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1. Introduction

Fix a probability space (Ω,F , P ) and define on it a M/M/1 queue Qt.
Consider its standard representation, that is:

Qt = Q0 +At −Dt, (1)

where

• Q0 is a N
+-valued random variable;

• At is a Poisson process with with P -intensity λ;

• Dt =
∫ t

0 I (Qs− > 0) dNs, N Poisson process with P -intensity µ, where

I(x > 0) =

{

0 if x = 0,

1 if x > 0;

• Q0, At and Nt mutually independent.
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Suppose to observe at any fixed time t, the pair (Dt, Ct), where Ct is the
idle time of Qt, that is the amount of time spent by Qt at level 0, i.e. the
process

Ct =

∫ t

0
I (Qs = 0) ds. (2)

We are interested in the filtering problem arising when, at any fixed time
t, we want to estimate the unknown state Qt by observing the process (Ds, Cs)
up to time t.

This work follows the same ideas and techniques as in [3], where authors
derive the filter on a queue with respect to its idle time, and, up to a scaling,
also its weak limit. Here we add to the observation of the idle time, that of the
departure process. This kind of problem falls in the setting of the so called sin-

gular filtering, since the observation process can be expressed as deterministic
functional of the state process via the equality Dt =

∑

s≤t I (Qs− > Qs).

In order to solve the singular filtering problems need alternative procedures
to those usually used for the computation of the filter, as the innovation theory
approach ore the method of the reference probability measure. In this paper we
derive an explicit expression for the filter based on some regenerative properties
of some processes involved and on the structure of the filtration generated by
the observation process. Denote by πt the filter of the state with respect to the
history generated by the observation process up to time t. As well known, the
filter is uniquely defined by the rule

πt(f) = E
[

f(Qt)/F
(D,C)
t

]

(3)

for f in a sufficiently large class of functions.

For our purposes it will be useful to consider the elapsed time from the last
visit to 0 for the process Qt, i.e. the process

ξt = t− τt(Q), (4)

where the functional τt : DR[0,∞) → DR[0,∞) is defined by

τt(x) = sup{s < t : xs = 0}. (5)
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2. The Representation Result

In order to prove the main result of this paper, we need to recall that observing
the continuous process Ct is the same as observing the pair of point processes
(It, Bt), where It is the process that counts the times when the queue starts an
idle period, and Bt is the process that counts the times when the queue starts
a busy period, that is:

It =

∫ t

0
I(Qs− = 1)dNs; (6)

Bt =

∫ t

0
I(Qs− = 0)dAs. (7)

So we can express the observed history as follows:

Gt = FD
t ∨ FC

t+ = FD
t ∨ FI

t ∨ FB
t .

The equality between the filtration generated by the idle time Ct and the filtra-
tion generated by the pair of processes (It, Bt) together with some regenerative
properties of the point processes It, Bt, have been widely studied in [3], Section
6. For the sake of completeness, we recall in the sequel the properties that are
used in this paper.

Let {σB
k , k ≥ 1} and {σI

k, k ≥ 1} be the jump times of the process It and
the process Bt, defined by Eq. (6) and by Eq. (7), respectively. For notational
convenience, also consider for k = 0, σB

0 = σI
0 = 0.

Under the assumption Q0 = 0, it easy to verify that

σB
k < σI

k < σB
k+1 < σI

k+1, for each k ≥ 1,

and that Qt = 0 when σI
k ≤ t < σB

k+1, for k ≥ 0, while Qt > 0 otherwise.
We start by observing some regenerative properties of the above jump times,

which are fundamental in the sequel.

Lemma 1. (Lemma 6.1 in [3]) For each k ∈ N the processesQI
k,t = Qt+σI

k
−

QσI
k
and QB

k,t = Qt+σB
k
− QσB

k
are independent of FQ

σI
k

and FQ

σB
k

respectively.

Moreover, the process QI
k,t has the same law as the process Qt.

Proof. Clearly QI
k,0 = Q0 = 0, moreover it is easy to see that QI

k,t solves
the same martingale problem as Qt, hence these processes share the same law.
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The independence property follows by the strong Markov property of Qt,
since QσI

k
= 0:

E
[

exp
(

iu
(

Qt+σI
k
−QσI

k

))

/FQ

σI
k

]

= E
[

exp
(

iu
(

Qt+σI
k
−QσI

k

))

/QσI
k

]

=E
[

exp
(

iu
(

Qt+σI
k
−QσI

k

))]

= E [exp (iu (Qt))] .

