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Abstract: A filtering problem is considered in the case when the state process
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1. Introduction

Fix a probability space (€2, F, P) and define on it a M/M/1 queue Q;.
Consider its standard representation, that is:

Qt = Qo + At — Dy, (1)
where

e (o is a NT-valued random variable;
e A, is a Poisson process with with P-intensity A;

o D= fo (Qs— > 0) dNg, N Poisson process with P-intensity p, where
0 if z=0,

@>0)=9, it 2> 0

e (o, A; and N, mutually independent.
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Suppose to observe at any fixed time ¢, the pair (D, C}), where C is the
idle time of ¢, that is the amount of time spent by Q; at level 0, i.e. the
process

C, :/0 1(Q, = 0) ds. (2)

We are interested in the filtering problem arising when, at any fixed time
t, we want to estimate the unknown state @Q; by observing the process (Ds, C5)
up to time t.

This work follows the same ideas and techniques as in [3], where authors
derive the filter on a queue with respect to its idle time, and, up to a scaling,
also its weak limit. Here we add to the observation of the idle time, that of the
departure process. This kind of problem falls in the setting of the so called sin-
gular filtering, since the observation process can be expressed as deterministic
functional of the state process via the equality D; =) ., 1(Qs— > Q).

In order to solve the singular filtering problems need alternative procedures
to those usually used for the computation of the filter, as the innovation theory
approach ore the method of the reference probability measure. In this paper we
derive an explicit expression for the filter based on some regenerative properties
of some processes involved and on the structure of the filtration generated by
the observation process. Denote by m; the filter of the state with respect to the
history generated by the observation process up to time ¢t. As well known, the
filter is uniquely defined by the rule

w(f) = E[£(Qu)/F7] (3)

for f in a sufficiently large class of functions.
For our purposes it will be useful to consider the elapsed time from the last
visit to 0 for the process )y, i.e. the process

ft =1- Tt(Q)’ (4)
where the functional 7, : Dg|[0,00) — Dg|0, 00) is defined by

Ti(z) = sup{s < t:z, = 0}. (5)
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2. The Representation Result

In order to prove the main result of this paper, we need to recall that observing
the continuous process C} is the same as observing the pair of point processes
(I, By), where I, is the process that counts the times when the queue starts an
idle period, and By is the process that counts the times when the queue starts
a busy period, that is:

I - / I(Qa_ = 1)dN; (6)

t
B = [ 1Q.- = 0)dA. (7)
0
So we can express the observed history as follows:
G =FPVvVFL=F’VvF vFL

The equality between the filtration generated by the idle time C; and the filtra-
tion generated by the pair of processes (I, By) together with some regenerative
properties of the point processes I;, By, have been widely studied in [3], Section
6. For the sake of completeness, we recall in the sequel the properties that are
used in this paper.

Let {02, k > 1} and {0}, k > 1} be the jump times of the process I; and
the process By, defined by Eq. (6) and by Eq. (7), respectively. For notational
convenience, also consider for k = 0, 0(])3 = aé = 0.

Under the assumption Qg = 0, it easy to verify that

U,?<0,€<0,§+1<0,£+1, for each k£ > 1,

and that ¢); = 0 when a£ <t< JE ' 1, for k>0, while Q; > 0 otherwise.
We start by observing some regenerative properties of the above jump times,
which are fundamental in the sequel.

Lemma 1. (Lemma 6.1 in [3]) For each k € N the processes Q% , = QHU,ﬁ_
Qaé and Qﬁt = Qt+a§ — Q"f are independent of ]-'U% and .7-"[% respectively.

Moreover, the process Qit has the same law as the process (Q;.

Proof. Clearly Qi o = Qo = 0, moreover it is easy to see that Qit solves
the same martingale problem as ()¢, hence these processes share the same law.
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The independence property follows by the strong Markov property of @,
since @ ol = 0:

B [exp (it (Quiaf ~ Qop) ) 1757] = B o5 (i (Qiof Qo)) Q0]
=E [exp (it (Quio — Qo) )| = Elexp (i (Q0)].

Similar arguments apply to show that the process QkBt is independent of FSB.
’ k
O

B : B _ AB _ B
Remark 2. The process Qk‘,t can be written as Qk‘,t = Ak,t Dy, where

{Agt = At‘i’Uf - AO‘E’ (8)

B _
Dk,t _DtJro'E _Daf'

Moreover, the process D,]ft can be expressed as a functional of the process
Qﬁt, that is D,fit = f(f ]I(Qf,sf > Qﬁs)ngs. Then it turns out to be indepen-
dent of F QB.

