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Abstract: In this work the anomalous diffusion phenomenon with reaction
was modeled by Temporal Fractional Partial Differential Equation. The con-
vergence of high order implicit numerical scheme for one-dimension reaction-
subdiffusion equation was analyzed. Fort this, we used the Implicit Compact
Finite Difference Method for discretization of spacial variable and Backward
Finite Difference for temporal variable. For the Riemann-Liouville’s temporal
fractional derivative we used the Griinwald-Letnikov’s discretization. Finally,
we proved the convergence order using an example and numerical tests.
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1. Introduction

Phenomena of anomalous diffusion are some of the applications of Fractional
Partial Differential Equations (FPDEs), which can be modeled for Continu-
ous Time Random Walk (CTRW). The CTRW are direct generalizations of
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classicsal processes of random walks. An anomalous diffusion describes a dif-
fusion process with a non-linear relation with respect to time. Frequently, we
have an anomalous diffusion when the mean square displacement of particles is
proportional to a power of time variable, i.e.,

((t)) o t7, (1)

where « is the exponent of the anomalous diffusion. For the particular case
« = 1 we have the classical diffusive motion. For @ > 1 the motion is super-
diffusive and for 0 < a < 1 the motion is sub-diffusive.

Yuste et al. [12] present a model which describes the diffusion-reaction
problem A + B and state that pattern diffuse movement, which describes the
evolution of the concentrations a(z,t) and b(x,t) of the particles A and B,
respectively, is given by de following Diffusion-Reaction Equation

a = Dag, — Kab (2)
by = Dby, — Kab (3)

where D is the diffusion coefficient and K is the biomolecular reaction rate,
both assumed constant and equal in each equation.
A subdiffusive motion is characterized by the following asymptotic behavior:

2K,

(@*(t)) ~ T+

t — oo, (4)
where 0 < v < 1 is the exponent of subdiffusion and K, is the generalized
diffusion coefficient.

The subdiffusive motions occur in complex systems, such as glassy and dis-
ordered materials, in which pathways are constrained for geometric or energetic
reasons, see e.g. [3]. Chen et al. [4] state some works on anomalous subdiffu-
sion. For example, anomalous subdiffusion of proteins and lipids in membranes
observed by fluorescence correlation spectroscopy, anomalous subdiffusion as a
measure of cytoplasmic agglomeration in living cells, among others.

The fractional reaction-subdiffusion equations, formulated in [12], are given
by

a = oD (Kwam _ Kab), (5)
b = oD} (Kvbm - Kab), (6)

where oD} is the Riemann-Liouville (R-L) operator of order 1 — ~. For
0 < v < 1 a temporal (R-L) fractional derivative of a function y(t) is defined



ABOUT THE CONVERGENCE OF A NUMERICAL... 367

by

- 1 d [! T
o0 = 5 J, v

Note that the Riemann-Liouville operator is the identity operator, when v =1
and is the classical derivative operator, when v = 0.

Decoupling equations (5)-(6), as given in [3], we obtain a Fractional Reaction-
Subdiffusion Equation,

u = ODtlf'Y (KWUm — Ku) + f, (8)

where v = u(x,y) describes the motion of particles of a subdiffusive process
with reaction and f(z,y) is a known source term.

Regarding the numerical solution of (8), Chen et al [3] state two classical
numerical schemes. The first, is the second-order of convergence in the spa-
cial variable and, the second, considering the bases of finite differences uses
Richardson Extrapolation that, through, of a a parameter improves the spacial
convergence order. However, it is unclear about the order of convergence of this
method.

In this work, we state a high order numerical scheme for (8). The numerical
scheme uses compact finite differences for spacial discretization and converge
with fourth-order accuracy. The validity of the results is done by an example
and several numerical tests for different values of ~.

