5s1(z — 201)} sech [\/a—l(z — 201)]

+ \/? exp {io, 5s2(z — 202)] sech |:\/CL—2(Z - 202)}
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which is a superposition of two solitons with respective amplitudes a1 and as,
initially located at the points of x-axis zp; and zp; and which move in the
opposite direction, with respective speeds s; and s3. The following numerical
values were taken: a3 = 0,2, as = 0,5, 291 = 0, 2920 = 25, s1 =1, 59 = —0, 2.
The two solitons interact as particles and run into elastic collision after which
each soliton continues its path. The time interval study is [0,45] and artificial
spatial boundary set to z;, = —20 and zp = —80. The collision occurs at about
t =20, [11, 13, 14].

3. The Numerical Method

In the numerical experiments, we shall consider three popular cases of (1)-(3)
obtained using different initial conditions and values of ¢. First, we describe
numerical considerations common to all cases.

We begin by re-defining the pure initial value problem (1)-(3) as an initial
boundary value problem in z;, < x < zg, since over the time interval [0, 7]
under consideration, the solutions of (1)-(3) of interest to us are negligibly small
outside [z1;zgr]. At these boundaries, it is convenient to pose homogeneous
Dirichlet or Neumann boundary conditions, [10, 14, 13].

There are three mains components in our numerical method that determine
its stability and overall efficacy (resolution vs computational cost): the dynamic
mesh generator (or moving mesh PDE) and the time and spatial discretizations.
We address separately these components in this section.

3.1. Lagrangian Form

The complex function u is decomposed into its real and imaginary parts w and
v respectively (see e.g. Section 1). The resulting system of PDEs is then given
by

vy + W, + quv? +w?) =0, (14)
wy — v, — qu(v? +w?) =0, (15)
v(2,0) = 1%(2), (16)

w(z,0) = w(2), (17)

v(zp,t) = v(zg,t) =0, (18)
v(zp,t) = v(zg,t) =0, (19)
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where z € [z1,zr] and t € [0,T]. After converting equation (14)-(19) into
Lagrangian form [7, 8], central differencing is used for the spatial derivatives
and the resulting semi-discrete system on a moving grid is

. . Uit1 — Ui 2 Vilr—=Vi Vi=Vi 9 9
Ui = - X - —qU; + Vi)V
v hiv1 + hi hiy1 + hi ( hiv1 h; ) al )
. Vipn = Vi 2 U —U U — Uz‘—l) 2 2
Vi = i - x - +q(U2 + VAU,
v hiv1 + hi hiy1 + hi ( hiv1 h; al )

fori =1,...,N, where hj = xj —xj_1, j = 1,...,N and the dot denotes
differentiation with respect to time with £ held constant and Uj(t), Vj(t) are
the approximations to w(x;,t) and v(z;,t). We apply zero Dirichlet boundary
conditions yielding Uy =0, Uy =0, Vy =0 and Vy = 0.

If we define U = (Uy, Vo, Ui, V1,;Un,Vn)T then we approximate the Lo
norm of U™ on the moving grid by:

P= U7, = ;;(Eﬁgﬁi>QUﬁ2+a¢P)

which is the discrete analogue of (11), while (12) is approximated by:

n— Z hn+hz+1 O 2+ Vi, — Vi ?
T e+
7 242 (U)? 4 (V)2 (UR_1)? + (VR_))?

l\DlrQ

3.2. The Moving Mesh

The key to developing moving mesh methods lies in formulating a satisfactory
mesh equation. It has been recommended that such an equation should be
simple, easy to program and reasonably sensitive to the choice of its adjustable
parameters, [2, 8, 10]. Huang and his collaborators, [4, 3, 13] have carried out
an intensive study of these mesh equations or so-called moving mesh partial
differential equations (MMPDES) based on the equidistribution principle.

