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Abstract: In this work the anomalous diffusion phenomenon with reaction
was modeled by Temporal Fractional Partial Differential Equation. The con-
vergence of high order implicit numerical scheme for one-dimension reaction-
subdiffusion equation was analyzed. Fort this, we used the Implicit Compact
Finite Difference Method for discretization of spacial variable and Backward
Finite Difference for temporal variable. For the Riemann-Liouville’s temporal
fractional derivative we used the Grünwald-Letnikov’s discretization. Finally,
we proved the convergence order using an example and numerical tests.
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1. Introduction

Phenomena of anomalous diffusion are some of the applications of Fractional
Partial Differential Equations (FPDEs), which can be modeled for Continu-
ous Time Random Walk (CTRW). The CTRW are direct generalizations of
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classicsal processes of random walks. An anomalous diffusion describes a dif-
fusion process with a non-linear relation with respect to time. Frequently, we
have an anomalous diffusion when the mean square displacement of particles is
proportional to a power of time variable, i.e.,

〈x2(t)〉 ∝ tα, (1)

where α is the exponent of the anomalous diffusion. For the particular case
α = 1 we have the classical diffusive motion. For α > 1 the motion is super-
diffusive and for 0 < α < 1 the motion is sub-diffusive.

Yuste et al. [12] present a model which describes the diffusion-reaction
problem A + B and state that pattern diffuse movement, which describes the
evolution of the concentrations a(x, t) and b(x, t) of the particles A and B,
respectively, is given by de following Diffusion-Reaction Equation

at = Daxx −Kab (2)

bt = Dbxx −Kab (3)

where D is the diffusion coefficient and K is the biomolecular reaction rate,
both assumed constant and equal in each equation.

A subdiffusive motion is characterized by the following asymptotic behavior:

〈x2(t)〉 ∼ 2Kγ

Γ(1 + γ)
tγ , t→ ∞, (4)

where 0 < γ < 1 is the exponent of subdiffusion and Kγ is the generalized
diffusion coefficient.

The subdiffusive motions occur in complex systems, such as glassy and dis-
ordered materials, in which pathways are constrained for geometric or energetic
reasons, see e.g. [3]. Chen et al. [4] state some works on anomalous subdiffu-
sion. For example, anomalous subdiffusion of proteins and lipids in membranes
observed by fluorescence correlation spectroscopy, anomalous subdiffusion as a
measure of cytoplasmic agglomeration in living cells, among others.

The fractional reaction-subdiffusion equations, formulated in [12], are given
by

at = 0D
1−γ
t

(
Kγaxx −Kab

)
, (5)

bt = 0D
1−γ
t

(
Kγbxx −Kab

)
, (6)

where 0D
1−γ
t is the Riemann-Liouville (R-L) operator of order 1 − γ. For

0 < γ < 1 a temporal (R-L) fractional derivative of a function y(t) is defined
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by

0D
1−γ
t y(t) =

1

Γ(γ)

d

dt

∫ t

0

y(τ)

(t− τ)1−γ
dτ. (7)

Note that the Riemann-Liouville operator is the identity operator, when γ = 1
and is the classical derivative operator, when γ = 0.

Decoupling equations (5)-(6), as given in [3], we obtain a Fractional Reaction-
Subdiffusion Equation,

ut = 0D
1−γ
t

(
Kγuxx −Ku

)
+ f, (8)

where u = u(x, y) describes the motion of particles of a subdiffusive process
with reaction and f(x, y) is a known source term.

Regarding the numerical solution of (8), Chen et al [3] state two classical
numerical schemes. The first, is the second-order of convergence in the spa-
cial variable and, the second, considering the bases of finite differences uses
Richardson Extrapolation that, through, of a α parameter improves the spacial
convergence order. However, it is unclear about the order of convergence of this
method.

In this work, we state a high order numerical scheme for (8). The numerical
scheme uses compact finite differences for spacial discretization and converge
with fourth-order accuracy. The validity of the results is done by an example
and several numerical tests for different values of γ.

2. The Model

We state (8) as an initial-boundary value problem. Let Ω = (a, b), a 6= b,
I = (0, T ], T > 0 be intervals of real numbers. We denote by Q = Ω × I,
Σa = {a} × I and Σb = {b} × I, where Σa and Σb denote the boundary of
Q. An one-dimensional reaction-subdiffusion problem, with initial-boundary
condition, consists in finding a function u : Q −→ R such that

ut = 0D
1−γ
t

(
Kγuxx −Ku

)
+ f in Q, (9)

u(0) = u0 on Ω, (10)

u = ϕ on Σa, (11)

u = ψ on Σb, (12)

where Kγ and K take positive values, and f(x, t), u0(x), ϕ(t) and ψ(t) are
sufficiently smooth functions. Therefore, the equations (9)-(12) are our FPDE.
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3. Space-Time Discretization

Let the following discrete sets be given:

Ωh = {xi : xi = a+ ih, i = 1, 2, ...,M − 1, h = (b− a)/M},
Iτ = {tn : tn = nτ, n = 1, 2, ..., N, τ = T/N},
Qτ

h = Ωh × Iτ .