Similar arguments apply to show that the process QB
k,t is independent of F

Q

σB
k

.

Remark 2. The process QB
k,t can be written as QB

k,t = AB
k,t −DB

k,t, where

{

AB
k,t = At+σB

k
−AσB

k
;

DB
k,t = Dt+σB

k
−DσB

k
.

(8)

Moreover, the process DB
k,t can be expressed as a functional of the process

QB
k,t, that is D

B
k,t =

∫ t

0 I(Q
B
k,s− > QB

k,s)dQ
B
k,s. Then it turns out to be indepen-

dent of FQ

σB
k

.

Remark 3. The process It is a renewal process, and Bt is a delayed
renewal process, i.e. the random variables σB

k+1−σB
k are mutually independent

for k ≥ 0 and identically distributed for k ≥ 1. (see, for example, [2] VI.7.3
page 187).

Also {σI
k−σB

k }k≥1 is a sequence of mutually independent random variables.

In the sequel, for the sake of clarity we state two results useful for our
purpose. The first one is about a characterization of a filtration generated by
a point processes (see [1]). As far as the second result is concerned, it is a
very easy result on the conditional expectation. Since the author cannot find a
source to refer to, the statement and the proof.

Lemma 4. (Theorem 5, Chap. III in [1]) Let Ft the natural filtration
generated by a (possibly multidimensional) point process K and let S be a
finite Ft-stopping time. Denote by {Tn}n∈N the jump times of the process K.
Then for all n ∈ N

FS ∩ {Tn ≤ S < Tn+1} = FTn ∩ {Tn ≤ S < Tn+1}. (9)
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Lemma 5. Let X and Y be two random variables and H, K be two σ-
algebras. Suppose that X and Y are independent, σ(X) ∨K independent of H
and Y H-measurable.

If f : Im(X) × Im(Y ) → R is a measurable function, then

E[f(X,Y )|H ∨ K] = E[f(X, y)|K]y=Y . (10)

Proof. We show the statement when f(X,Y ) = XY . The general case
follows by using the fact that the linear space generated by the product functions
is dense on the space of measurable functions.

Let A ∈ H and B ∈ K. Then

∫

Ω
E[XY |H ∨ K]IAIBdP =

∫

Ω
XY IAIBdP =

∫

Ω
XIBdP

∫

Ω
Y IAdP,

where the last equality easily follows by the hypotheses. Moreover

∫

Ω
XIBdP =

∫

Ω
E[X|K]IBdP

and Y = E[Y |H] so that

∫

Ω
XIBdP

∫

Ω
Y IAdP =

∫

Ω
XIBdP =

∫

Ω
Y E[X|K]IAIBdP,

that is

E[XY |H ∨ K] = Y E[X|K] = E[yX|K]y=Y .

For every t > 0 denote byM (DR[0, t]) the space of the probability measures
on the space DR[0, t] endowed with the Skorohod topology and by M (R) the
space of the probability measures on R.

Denote also DB
k,r = σ(DB

k,u, 0 ≤ u < r), where DB
k,u is the process defined

by Eq. (8).

We can finally state the representation theorem for the filter of Qt when
the observed history is

Gt = FD
t ∨ FC

t+ = FD
t ∨ FI

t ∨ FB
t .
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Theorem 6. For every t > 0 there exists πt : Ω → M (R) such that, if
f ∈ C0

b (R), then

πt(f) = E
[

f(Qt)/Gt

]

= I (Qt = 0) f(0)

+

∞
∑

j=1

E
[

f(AB
j,s − ys + 1)I(0,∞)(A

B
j,u − yu + 1, u ∈ [0, s))

]

E
[

I(0,∞)(A
B
j,u − yu + 1, u ∈ [0, s))

]

∣

∣

∣

s=t−σB
j ,ys=DB

j,s

× I[σB
j
,σI

j
)(t). (11)

Proof. We begin by noting that I (Qt > 0) is Gt-adapted. Then

E
[

f(Qt)/Gt

]

= I (Qt = 0) f(0) + I (Qt > 0)E
[

f(Qt)/Gt

]

.