2. The Model

We state (8) as an initial-boundary value problem. Let Q = (a,b), a # b,
I = (0,7], T > 0 be intervals of real numbers. We denote by Q = Q x I,
¥, = {a} x T and X, = {b} x I, where ¥, and %, denote the boundary of
Q. An one-dimensional reaction-subdiffusion problem, with initial-boundary
condition, consists in finding a function u : Q — R such that

U = thlfv(Kvum—Ku>+f in Q, (9)
u(0) = wy on €, (10)
= ¢ on g, (11)

— ¢ on (12)

where K, and K take positive values, and f(x,t), uo(x), ©(t) and ¥(t) are
sufficiently smooth functions. Therefore, the equations (9)-(12) are our FPDE.
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3. Space-Time Discretization

Let the following discrete sets be given:
Q, = {z;: zi=a+ih,i=1,2,.,.M -1, h=(b—a)/M},
I" = {tp: ta=n7,n=12,..,.N, T=T/N},
QZ = QX I".
Define a uniform mesh M by the clausure of set Qj, i.e.,
M 1:T:QZU8Q;7

where 9Q], = ZTUXTUQY is a boundary of Qf, and, X7 = {a}xI", X7 = {b} xI7
and QY = Q),x{0}, where I” = {0}UI". The points (z;,t,) € M are called nodes
of the mesh and, usually denote by (i,n). Let y be a function and consider the
notation y;' = y(x;,t,) and, for a discrete function Y, the following notation,
Y=Y (i,n).

3.1. Space-Time Discretization

We approach the second-order spatial derivative by second-order finite differ-
ence operator and fourth-order compact finite difference operator.

3.1.1. Second Derivative: Second-Order Approximation

For n fixed, the Taylor series about the node (i,n) of the function y!, ,, is given
by

Yir1 =Y = h(?/m)z + QhQ(?Jm)i + ghg(ymx)i + O(h4)~ (13)
From (13),
i — 207 + uiy = B (Yaw)} + O(RY). (14)

Define the second-order central difference operator, §2, by
BV = Vi — 2 Y (15)
Note that this operator uses a three-points stencil. From (14) and (15), we have

1
()l = 250277 + O(12). (16)

Thus, %521@" approaches (y5,)!" with second-order accuracy.
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3.1.2. Second Derivative: Fourth-Order Approximation

We describe, quickly, the compact finite difference operators that approximate
the second-order spatial derivative. These operators are fourth-order and use
three-points stencil. For n fixed, we define, for a first-order derivative, the two
main operators of first-order: forward and backward, respectively,

Y=Y -, &Y =Y =Y (17)

and, the two first-order central difference operators, by

S Y =Y =Yy, 0 =07 46, (18)
From (17) we obtain 42,
0 =07 — 0 (19)

or, also, 62 = §,(d,).
From equations (1-60) of [1], we have

2
2 O
(Yaz)i = [ESinhlgl Yi (20)
and, from equations (1-69) and (1-70) of [1],
> 5]
(Yaz)i = lﬁsenhlgx] Yi
1 12 5 1237 5 123757 n
T [5’” ~ et g0 T e Oe | U
1 1 1 1
o R ot R A R 21
2[5 — 300+ 5% — gt + - 2D

On the other hand, we compute

1 52 1 1
_2 xl 2 y:l = _25923 1 2 y:LrL
= 2|12t 8|y
h25$[ 120+ a0 ~ Tragla o (Vi
1 1 1 1
- ﬁ[(ﬁ—55;14-@52——172859804—...]3/? (22)
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By comparing (21) and (22) we observe that terms are quite similar. Thus, we
can consider the following approximation

(y:mc)z ~ ﬁ 1+ %5% Y; (23)
or, for some p,
( )" — i i no4 (’)(hp) (24)

In order to obtain the truncation error O(h?), we multiply (23) by the operator
1+ 562, Thus, we have

130+
1 2 n 1 2, n p
1+ 502 (o) = 50208 + O(1), (25)
or
E(y:m)i—i—l + é(ymc)z‘ + E(ymc)z‘—l = 72 Vit~ 2y;" + yi—l] + O(R?).  (26)

In (26) we expand, in a Taylor series about the node (i, n), all functions evaluate
at the nodes (i£1,n). The terms on the left hand and right hand, are expanded
with truncation error O(h%) and O(h®), respectively. So,

1
h?) = —h4 TTTTTT P h6 . 2
O) = oMt + O(R) (27)
From (24) and (27), we have
(We)? = 5 %y L h( )7+ O(h°) (28)
Yz )i = n2 |1 T %53 i 240 Yxaxxaxxx)i .

Therefore, is the fourth-order compact finite difference operator, for the

52
1+562
second-order spatial derivative.