Tk

Remark 3. The process I; is a renewal process, and B; is a delayed
renewal process, i.e. the random variables JE_H — JE are mutually independent
for kK > 0 and identically distributed for & > 1. (see, for example, [2] VI.7.3
page 187).

Also {0l — B}, is a sequence of mutually independent random variables.

In the sequel, for the sake of clarity we state two results useful for our
purpose. The first one is about a characterization of a filtration generated by
a point processes (see [1]). As far as the second result is concerned, it is a
very easy result on the conditional expectation. Since the author cannot find a
source to refer to, the statement and the proof.

Lemma 4. (Theorem 5, Chap. III in [1]) Let F; the natural filtration
generated by a (possibly multidimensional) point process K and let S be a

finite Fy-stopping time. Denote by {T),}nen the jump times of the process K.
Then for all n € N

FsN{T, <S<Thi1} =Fp, N{T, <SS <Thi1}. 9)
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Lemma 5. Let X and Y be two random variables and H, K be two o-
algebras. Suppose that X and Y are independent, o(X) V K independent of H
and Y H-measurable.

If f : Im(X) x Im(Y) — R is a measurable function, then

E[f(X,Y)[H VK] = E[f(X,y)|Kly=y (10)

Proof. We show the statement when f(X,Y) = XY. The general case
follows by using the fact that the linear space generated by the product functions
is dense on the space of measurable functions.

Let A€ H and B € K. Then

/ E[XY|HV K|IslpdP = / XYTplpdP = / X]IBdP/ YTAdP,
Q Q Q Q
where the last equality easily follows by the hypotheses. Moreover
/ XlpdP = / E[X|K|IgdP
Q Q
and Y = E[Y|H] so that

/XJIBdP/YJIAdP—/XJIBdP—/YE[X\IC]]IA]IBdP,
Q Q Q Q

that is
EXY|H VK| =YE[X|K] = E[yX|Kl],—y.

O

For every t > 0 denote by M (Dg|0, t]) the space of the probability measures
on the space Dg[0,t] endowed with the Skorohod topology and by M (R) the
space of the probability measures on R.

Denote also D,ﬁr = U(D,ffu, 0 <wu < r), where D,ﬁu is the process defined
by Eq. (8).

We can finally state the representation theorem for the filter of Q; when
the observed history is

G =F’VvFL=FVvF vF’
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Theorem 6. For every t > 0 there exists m : @ — M (R) such that, if
f € CY(R), then

m(f) = E[f(Q+)/G:] =1(Q: = 0) f(0)
= E[f(AB:s —Ys + 1)]1(0,00)(‘4]% —yu+ Lu €0, 3))]
F T (AR, ot Lue o)

s:tfaf,ysszs

X Ijye ,1(t). (11)
(0B.01)
Proof. We begin by noting that I(Q; > 0) is G;-adapted. Then

E[f(Qu)/G] =1(Q1 = 0) £(0) + 1(Q; > 0) E[f(Q1)/G:].

It is useful to note that, when @Q; > 0, there exists some j € N such that
{O']-B <t < UJI»}. Moreover, for each t > 0 the set {O']-B <t < O'jl»} is G-
measurable. Then we can write previous equality as

E[f(Q)/G] =1(Q:=0) f +ZE F@Q)/G|{oF <t <al}.

Now, on the intervals [o? o7, ]) the departure process D it of Q]t = QHU —QyB
J

behaves just like a Poisson process of intensity p. In the sequel we formahze and
prove this intuition, by using argument similar as in Lemma 4, arising when S
is deterministic.

More precisely, for each j € N, the trace of o-algebra G; on the set {O']-B <
t < JJI» } can be written as

gm{a <t<JI} {QB\/D]tUB}ﬂ{J <t<01} (12)

In particular, Eq. (12), implies that for each Gi;-measurable random variable
X there exists a {Q 5 Vv DB B} measurable random variable Y such that

following equality holds
X I[UJB,JJI.)(t) =Y I[Uf,a})(t)' (13)

Our goal is to find the {Q B V D } measurable random variable Y
satisfying Eq. (13) when X = E[ (Qt)/gt] that is

E[f(Q0)/G] Top o1y(t) =Y Ijgp o1)(1). (14)
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To this end it is useful to note that I[UJBJ]()(t) = I[o,a]I—aJB)(t - af). Then by

conditioning on {G_ 5 vV DE .1 both sides of equality 13 it follows
g UJ ]7t70-]‘

E |:E [f(Qt)/gt] I[O,o’][*o’f’))(t B UJB)/{g B Vv D]Bt o' }]

B B
=YE [Igp1_p)(t = oF)/{G,p ij,t,Uf}]. (15)
Consider the left hand side of previous equality. We can rewrite it as