It is useful to note that, when Qt > 0, there exists some j ∈ N such that
{

σB
j ≤ t < σI

j

}

. Moreover, for each t > 0 the set
{

σB
j ≤ t < σI

j

}

is Gt-
measurable. Then we can write previous equality as

E
[

f(Qt)/Gt

]

= I (Qt = 0) f(0) +

∞
∑

j=1

E
[

f(Qt)/Gt

]

I
{

σB
j ≤ t < σI

j

}

.

Now, on the intervals [σB
j , σ

I
j ) the departure process D

B
j,t of Q

B
j,t = Qt+σB

j
−QσB

j

behaves just like a Poisson process of intensity µ. In the sequel we formalize and
prove this intuition, by using argument similar as in Lemma 4, arising when S
is deterministic.

More precisely, for each j ∈ N, the trace of σ-algebra Gt on the set
{

σB
j ≤

t < σI
j

}

can be written as

Gt ∩
{

σB
j ≤ t < σI

j

}

=
{

GσB
j
∨ DB

j,t−σB
j

}

∩
{

σB
j ≤ t < σI

j

}

. (12)

In particular, Eq. (12), implies that for each Gt-measurable random variable
X there exists a

{

GσB
j
∨ DB

j,t−σB
j

}

-measurable random variable Y such that

following equality holds:

X I[σB
j ,σI

j )
(t) = Y I[σB

j ,σI
j )
(t). (13)

Our goal is to find the
{

GσB
j
∨ DB

j,t−σB
j

}

-measurable random variable Y

satisfying Eq. (13) when X = E
[

f(Qt)/Gt

]

, that is

E
[

f(Qt)/Gt

]

I[σB
j ,σI

j )
(t) = Y I[σB

j ,σI
j )
(t). (14)
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To this end it is useful to note that I[σB
j ,σI

j )
(t) = I[0,σI

j−σB
j )(t − σB

j ). Then by

conditioning on
{

GσB
j
∨ DB

j,t−σB
j

}

both sides of equality 13 it follows

E
[

E [f(Qt)/Gt] I[0,σI
j−σB

j )(t− σB
j )/

{

GσB
j
∨ DB

j,t−σB
j

}

]

=Y E
[

I[0,σI
j−σB

j )(t− σB
j )/

{

GσB
j
∨ DB

j,t−σB
j

}

]

. (15)

Consider the left hand side of previous equality. We can rewrite it as

E
[

E
[

I[0,σI
j−σB

j )(t− σB
j )f(Q(t−σB

j )+σB
j
−QσB

j
+QσB

j
)/Gt

]

/
{

GσB
j
∨ DB

j,t−σB
j

}

]

=E
[

I[0,σI
j−σB

j )(t− σB
j )f(Q

B
j,(t−σB

j )
+ 1)/GσB

j
∨ DB

j,t−σB
j

]

.

Now, observe that Lemma 1 and Remark 2 are applied to prove that the
processes QB

j,u and DB
j,u are independent of GσB

j
. Moreover,

σI
j − σB

j = inf
{

u ≥ 0 : QB
j,u + 1 = 0

}

, (16)

so that also the stopping time σI
j − σB

j is independent of GσB
j

while t − σB
j is

measurable w.r.t. GσB
j
. Then by conditioning on the bigger filtration GσB

j
∨

DB
j,σI

j
−σB

j

, we rewrite the right hand side of previous equality as

E
[

I[0,σI
j−σB

j )(t− σB
j )f(Q

B
j,(t−σB

j )
+ 1)/GσB

j
∨ DB

j,t−σB
j

]

=E
[

E
[

I[0,σI
j−σB

j )(t− σB
j )f(Q

B
j,(t−σB

j
) + 1)/GσB

j
∨DB

j,σI
j
−σB

j

]

/GσB
j
∨ DB

j,t−σB
j

]

.

Moreover setting H := GσB
j
, K := DB

j,σI
j−σB

j

, X := (σI
j − σB

j , Q
B
j ), Y := t− σB

j

and f(X,Y ) = I[0,σI
j−σB

j )(t− σB
j )f(Q

B
j,(t−σB

j )
+ 1), the hypotheses of Lemma 5

are fulfilled, and consequently

E
[

I[0,σI
j−σB

j )(t− σB
j )f(Q

B
j,(t−σB

j )
+ 1)/GσB

j
∨ DB

j,σI
j−σB

j

]

=E
[

I[0,σI
j−σB

j )(s)f(Q
B
j,s + 1)/DB

j,σI
j−σB

j

]

s=t−σB
j

.