3.2. Temporal Approximation
We will approach the fractional derivative by Griinwald-Letnikov fractional

difference operator and, the classical temporal derivative, by backward finite
difference operator.
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3.2.1. Fractional Derivative

According to [8], the a-order Riemann-Liouville fractional derivative, o > 0, is
equivalent to the a-order Griinwald-Letnikov fractional derivative, defined by
[t/7]

oDy —hm—Zw y(t —j7), t =0, (29)

T—=0 T

where [t/7] denotes the integer part of ¢/7, and w$ are the coefficient of the
generating function w(z + «), i.e.,

w(z + ) Zw 2. (30)

Note that (29) can be reformulated as follows

[t/7]
1 )
oDiy(t) = — > Wiyt — i)+ O(). (31)
§=0

According to [6], [11] the truncation error O(7P) in (31), depends on the choice
the w. When w(z + ) = (1 — 2)® we have wf = (—1)7 (3‘) and, consequently,
p = 1 Thus, the fractional derivative of the discrete function, y™ = y(t,), is
given by

1< :
oDi'y" = v ZW? y" 7+ 0(7), (32)
=0

where the coefficients w}" are obtained, recursively, by the following formula:

1
wg =1, qull_w

; wé i=1,2,...,n. (33)

We define the a-order Griinwald-Letnikov fractional operator, by
00T = — Z ayn=i, (34)

Therefore, the Griinwald-Letnikov fractional derivative can be expressed as

thayn = thayn + O(T) (35)
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3.2.2. First-Order Derivative

For the first-order temporal derivative, we define the first-order backward finite
difference operator:
G Y=Y -y (36)

Thus, the temporal derivative with truncation error O(7) has the form

()} = 26, Y7+ O(r). (37

4. Compact Finite Difference Scheme

Substituting the operators: fourth-order compact finite difference, a-order Griinwald-
Letnikov fractional and first-order backward finite difference in our FPDE,
(9)-(12), we obtain the following Compact Finite Difference (CFD) numerical
scheme:

2
%5{Ui” = 05&(@%&3@}@—[(@“) o om Q) (39)
U = (ug)i on (39)
vy = ¢ on X7 (40)
Uy, = ¢"  on X, (41)

where U is a theoretical solution of our numerical scheme at a node (i,n) € Q7.
The equation (38) is equivalent to

1 -1 _ _ .
STUN = KW%[MF Eag] (00 M)02U" — Krodl UP + £ in Qf. (42)
Denote
i T Kk 1 1
H1 = 'yﬁv M2 = BT, U3 = g (/ﬂ—ﬁlm)
2 ) 14
R (Hl + EM), Aj=w; (43)

Thus, (42) is
[1 +1 52}57U‘n = (0, ")EUP — [1 + i(ﬂ s
19 )%t Vi H1\09¢ Vi H2 19 09 i

1 2 n oo T
+ T[l-i-ﬁ(sx]fi in Q. (44)
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After some calculations, the CFD numerical scheme (38)-(41), is given by

(1—12u3)Uy + (10 4+ 12U + (1 — 12u3)UL 4 = U + 10071

n
+ U 12) N (M:%Uf:f — U™ + M3Uﬁ[f)
=1

+ T(fil +10f7 + fi) in Qf (45)
U = (up); on (46)
Uy = ¢" on X (47)
UT, = ¢" on XI. (48)

In the last formulation, it is observed that the CFD numerical scheme is implicit,
and reduces to an algebraic linear system of dimension (M —1) x (M —1). This
system, in matrix notation, is given by

n
AU™ = BU™ '+ CY \U™ 7+ DF" + Gy, in Qj, (49)
j=1
where
A = tridiag(1 — 12u3,10 + 12p4, 1 — 12u3), B = tridiag(1,10,1),
C = 12tridiag(ps, —f14, p3), D = 7B,

are tridiagonal matrices of order (M — 1) x (M —1),
U = (U U )Y, = (e )T (50)

are, respectively, the unknown vector and the vector associated to f, of orders
RM~=1 and

B=—(1-12u3)U% + UL " + 1203 7, A UL 4 7FY,

is the boundary vector of order RM~1 where UYL = (U} 00...0U%)T and
L= (J500...0 f3)T.

The following theorem ensures the existence and uniqueness of solutions by
our numerical scheme.

Theorem 4.1. The linear system (49), associated with the CFD numerical
scheme (38)-(41), has a unique solution.