Of all the resulting MMPDESs, the most widely used are MMPDEDH

1 0 ox
L (M8—£> (20)

The MMPDET, given by
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&(v%) %
ﬁ(Ma_x) LN )% _12<M@)

133 133 i T 133

23
is said to correspond to the discrete mesh equation used in the method of Dorfi
and Drury [3, 12, 13]. We now have an equation which we can use to compute
the node speeds and hence the grid position. However, in order to use this, we
must first rewrite the PDE in a so-called Lagrangian form.

3.3. Time Discretization

The coupled moving mesh-FNLS system is given by:

i = (wxe)e, (21)

= i (gymte) 1000 + o (22)
This is a very stiff system due to the mesh equation and the second derivative
(dispersive) term in the NLS. One numerical approach [4, 6, 13] is to solve (22)
and (22) alternately in time; first, (22) is solved for one time step to obtain a
new mesh and then this new mesh is turn used to solve (23) also for one time
step. This procedure is repeated every time step [9]. In [9], the following
discretization was used to compute the moving mesh equation (21) at every

time step:
anrl n

-z n,.n+1 n,n\ _ .n,n
BN = T, + (w xé)g a Teg,
where a” = max w™ and At is the time step size.

Due to the dispersive nature of the NLS plus the introduction of the mesh

advection term :béqbg it is difficult to obtain accurate and stable semi-implicit
discretizations for (23) and fully implicit discretizations would too costly. To
find a stable and cost efficient scheme we use as a guide the multi-step im-
plicit/explicit (IMEX) methods studied in [2, 3, 5]. We consider two second
order IMEX methods applied to (13). The semi backward difference formula
(SBDF) scheme, also called extrapolated Gear:

sl )= () ),

+2[z\¢”r o+ i (xi) qsz] (23)
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When integrating from ¢t = t" to t = t"*1 (23) is considered a system of
equations for the approximation of u where the node locations are available at
t =t" and t = t"*1. The vector z¢ is replaced by (z"*! — 2") = Az" and
z is evaluated in [t",t""!] using the linear interpolant z(t) = x, + x(t — t,),
where x,, is the approximation to x at ¢ = ¢,. The solution at ¢t = ¢,41 is
computed using a second-order singly diagonally implicit Runge-Kutta method
which possesses excellent stability properties [6, 11, 15].

3.4. Spatial Discretization

Our spatial discretization scheme is based on simple finite difference schemes
on nonuniform grids. This choice has the advantage of simplicity and flexibil-
ity. Indeed, finite difference schemes can accommodate any spatial differential
operators, whereas the nonlinear Galerkin discretization used in MOVGRD is
dedicated to convection-diffusion problems. However, finite difference schemes
can be less efficient on some of these problems, and this is why the alternative
use of slope limiters can be consider.

Any particular choice of spatial discretization for the NLS (13) affects the
stability, accuracy, and cost of the overall adaptive method. Pseudo-spectral
approximations have been common in NLS computations. With a uniform
mesh, semi-implicit discretizations such as SBDF or CNLF can be inverted at
a cost of O(logaN) operations using the Fast Fourier Transform (FFT) (see
e.g [6,7,9]). However, FFT cannot be used for the variable coefficient system
produced by a non-uniform mesh. In this case one would have to employ an
iterative method at each time-step which would increase the computational cost
and may introduce some numerical instability.

We use the so-called method of lines (MOL) approach (see, e.g., [10, 12, 13])
in which the spatial derivatives are first approximated using, for instance, finite
difference or finite element techniques so as to convert the PDE problem into a
system of (usually stiff) ODEs. The resulting system of ODEs is then integrated
in time numerically.