E [E [I[o,aLaB)(t —JB)f(Q(t—gB +oB ~ Q, B -l—QUJB)/gt] /{g B \/th o8 }]
=B[lg,o1o2)(t = 07) [(Qf gy + 1)/Gn VD _ 5],

Now, observe that Lemma 1 and Remark 2 are applied to prove that the
processes QB and DB are independent of G 5. Moreover,

of —of =inf{u>0: QF,+1=0}, (16)

so that also the stopping time JJI — af is independent of G_ B while ¢ — U]B is

measurable w.r.t. G_s. Then by conditioning on the b1gger filtration G _ 5 \%
J
Dfa B we rewrite the right hand side of previous equality as

E[I[Oﬂf—af)(t_O-jB)f(QB(t,UB +1)/g B \/th of ]
:E[E[I[OU—U )(t_o- )f(QBt O.B)+1)/gBVD ]/gB\/DB ]

Jyt— (7
Moreover setting H := G, B, K= DB o5 X = (O']I- — Uf,Qf), Y i =t— Uf
159 J 75
and f(X,Y) = I o1 _ o8 )(t - Jf)f( f(t o5+ 1), the hypotheses of Lemma 5
g J A
are fulfilled, and consequently ’

B
E[I[O7U§,U;3)(t - UjB)f( ]'B(t,o-f?) + 1)/g0§3 v Dj,a][fo'f]
B
=E [I[O al faj ( )f(Q] S + 1)/Dj,ajl.fo'f]s:tfo'f'
Observe that the process QB +1= AB Dfs + 1 for s < JJI- — O'JB behaves

like a continuous time random walk Where the processes AkB sand D}cB ; are two
independent Poisson processes with intensities A\ and p, respectively. In fact,
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by Eq. (16), it follows that, if 0 < u < o} — o, then [(QF, +1 > 0) =1 and
SO,

Uf’)—l—u Jf-‘,—u
B B
DE, = /U ) 1@ > 0N, - /U , LQE_ 541> 0N, = Nyp, = Ny
J J

and N, s,, — N, 5 is a Poisson process with intensity u independent of G 5.
J J J
Finally let us observe that Iy ;1_,5(s) = (g 00)( fu +1,u€l0,s)).
i ’ ’

As a consequence,

E [I[O,Ujl.faf)(s)f( fs + 1)/DjBio]I.fo] s:tfaf
= E[T0,00)(Afy — yu + 1,u € [0,5)) f(AF, — ys + 1))

s:tfaf,ysszs'
Now, the latter conditional expectation is measurable with respect to the
B .
o-algebra {gaf’ V Dj,t—af} SO we can write

E [E [F(Q0)/Gil Ijg g1 gy (t = 77)/{ Gy V th—as}]

J

- E[H(Ovm)(Afu ~Yut+Luel0, 8))f(Afs —Ys Tt 1)]

_4_ B, _pPB -
s=t I ,ystj’S

As far as the right hand side of Eq. (15) is concerned, by using similar tools
we find

E [I 0,01 o) (t = 07)/{Gyn V th_J]B }}
= B[lo00) (AP, = yu + 1Lu € [0,5))]

s:tfaf’),ysszs )

so that
v — E Lo 00) (A = yu + Lu €[0,8)) f (A7, — ys +1)]
El0,00) (A7, = yu +1,u € [0,5))] I ;
and the statement is achieved. O

Observe that by Eq. (4) we can write the following equality

& =t—T1(Q)=t—sup{s <t:Qs =0} = Z(t—J]-B)H{O'JB <t< 03(}. (17)
j=1
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In the light of the previous equality, we can give an unifying notation for
the processes ( fs, AJBS, DB ), 7 € N. To this end for each ¢t > 0 we define the
processes

Qg = QS+Tt(Q - th(Q)
Aé = AS+Tt( Q) — ATt(Q)’ (18)
Dy = Dyir @) = Drq)

where the superscript ¢ stands to remember these processes starting from the
random time 7(Q) = sup{s < ¢ : Qs = 0}.

Then, if t € [J] ,J]) Q. = ]s, Al = AB and D! = DB

By using the notations given by Eq. (17) and Eq. (18) we can restate

Theorem 6 as follows.

Theorem 7. For every t > 0 there exists m : 8 — M (R) such that, if
f € CP(R), then

m(f) =E[f(Q:)/G:] =1(Q¢ = 0) f(0) (19)
E[f(Ag —Ys + 1)H(O,m)(AZ — Yy +1Lu €0, 8))]
Qe >0) E[H(O,oo) (AL —yu+ Lu €0, 8))]

s=&¢ 7ys:D§
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