Define a uniform mesh M by the clausure of set Qτ
h, i.e.,

M := Qτ
h = Qτ

h ∪ ∂Qτ
h,

where ∂Qτ
h = Στ

a∪Στ
b∪Ω0

h is a boundary of Qτ
h and, Στ

a = {a}×Iτ , Στ
b = {b}×Iτ

and Ω0
h = Ωh×{0}, where Iτ = {0}∪Iτ . The points (xi, tn) ∈ M are called nodes

of the mesh and, usually denote by (i, n). Let y be a function and consider the
notation yni ≡ y(xi, tn) and, for a discrete function Y , the following notation,
Y n
i ≡ Y (i, n).

3.1. Space-Time Discretization

We approach the second-order spatial derivative by second-order finite differ-
ence operator and fourth-order compact finite difference operator.

3.1.1. Second Derivative: Second-Order Approximation

For n fixed, the Taylor series about the node (i, n) of the function yni±1, is given
by

yni±1 = yni ± h(yx)
n
i +

1

2
h2(yxx)

n
i ± 1

6
h3(yxxx)

n
i +O(h4). (13)

From (13),
yni+1 − 2yni + yni−1 = h2(yxx)

n
i +O(h4). (14)

Define the second-order central difference operator, δ2x, by

δ2xY
n
i := Y n

i+1 − 2Y n
i + Y n

i−1. (15)

Note that this operator uses a three-points stencil. From (14) and (15), we have

(yxx)
n
i =

1

h2
δ2xY

n
i +O(h2). (16)

Thus, 1
h2 δ

2
xY

n
i approaches (yxx)

n
i with second-order accuracy.
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3.1.2. Second Derivative: Fourth-Order Approximation

We describe, quickly, the compact finite difference operators that approximate
the second-order spatial derivative. These operators are fourth-order and use
three-points stencil. For n fixed, we define, for a first-order derivative, the two
main operators of first-order: forward and backward, respectively,

δ+x Y
n
i := Y n

i+1 − Y n
i , δ−x Y

n
i := Y n

i − Y n
i−1 , (17)

and, the two first-order central difference operators, by

δxY
n
i := Y n

i+1/2 − Y n
i−1/2 , δ0x := δ+x + δ−x . (18)

From (17) we obtain δ2x,
δ2x = δ+x − δ−x (19)

or, also, δ2x = δx(δx).
From equations (1-60) of [1], we have

(yxx)
n
i =

[
2

h
sinh−1 δx

2

]2
yni (20)

and, from equations (1-69) and (1-70) of [1],

(yxx)
n
i =

[
2

h
senh−1 δx

2

]2
yni

=
1

h2

[
δx −

12

223!
δ3x +

1232

245!
δ5x −

123252

267!
δ7x + ...

]2
yni

=
1

h2

[
δ2x −

1

12
δ4x +

1

90
δ6x −

1

560
δ8x + ...

]
yni . (21)

On the other hand, we compute

1

h2

[
δ2x

1 + 1
12δ

2
x

]
yni =

1

h2
δ2x

[
1

1 + 1
12δ

2
x

]
yni

=
1

h2
δ2x

[
1− 1

12
δ2x +

1

144
δ4x −

1

1728
δ6x + ...

]
yni

=
1

h2

[
δ2x −

1

12
δ4x +

1

144
δ6x −

1

1728
δ8x + ...

]
yni (22)
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By comparing (21) and (22) we observe that terms are quite similar. Thus, we
can consider the following approximation

(yxx)
n
i ≈ 1

h2

[
δ2x

1 + 1
12δ

2
x

]
yni (23)

or, for some p,

(yxx)
n
i =

1

h2

[
δ2x

1 + 1
12δ

2
x

]
yni +O(hp). (24)

In order to obtain the truncation error O(hp), we multiply (23) by the operator
1 + 1

12δ
2
x. Thus, we have

[
1 +

1

12
δ2x

]
(yxx)

n
i =

1

h2
δ2xy

n
i +O(hp), (25)

or

1

12
(yxx)

n
i+1 +

5

6
(yxx)

n
i +

1

12
(yxx)

n
i−1 =

1

h2

[
yni+1 − 2yni + yni−1

]
+O(hp). (26)

In (26) we expand, in a Taylor series about the node (i, n), all functions evaluate
at the nodes (i±1, n). The terms on the left hand and right hand, are expanded
with truncation error O(h6) and O(h8), respectively. So,

O(hp) =
1

240
h4(yxxxxxx)

n
i +O(h6). (27)

From (24) and (27), we have

(yxx)
n
i =

1

h2

[
δ2x

1 + 1
12δ

2
x

]
Y n
i +

1

240
h4(yxxxxxx)

n
i +O(h6). (28)

Therefore, δ2x
1+ 1

12
δ2x

is the fourth-order compact finite difference operator, for the

second-order spatial derivative.