Equation (1) is discretised on the physical domain using central finite dif-
ferences for the spatial derivatives to yield the semi-discrete system

. . Uipl — Ui—1 .
uZ:xzm—fH ’Lzl,...,N—l,

where h; = x; — x;—1 and f; is a suitable spatial discretisation of f in (1). The
MMPDE is similarly discretised to obtain the semi-discrete system
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;= é(}\z(m+1 n hi))ﬁ (M yihist— Miféhi) (24)

fori=1,2,...,N — 1, with zp = z;, and zy = zr. Here, MH_; is a smoothed
2 ~
monitor function, with smoothing carried out as described, with M}, replaced
by M, 1. ]
The term M; in (25) is given by

)

1(21 —2i) + MH%(% T

: 1
~ i— i—5 Zit1 + 24
M; = 2 2 2 where z, 1 = +T
1 — 2 2
Zigl — %1

The integration from ¢ = t" to ¢t = t"*! is accomplished following the
method of Beckett et al. [2, 3, 6]. Equation (25) plays a similar role for
{z;}Y, = = when Mii% and (M;(hiy1 + hi))~2 are know for i = 1,2,..., N — 1.
The (v + 1)th iterate is given by

x[n—l—l,y—l—l} _ (1 + w)anJrl’VJrl] + (JJCC[TH_I’V—H )
This equation is discretised in time using the first-order backward Euler method

wich possesses excellent stability properties.
It is instructive to consider the FE scheme for (24), which takes the form

(agu)j ™ = (x¢)}
At D D n . h su)" - h Su)™
+ IAE (k(Dy = D_)u)j + (ijr% —a)( U)jJr% - (:1:3.7% —a)( u)j,%

Multiplying (25) by u and following the same analysis as for the BE discretiza-
tion, we find that

far 2y = [+ ™ = w2, — 268 DY 2.

We now have an anti-diffusive term on the right-hand side caused by the mesh
movement

Hun+1 - un”%ﬂ,

and hence the scheme will be conditionally stable on a moving mesh. The

question arises if it is possible to combine the BE and FE schemes to create a
method that is unconditionally stable and second-order accurate in time.
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3.5. Monitor Function

Except the classical monitor function, other monitor functions can be used,

including
dmh
m(u) = \/04 + H dzr(nU)

where the function h(u) = w or f(u) (the flux function), the order of differen-
tiation m = 1,2 and k = 2, 1.

Note that for systems of partial differential equations, the computational
of (26) implies the calculation of the norm of a vector. In order to compute a
discrete approximant of the monitor function M; in the grid interval [z;, z;41],

various finite difference schemes can be used, the simplest choice for a first-order
Ui+l — Uy

k

9

2

derivative being u,; = .
Zitl — %

The choice of the monitor function is very important. The monitor function
(26) which is based on the derivative of the solution, has appeared to be the
most robust in the method of lines approach [7, 9, 12].

In the description of the method of moving grid in [8], u, was approximated
by finite differences progressive, two points, and the standard used was calcu-
lated by taking the average of N4, components, giving the following formula:

Nde . .
N i, - Ul
M;= |a+ a A 25
’ Npge Jz:; (Zig1 — Z;)? (25)
(Ul ~ Uy
M; =l + max —++ 7 0<i<N.
’ i (Zigr — Z;)?

We can, for approximating derivatives of order 1, choose a derivative operator
digital D; calculating u, ie (u, = D1U) and use again the average or maximum
as follows:

Npde U‘] —U‘j )
1 < (zz—l-l 2,1
M; = |a+ : ., or (26)
' die; 2
U, -0
M; =4 | @ + max z,z—i—; 2,1
j
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The choice of the operator Dy is enough large if we recall the different stencils:
centered, decentered, decentered biased. In the case of hyperbolic PDEs with a
flux term f(u), we may consider in the monitor function, the term f(u) rather
than the term u and approach the derivative f(u), by different approximation
formulas of the first derivatives or slopes limiters or flux.

For the monitor function ms, the options are the following:

Nopde J J
M, = |a+ ke (Uzzz-i-l Uzzz)
% die ~ 2 9
J J
and M, — | a4 max (Uzz 1+ 1 Uzz 2)
;=
j 2

In these formulas the second derivative u,, is calculated by the equation U,, =
DU where Dy denotes an operator of numerical derivation for the second
derivatives. We can use the operator of three bullet points or five bullet points.