Proof. Note that the matrix A is strictly diagonally dominant. Conse-
quently it is nonsingular and thus invertible. Therefore, our numerical scheme
has a unique solution. O
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5. Consistency, Stability and Convergence of CFD Scheme
5.1. Consistency
We will prove that our numerical scheme is consistent with our FPDE, with

fourth-order spatial accuracy and first-order temporal accuracy.

Lemma 5.1. For each n = 1,...N. Let y" 7 be a bounded function,
O0<vy<land\;= wjl»_w. Then,

>
=0

<C,, Cp=c,n"" " ¢,= max ‘y”_j‘. (51)
j€{0,...,n}

Proof.

1< :
DIt
§=0
From (33) we have A\; < 0 for all j = 1,...,n. Thus,
1< i 2 1<
1= Z)\jyn ! <Cn(Tl_’Y B 1= )\J).
§=0 j=0

From (32) and (7): = Y0o \j = % +0(r) = U " 4 O(7). Hence

1 < .
<= [Nl e = ned),
oo e = s

n

1 .
1=y Z Ay
j=0

1
< e (2 b iy 607').

I'(v)

where cg is a constant. Thus

1 O :

n— -1 — -1

7_1_75 Ajy N O™, Cp=cpn’ ™,
J=0

or

< Ch.

i Ay
=0
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The local truncation error of our scheme, at a node (i,n), is given by

1 { 52
| —2—
n2l1+ L2

_MWﬂ—JUWW9< }U KW)—ﬂ(w

Theorem 5.1. Let 7 = hT7,0 < k < 4. The CFD numerical scheme (38)-
(41) is consistent with FPDE (9)-(12), and there exists a constant C; , > 0 such
that,

IRP| < Cin( '+ D 4 1), (53)

for all h, T sufficiently small.
Proof. From (37),

LU = ()] +O(), (54)

from (28) and (35),

i (16, 4 [ﬁ}m)

_ o1
= 7051: ((um)z - %h4(u:v:v:v:v:v:v) +O(h6)>
= K’y(ODtl_’y(u:t:t)n 240 Z)\ uxmxmxm n ]
+ 0(), (55)
and from (35)
00, V(KUT) = K(oDy "ul +0O(1)). (56)
Substituting (54)-(56) in (52),
R = ()} +O(r) = K, (6D ()} = i b e 37 Ay ()}
7 0 T 240 7-1—’Y J\Uzz i
§=0

—%OHD+K@@ﬂW+Oﬁ»—ﬁ

1<7 4, _~v—1 - n—j
- 0 E . " . 7
240 h ! j:o )\j (uﬂia}a}xwx)z O(T) (5 )
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By Lemma 5.1, the term of summation is bgunded and, the term h*r7~1 — 0,
if h* — 0 faster than 77~ 1. Thus, for 7 = k77, 0 < k < 4, the truncation error
R} — 0 as h,7 — 0. For each (i,n) fixed, we have from (57) and from constant
Cy, in (51), that
R} = O(h47"y*1n771 + 7') = O(h47"y*1n'y*1 +r+htt n'yflT'y)

= (’)((n”ilﬂfl +1)(h* + 7')), h,7 — 0.
Therefore, there exists a positive constant C;,, such that,

IR} < CLn(nw_lTw_l +1)(ht +7)

for all h, 7 sufficiently small. O
5.2. Stability Analysis

We will analyze the stability of CFD numerical scheme (38)-(41) by means of
Fourier Analysis.

The unknown vector U", in (50), corresponds to the theoretical solution of
numerical scheme. Denote by U” the approximate solution of numerical scheme.
The initial condition of numerical scheme is given by UY = (UY...UY, )T and,
INJO denotes the initial approximation of the numerical scheme.

The round-off error of our numerical scheme is defined by p” := U" — fJn,
n=1,2,..,N. We can consider, further, p" = (p? ... p%,_,)T.