Observe that the process QB
j,s + 1 = AB

j,s − DB
j,s + 1 for s < σI

j − σB
j behaves

like a continuous time random walk where the processes AB
k,sand DB

k,s are two
independent Poisson processes with intensities λ and µ, respectively. In fact,
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by Eq. (16), it follows that, if 0 < u < σI
j − σB

j , then I(QB
j,u + 1 > 0) = 1 and

so,

DB
k,u =

∫ σB
j +u

σB
j

I(Qs > 0)dNs =

∫ σB
j +u

σB
j

I(QB
j,s−σB

j

+ 1 > 0)dNs = NσB
j +u −NσB

j

and NσB
j +u − NσB

j
is a Poisson process with intensity µ independent of GσB

j
.

Finally let us observe that I[0,σI
j−σB

j )(s) = I(0,∞)(Q
B
j,u + 1, u ∈ [0, s)).

As a consequence,

E
[

I[0,σI
j−σB

j )(s)f(Q
B
j,s + 1)/DB

j,σI
j−σB

j

]

s=t−σB
j

= E
[

I(0,∞)(A
B
j,u − yu + 1, u ∈ [0, s))f(AB

j,s − ys + 1)
]

s=t−σB
j ,ys=DB

j,s

.

Now, the latter conditional expectation is measurable with respect to the
σ-algebra

{

GσB
j
∨ DB

j,t−σB
j

}

so we can write

E
[

E [f(Qt)/Gt] I[0,σI
j−σB

j )(t− σB
j )/

{

GσB
j
∨ DB

j,t−σB
j

}

]

= E
[

I(0,∞)(A
B
j,u − yu + 1, u ∈ [0, s))f(AB

j,s − ys + 1)
]

s=t−σB
j ,ys=DB

j,s

.

As far as the right hand side of Eq. (15) is concerned, by using similar tools
we find

E
[

I[0,σI
j−σB

j )(t− σB
j )/

{

GσB
j
∨ DB

j,t−σB
j

}

]

= E
[

I(0,∞)(A
B
j,u − yu + 1, u ∈ [0, s))

]

s=t−σB
j ,ys=DB

j,s

,

so that

Y =
E
[

I(0,∞)(A
B
j,u − yu + 1, u ∈ [0, s))f(AB

j,s − ys + 1)
]

E
[

I(0,∞)(A
B
j,u − yu + 1, u ∈ [0, s))

]

∣

∣

∣

∣

∣

s=t−σB
j ,ys=DB

j,s

,

and the statement is achieved.

Observe that by Eq. (4) we can write the following equality

ξt = t− τt(Q) = t− sup{s < t : Qs = 0} =
∞
∑

j=1

(t− σB
j )I

{

σB
j ≤ t < σI

j

}

. (17)
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In the light of the previous equality, we can give an unifying notation for
the processes (QB

j,s, A
B
j,s,D

B
j,s), j ∈ N. To this end for each t > 0 we define the

processes










Qt
s := Qs+τt(Q) −Qτt(Q),

At
s := As+τt(Q) −Aτt(Q),

Dt
s := Ds+τt(Q) −Dτt(Q),

(18)

where the superscript t stands to remember these processes starting from the
random time τt(Q) = sup{s < t : Qs = 0}.

Then, if t ∈ [σB
j , σ

I
j ) Q

t
s = QB

j,s, A
t
s = AB

j,s and Dt
s = DB

j,s.
By using the notations given by Eq. (17) and Eq. (18), we can restate

Theorem 6 as follows.

Theorem 7. For every t > 0 there exists πt : Ω → M (R) such that, if
f ∈ C0

b (R), then

πt(f) =E
[

f(Qt)/Gt

]

= I (Qt = 0) f(0) (19)

+I (Qt > 0)
E
[

f(At
s − ys + 1)I(0,∞)(A

t
u − yu + 1, u ∈ [0, s))

]

E
[

I(0,∞)(At
u − yu + 1, u ∈ [0, s))

]

∣

∣

∣

s=ξt,ys=Dt
s

.
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