3.6. The Method Algorithm

To provide some measure of global solution difﬁculty, let us define

0= (3 f oo )

If RTOL is a user-prescribed tolerance and v and & are given such that v > 1 and
0 < k < 1, then we would like to ensure that YRTOL < n(t) < kRT'OL. Having
obtained 7(t), we can now derive a formula to predict the suitable number of
grid cells needed to keep this "error’ below a given tolerance, RTOL, (9, 13, 15].

We now possess the main ingredients needed to implement the moving mesh
method for the nonlinear Shrodinger equation.

if v RTOL <n(t) < kRTOL then
Nn+1 = N”

1
N = N™ x min | max fac, max | min fac, & U0
’ "\ RTOL ’

elseif  n(t) > kRTOL or n(t) <~y RTOL  then
Compute N™*! using (29).
end
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The new mesh with the increased number of points is obtained by equidis-
tribution of the solution at ¢ = ¢,, using the new number of points.

3.7. Numerical Simulations of the Algorithm
3.7.1. Solver ODE15s

In MATLAB there are many, ODE solver. There syntaxis is the following:
M(t,Y)Y' = f(t,Y); ODE15s is chosen for this specialization in resolution of
stif fs problem. This syntaxis is as follows:

[T,Y] = ODE15s(ODEFUN, TSAN, Y0, OPTIONS)

e vectors T et Y represent respectively instant ¢; and solutions Y (¢;) corre-
sponding,

e ODEFUN means the function describing the ODE system is the time
interval of integration and intermediate times at which the solution is
desired Y} is the initial vector

e OPTIONS represents the different options selected for the solver.

The options are set using the function ODESET and we used the following
form:

ODESETOPTIONS = (,reltol'valeurRelTol'AbsTol'valeurAbsTol,
'"Mass', MatricedeMass' M State Dependance’,
'strong',) J Pattern/,
JPat' MvPattern’ MvPat'

. !/ /! !/ /
MassSingular’, no', stats',” on )

where reltol and AbsTol denote the relative and absolute error which we can
find justification in MATLAB, and for the other options tolerances. We insist
on the MwvPattern options and JPattern because they play a very important
role and must be programmed. The introduction of these options in the code
is a trick that allows the ODE integrator to reduce the number of operations
and gain computation time, [7, 11].
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3.7.2. Mass Matrix Implementation

To use the solver ODE15s we wrote the algorithm in the following general form:
A(t,Y)U =b(t,Y), (27)

where

U=

T
[U}, U2, UNPe z U UR, UM 7, UL U, TN ZN]
(28)

is the global unknown vector, A the mass matrix of the global algorithm and
b the second associate member.

The construction of the unknown vector U shows that the matrix A is
square and order (NPDFE + 1) x N times and has a penta-diagonal-block. The
blocks, order (NPDE + 1), are of the form

1 0 o ... 0 —Djy 0O ... 0 0
1 0O ... 0 —Dio 0O ... O 0
0 1 0O ... O —D; 0O ... O 0
Ay = © vAij:
0 0 0o ... 1 —Dinpde 0O ... O 0
L 0 0 0 0 _TBi,i ] | 0 0 TBZ"]'_
Aij=0,1<i<N, 1<j<N, j#i, |i—j[>2

The above formulas allow us to write a first program called mass and calculates
the global matrix A of the system. Sparse matrix As associated also square
order (Npge + 1) x N, penta-diagonal-block is given by the following blocks of
order (Npqe + 1), [7, 8, 12].

0 . . . 0] 1 0 . . 0 17
o . . .0 010 01
Asii = e e 5 ASZ"Z'Jrl == s
0 11
|1 1 ] |1 |
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0o . . 0
0 0 0
A5i7i+2: . ce . s
0 . .00
0 . . 0 1]
3<i<N-2

As;j=0, 1<i<N, 1<j<N, j#i, |i—j|>2

4. Numerical Results
4.1. Propagation of Single Soliton: SNL1
4.1.1. Reference Solution

The problem defined with the initial condition (12) has the exact solution given
by (13).

Figure 1 shows the graphical representation of the reference solution ob-
tained using uniform fixed grid with N = 1000 nodes. Table 1 shows the
corresponding statistics. The time study interval is equal to [0,30] with a time
step At = 5.