Applying U™ and U" in (49) and subtracting both equations, we obtained
the round-off error equation

Ap" = Bp" 1+ C’Z Np" in Qf (58)
j=1

with initial and boundary conditions

P = Ul U’ on 973 (59)
po = 0 on X] (60)
pvy = 0 on Xj. (61)

In order to find the best approximation for the round-off error, we define,
for each n =1, ..., N, the following function x" : [a,b] — R, by

0, a<r<a+l ,

X"(x) =4 pl, xi—%<x<xi—|—%, i=1,..,.M—1,
0, b—2<z<h
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The expansion Fourier series for this function, is given by

o0

1 i2mm(z—a —a
= DIl (©2
where
1 ’ —i2mmn(z—a)/(b—a) n
cn(m) = \/m/ e X" (x)dx. (63)

Theorem 5.2. The function x satisfies the Parseval’s Identity

b oo
[ e@Pds= Y el
a m=—00
Proof. The proof of this identity can be found at Lemma 1 of [5]. O

The round-off error p”, in the discrete I2-norm, is given by
M—1
"7 = ( ) hW) (64)
i=1

By a simple calculation we can prove that [|p"[|% = fab |x™(x)|?dz, see equation
(13) of [2]. Thus, by Parseval’s Identity, we have [|p"[|% = > 0o |en(m)[?.
Based on the above analysis we can suppose that the solution of (58) has

the following form
1

pi = —
where o = 27/(b — a). Substituting (65) in (58), we have

dneiUih’ (65)

3

dp A = d, Bl <Z Ajdn]) ce?" in Q. (66)

j=1
The ith equation of the above linear system, is given by
_ n
ady = bd,—1 + &(Z Ajdn_]) , (67)
j=1
where

a = (1—12u3)e " 4 (10 +12u4) + (1 — 123)e'"

- 4[3 - sin2<%h)] - 12{#3 [2 - 4sin2<%h)} - m} (68)
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b = e 41046 =4 {3 — sin? <02h>} (69)

g = 12(M36*i“h — s+ Mgei"h) - 12{#3 [2 - 4sin2(a—2h>] - m}- (70)

Note that a,b and é satisfy the following relation
i=0b—2¢ b>0. (71)
From (70) we have: —& = 12u4 — 24p3 + 48p3sin? (Uh) and, from (43), 1244 —

2
24pus > 0. Thus, ¢ < 0 and, therefore, a > 0.
From (67), we have

dnzgg n1+~ (ZAdn]> (72)

_c —

If ¢ < 0, we have the following recursive formula,

(Zp\ ||dn— ]|> n=1,.. N. (73)

|dn| <

n—1

Lemma 5.2. The coefficients A\j (7 =0,1,2,...) satisfy
(1) =1, M=v-1 and X\; <0, j=1,2,..
(2) 25202 =0 and VneN', —370 A\ <L

Proof. A proof this lemma can be found at Lemma 2.1 of [4]. O

For the case n = 1, the recursive formula, we provide

S

di| <

ol = (52 + M=) dol.

By the part (1) of the Lemma 5.2,

|da| < |do]- (74)

Lemma 5.3. Let d,, be the coefficient of (65) and ¢ < 0. Then,

\dn] < |do|, ¥n € N, (75)
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Proof. We will use the Second principle of mathematical induction.
For n = 1 this was already proved in (74).
For all n € N*, 1 <k <n— 1, suppose |d| < |do|. Then, (73) imply

rdnr<[b~ (erw)]rdor [5 < (- ZA)]rdOr 76)

By the second expression, of part (2) of Lemma 5.2, we conclude that |d,| < |dg],
Vn € N*. O

Theorem 5.3. The CFD numerical scheme (38)-(41) is unconditionally

stable.
> |d|?

Proof. Applying (64), (65) and Lemma 5.3, we have
~0
>|d > =10z = 10° - U

M-—1 M-—1 1
n 772 n| 2 n|2 lazh

M—-1 1
ioih
(5

This completes the proof. O

5.3. Convergence Analysis

A result analogous to the Lax Equivalence Theorem, in fractional integration, is
given in [6], which expresses that a numerical method is of p-order convergent if,
and only if; is consistent and stable, of p-order. In our case it was already shown
that the CFD numerical scheme is consistent with (n?~177=1 4+ 1)(h* +7)-order
accuracy and unconditionally stable. Now we will show that is convergent with
(h* + 7)-order accuracy.

In this section, we will use the inner product and norm on [? space and we
will denote them by (-) and || - ||, respectively.

Before enunciate the convergence theorem first we consider the following
results.