4.1.2. Numerical Solution

The best results were obtained with the following choice of moving grid pa-
rameters and numerical derivation operators: o = 0,5, k = 107! 7 = 2
Dy = five — point — centered.

The diffusion term wu,, is approached by finite difference centered at 5 points.
Numerical results obtained with the choice are given in Figure 2. To better ap-
preciate these numerical results we have shown in the same figure the reference
and numerical solutions.

The numerical results obtained with a moving grid N = 100 points, com-
pared to those of a uniform fixed grid N = 1000 nodes, show at Figure 3 and
Table 1, a poor accuracy of numerical solutions. Indeed a reduction of the
amplitude of the soliton is observed.
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|u(z,0)]

21| =0 21| t=0,5,...,30
1.5} 15
i =
1 ‘, N1
=
0.5} 0.5
0 : 0 —
20 0 20 40 60 20 0 20 40 60
Z Z

Figure 1:  Nonlinear Schrodinger equation, soliton propagation
(SNL1): Initial soliton and soliton at times t = 0, 5, ..., 30; ref-
erence solution with a fixed uniform grid to N = 1000 nodes.

Nodes concentration

solutions STEPS | JACS | FNS | LU | LIN CPU.t
reference Solution 30 4 8068 | 12 63 | 165.1248
numerical Solution 364 183 | 2924 | 269 | 1094 | 93.2548
Table 1: Nonlinear Schrédinger equation, soliton propagation

(SNL1), numerical statistics: reference solution, fixed uniform grid
of N = 2000 nodes and moving grid N = 100 nodes

2 — :
N =109
1.5
)
i :M
O L L L L L L L L L L
-20 0 20 40 60 -20 0 20 40 60

z z

Figure 2: Nonlinear Schrodinger equation, soliton propagation
(SNL1): Initial soliton and soliton at times t = 0, 5,..., 30; numerical
solution using a moving grid with N = 109.
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2
_ 20

.5 N = 109 ... num sol
*@ 1.5 ; I _ ref sol
= =
& =
c 1 !
o) =
9 =
e ———
205
@]
z

-20 0 20 40 60
z z

Figure 3:  Nonlinear Schrodinger equation, soliton propagation

(SNL1): Initial soliton and soliton at times t = 0, 5,..., 30; compar-

ison between reference solution with N = 1000 nodes and numerical
solution using a moving grid with N = 109 nodes.

To plotting accuracy, the method has done a good job of capturing the
interacting solitons.

Note that with a well adapted initial grid [7], the best results will be ob-
tained.

4.1.3. Adapting the Initial Grid

As the initial conditions (ICs) play a major role in the precision of numerical
solutions, it may be judicious to have the best possible approximation, from
the departure. Thus, when the initial condition depends on the spatial variable
z, we apply the grid adapting process explained in [7].

We applied this option to the nonlinear Schrédinger equation (SNL1) (prop-
agation of a soliton), the graphical results have improved after adjustment of
the initial grid, as shown in Figure 4. We have prepared a chart to compare
the computing times in both cases: initial grid adapted and non adapted initial
grid.

Table 2 shows that in general (2 cases out of 3) one gains in computing time
by adapting the initial grid when the initial condition of the problem depends
on the independent variable z.

As for the impact on the quality of the graphic results, it is observed that
the problem of propagation of a soliton (SNL1) in the non-linear Schrédinger
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solutions STEPS | JACS | FNS | LU | LIN| CPU.t
reference Solution 45 41 9068 | 13 67 | 134.1248
numerical Solution 435 179 3980 | 367 | 2098 | 68.2548
Table 2: Nonlinear Schrédinger equation, soliton propagation

(SNL1), numerical statistics: reference solution, fixed uniform grid
of N = 1000 nodes and moving grid N = 100 nodes.

2
£ N = 109 2
£1.5] 15
= _ L
¥ =
£ 1 81
S T [ 3
p [N —
S 7\

0
0
-20 0 20 40 60 -20 0 20 40 60
z z

Figure 4:  Nonlinear Schrodinger equation; soliton propagation
(SNL1): Initial soliton and soliton at times ¢t = 0,5,...,30; com-
parison between the reference solution with N = 1000 nodes and
the numerical solution using a moving grid, N = 109 nodes, with
adaptation of the grid to the initial condition.

equation find an improved results. We can conclude that it is always judicious
to adapt the grid to the initial condition of the problem when it depends on
the variable z.

4.2. Interaction of Two Solitons: SNL2
4.2.1. Reference Solution

The problem of NLS (14) posed with the initial condition has no analytical
solution. The reference solutions were built using a uniform fixed grid with
N = 1000 nodes. The results obtained are given in Figure 5 and Table 3
statistics.
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15
t=0
1t p
= f
N , (1
3 057 ."‘. [
0,,, -
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Figure 5: Nonlinear Schrodinger equation; interaction of two solitons
(SNL2): solitons at times t = 0, 20, 45; reference solution with a
uniform fixed grid N = 1000 nodes.

4.2.2. Numerical Solution

The best results were obtained with the following choice of moving grid pa-
rameters and numerical differential operators: o = 0,8, k = 1072; 7 = 1;
Dy = three — point — centered. The diffusion term wu,, is approached by finite
difference centered at 3 points. Numerical results obtained are given in Figure
6.

To better appreciate these numerical results, we have shown in the same
figure the reference solution and numerical solution.

The numerical results obtained with a moving grid N = 200 points com-
pared to those of a uniform fixed grid N = 1000 nodes, show a good precision
of numerical solutions, Figure 7. We note a slight gain in computational time
(1914.6 s against 2502.5 s), a gain of around 4/3.

To plotting accuracy, the solution is very good and one can see the periodic-
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solutions | STEPS | JACS | FNS | LU LIN CPU.t
reference Solution 34 46 9068 17 77 174.1248
numerical Solution 456 189 3456 | 423 | 31125 | 95.2548

Table 3: Nonlinear Schrodinger equation, interaction of two solitons
(SNL2), numerical statistics: reference solution, fixed uniform grid
of N = 2000 nodes and moving grid N = 100 nodes.
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Figure 6: Nonlinear Schrodinger equation, interaction of two soli-
tons (SNL2): grid movement and solitons at times ¢ = 0,20, 45;
Numerical solutions using a moving grid with N = 200 nodes.

ity expected. For this case, about 200 nodes are effectively used in the region of
high solution activity. This suggests that one should be able to capture the so-
lution accurately if an adaptive grid is used which has a comparable resolution

in the active region.
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Figure 7: Nonlinear Schrodinger equation, interaction of two soli-
tons (SNL2): grid movement and solitons at times t = 0,20, 45;
comparison between reference solutions with N = 1000 nodes and
digital solutions using a moving grid N = 200 nodes.

5. Concluding Remarks

The nonlinear Schrodinger equation presents a great computational challenge.
Not only does the method have to resolve accurately the solution self-focusing
but also the subsequent highly oscillatory regions of solitons with wavelengths.
The experiments with NLS have led us to consider the effect on accuracy due
to interpolation which is used when the method is performed. We have applied
interpolation as it seems to help solution accuracy. We have shown that the
developed method does a good job of resolving the solution of the NLS for the
cases we have considered.

We highlight the fact that the adaptive strategy developed here is simple to
implement and we have not had to resort to a high order spatial discretization.
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The algorithm is both robust and efficient as these experiments have shown.
One of the main difficulties in applying adaptive moving mesh methods to this
problem originates from the introduction of the mesh advection term into the
underlying equation which otherwise has no physical advection at all.

We have shown here that with the right semi-implicit scheme and a high

order discretization for the mesh advection term it is possible to obtain accurate,
cost-efficient, and stable moving mesh methods. We believe that the method
presented here is a very valuable tool and can be used to learn more about the
structure of the solutions limiting behavior for non-analytic initial conditions.
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