Lemma 5.4. Let S € L(R"™) be a symmetric matriz with eigenvalues wy <
w9 < ... < wy. Then,

wixTx < xT8x < w,xTx, VxcR™ (77)
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Proof. The proof of this lemma can be found in [7], p. 21. O
Lemma 5.5. Let S € L(R™) be a symmetric matriz and wmax(S) be the

maximal eigenvalue of S. Then, for all x,y € R",

(5%, )| < lwmax(S)] 1] [ly] (78)

Proof.

[(Sx,y)| < ISxlllyl < ISIHx]lyll-

In the [? space, ||S| = ”m”ax1 |Sz| = p(SST)1/2 = p(S) = |wmax(S)|, where

p(S) is the resolvent of S.
O

Lemma 5.6. Let a,b,c € R with ac > 0. Then, the eigenvalues of tridiag-
onal matriz, S = tridiag(a,b,c), of order M — 1 x M — 1, are given by

wi(S) = b—l—%/ﬁcos(%), 1<i<M-—1. (79)

Proof. The idea of the proof of this lemma can be found in equation (2.2.40)
of [10]. O

In the following, we will enunciate a part of Gronwall Lemma.

Lemma 5.7. Suppose that (k,) and (p,) are non-negative sequences, and
the sequence (¢y,) satisfies

¢0 < 90,

n—

n—1 1
bn < g0+ Y Pt ki, n=1,
1=0 1=0

(80)

where gg = 0. Then, ¢, satisfies

n—1 n—1
n < (goJerz) eXp<2k1>, n =1 (81)
=0 =0
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Proof. A proof of this lemma can be found in [9], p. 14. O
From (53) we have

R < Cn 'l +7), C= max Ci,. (82)
(i,n)eQ)

For all n = 1,2,..., N we will denote R" = (R} ... R%, |)T. From (78),

M—1 1/2
|R"||2 = ( > |Rg|2> < G Y L D)W+ 1), 6 =+/C(M —1).(83)
i=1

For each node (i,n) € Q}, we define the error

el = ul'-U" (84)

3 7 7

where ' is the exact solution of the FPDE (9)-(12) at node (i,n). For each n =
0,1,...,N we denote the error by e" = (e ... 6?/[71)’11 and the exact solution of
the FPDE by u" = (u} ...u%,;_;)T. Thus, from (84) we have that e" = u" —U"
foralln = 0,1, ..., N. Applying u” and U" in (49) and immediately subtracting
both equations, we have the error equation

n
Ae" =Be" ' +CY N7+ DR", in Qf, (85)
j=1

with initial condition
e = 0 on Q. (86)

By considering the scalar product of (85) and €™, we have
(Ae",e") = (Be"fl,e"> + Z)\j (Ce"*j,e") + (DR",e"). (87)
j=1
Applying the Triangular Inequality to (87),
‘ (Ae", e") + Z |)\j|‘ (Ce"*j, e")
j=1

By the symmetry of the matrix A, we can apply Lemma 5.4 at the first term
of (88). Thus,
‘ (Ae", e")

(88)

(e

n ‘(DR",e") .

> |wmin(A)] [le"]. (89)
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Using the symmetry of the matrices B, C and D, and Lemma 5.5,

Be !, e" )| < |wmax(B)][le” | [le”]
Ce ! e" )| < |wmax(C) le" |l le”] (90)
<

‘(DR”,e" wmax (D) [[R"] [le™]-

Substituting (89) and (90) in (88) and, simplifying,

[win(A)] ]| < lwmax(B)] 1€" || + lwmax (C)] Y s €7 (91)
j=1

+ [wmax(D)] [R"]].
Using Lemma 5.6 we can calculate the eigenvalues of the matrices in (91). Thus

12419

|wmin(A)| =12+ |wmaX(B)| = 127

U 92
48 8 (92)
|wmax (C)] = 151 ffy , wmax(D)| = 127.

T T

Substituting (92) in (91),

1 2
dpy + = n
1 _ 17')/(“1 :u’2> .
le"l < ——glle" I+ T e 2 Nl e (93)

T i —" J=1
-

+ IRl
H2 ’
Ti=7

or

n

_ _ 2 »
e < e 77 (g + ) D2 Il ")+ IR (94)
j=1

By the hypothesis of Theorem 5.1
2 a :
el < e+ (g + o) - Il e 4 7R (95)
j=1

or equivalently

n n— g n—j n b—a\—* 2
el < e +Ca D~ Al e + 7R Co= (=) (411 + 5h2). (96)
j=1
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With this result we can now state the convergence theorem.

Theorem 5.4. The CFD numerical scheme (38)-(41) is convergent and
there exists a positive constant C, such that,

le"| < C(r*+7), Vi=1,..N. (97)

Proof. Applying (83) in (96), we have
n
le™l < fle"+C2 ) ALl | + (T T+ (Rt 4 7), (98)
j=1
or, equivalently

le™[<(1+CafAal)lle" M+ Co Y A lle" 7| + 7Ca(n?~ 77 1) (7). (99)
j=2

Set C3 = 1 + Cy, we have

le”| < T T T R (R )+ ) ICsy e |

j=1
1 n—1 n
< = y—1_~v-1 4 1 len—J
< S G T T (R 7)) (G e
=0 j:1
n—1 n '
< go+ Y m+ Y [CsAllle™ ], (100)
=0 j=1

where gy = [|€°]| = 0, p; = 7C1(n? "7~ +1)(h* + 7). The equation (100) is
equivalent to

n—1 n—1
lell < g+ > i+ S kel (101)
=0 =0

where k; = |Cs\,,—;|. Now, applying Lemma 5.7, we have

n—1 n—1
le™]l < <90 + Zm) exp (Z kz) (102)
=0 =0
n—1
= O (07T (W 4 7) exp (Z |)‘j|>
j=1
< n7eCiC3(n 1+ )Rt + 1) (103)

N

(T7 +T)eCiCs(h* + 7). (104)
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Hence, there exists a constant C = (77 + T)eC1C3 > 0, such that, for all
n=1,...,N,

le"]| < C(r*+7). (105)

This completes the proof. O

6. Numerical Results

In this section, we will verify the order of convergence of our numerical scheme,
by means of one example and several tests.

Example 1. Consider the following FPDE, given in [3]:

w = oD (g —u) + (1 +7)e’t in Q
u(@0) = 0 on
=t on %

= et'™ on ¥,

where Q = (0,1) x (0,1], @ = (0,1), X9 = {0} x [0,1] and £; = {1} x [0,1].
The exact solution is given by u(z,t) = et and, mazimum error, by

— n_yunr
leflee =, max_ _ lu = U7 (106)

In order to test the order of convergence of our numerical scheme, we consider
the following experimental formula, see [5],

lle(2h, 167)]|

leCh i~ (107

order(h, ) = logy

Thus, we take as reference the discretization h = 7 = 1/4 and, we calculate
the maximum error. Then, we consider the discretization h = 1/8,7 = 1/64
and, we calculate the maxzimum error. The order of convergence for this last
discretization, is given by

logy (lle(1/4,1/4) 1= /le(1/8, 1/64)< ).

For h =1/16,7 = 1/1024, the order of convergence, is given by

1o ([le(1/8.1/64) 1~ /[le(1/16,1/1024) = .
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In Table 1, we show the error and order of convergence of our numerical
scheme for different values of . It is observed that for all of values of ~ the
spatial convergence is fourth-order. Thus we have improved the order of con-
vergence of 2 to 4, obtained by Chen et al [3].

v h T llel|z order

1/4  1/4 08460e-2 -
02 1/8 1/64 0.488le-3 4.1155
1/16 1/1024 0.2724e-4 4.1631
/4 1/4  0163de-1 -
04 1/8 1/64 0.7903¢-3 4.3695
1/16 1/1024 0.3373e-4 4.5501
1/4  1/4  02343e-1 -
0.6 1/8 1/64 0.9904e-3 4.5642
1/16 1/1024 0.380le-4 4.7037
/4 1/4  03075e-1 -
08 1/8 1/64 0.1447e-2 4.4088
1/16 1/1024 0.6448¢-4 4.4885

Table 1: Error and order of convergence of CFD numerical scheme.

7. Conclusion

We applied the Implicit Compaq Finite Difference numerical scheme for Frac-
tional Partial Differential Equation (Reaction-Subdiffusion Equation) and was
demonstrated that this numerical scheme is unconditionally stable and con-
verges with fourth-order accuracy for spatial variable. Finally, the numerical
result presented is coherent with our theoretical analysis.
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