3.2. Temporal Approximation

We will approach the fractional derivative by Grünwald-Letnikov fractional
difference operator and, the classical temporal derivative, by backward finite
difference operator.
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3.2.1. Fractional Derivative

According to [8], the α-order Riemann-Liouville fractional derivative, α > 0, is
equivalent to the α-order Grünwald-Letnikov fractional derivative, defined by

0D
α
t y(t) = lim

τ→0

1

τα

[t/τ ]∑

j=0

ωα
j y(t− jτ), t > 0, (29)

where [t/τ ] denotes the integer part of t/τ , and ωα
j are the coefficient of the

generating function ω(z + α), i.e.,

ω(z + α) =

∞∑

j=0

ωα
j z

j . (30)

Note that (29) can be reformulated as follows

0D
α
t y(t) =

1

τα

[t/τ ]∑

j=0

ωα
j y(t− jτ) +O(τp). (31)

According to [6], [11] the truncation error O(τp) in (31), depends on the choice
the ωα

j . When ω(z + α) = (1 − z)α we have ωα
j = (−1)j

(α
j

)
and, consequently,

p = 1. Thus, the fractional derivative of the discrete function, yn ≡ y(tn), is
given by

0D
α
t y

n =
1

τα

n∑

j=0

ωα
j y

n−j +O(τ), (32)

where the coefficients ωα
j are obtained, recursively, by the following formula:

ωα
0 = 1, ωα

j =

[
1− (α+ 1)

j

]
ωα
j−1, j = 1, 2, ..., n. (33)

We define the α-order Grünwald-Letnikov fractional operator, by

0δ
α
t Y

n :=
1

τα

n∑

j=0

ωα
j Y

n−j . (34)

Therefore, the Grünwald-Letnikov fractional derivative can be expressed as

0D
α
t y

n = 0δ
α
t Y

n +O(τ). (35)
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3.2.2. First-Order Derivative

For the first-order temporal derivative, we define the first-order backward finite
difference operator:

δ−t Y
n
i := Y n

i − Y n−1
i . (36)

Thus, the temporal derivative with truncation error O(τ) has the form

(yt)
n
i =

1

τ
δ−t Y

n
i +O(τ). (37)

4. Compact Finite Difference Scheme

Substituting the operators: fourth-order compact finite difference, α-order Grünwald-
Letnikov fractional and first-order backward finite difference in our FPDE,
(9)-(12), we obtain the following Compact Finite Difference (CFD) numerical
scheme:

1

τ
δ−t U

n
i = 0δ

1−γ
t

(
Kγ

1

h2

[ δ2x
1 + 1

12δ
2
x

]
Un
i − KUn

i

)
+ fni in Qτ

h (38)

U0
i = (u0)i on Ωh (39)

Un
0 = ϕn on Στ

a (40)

Un
M = ψn on Στ

b , (41)

where Un
i is a theoretical solution of our numerical scheme at a node (i, n) ∈ Qτ

h.
The equation (38) is equivalent to

δ−t U
n
i = Kγ

τ

h2

[
1 +

1

12
δ2x

]−1(
0δ

1−γ
t

)
δ2xU

n
i − Kτ 0δ

1−γ
t Un

i + τfni in Qτ
h. (42)

Denote

µ1 = Kγ
τ

h2
, µ2 = Kτ, µ3 =

1

τ1−γ

(
µ1 −

1

12
µ2

)

µ4 =
2

τ1−γ

(
µ1 +

5

12
µ2

)
, λj = ω1−γ

j . (43)

Thus, (42) is

[
1 +

1

12
δ2x

]
δ−t U

n
i = µ1

(
0δ

1−γ
t

)
δ2xU

n
i − µ2

[
1 +

1

12
δ2x

]
0δ

1−γ
t Un

i

+ τ
[
1 +

1

12
δ2x

]
fni in Qτ

h. (44)
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After some calculations, the CFD numerical scheme (38)-(41), is given by

(1− 12µ3)U
n
i−1 + (10 + 12µ4)U

n
i + (1− 12µ3)U

n
i+1 = Un−1

i−1 + 10Un−1
i

+ Un−1
i+1 + 12

n∑

j=1

λj

(
µ3U

n−j
i−1 − µ4U

n−j
i + µ3U

n−j
i+1

)

+ τ
(
fni−1 + 10fni + fni+1

)
in Qτ

h (45)

U0
i = (u0)i on Ωh (46)

Un
0 = ϕn on Στ

a (47)

Un
M = ψn on Στ

b . (48)

In the last formulation, it is observed that the CFD numerical scheme is implicit,
and reduces to an algebraic linear system of dimension (M −1)× (M −1). This
system, in matrix notation, is given by

AUn = BUn−1 + C

n∑

j=1

λjU
n−j +DFn +Gn

Σ , in Qτ
h, (49)

where

A = tridiag(1− 12µ3, 10 + 12µ4, 1− 12µ3), B = tridiag(1, 10, 1),
C = 12 tridiag(µ3,−µ4, µ3), D = τB,

are tridiagonal matrices of order (M − 1)× (M − 1),

Un = (Un
1 ... U

n
M−1)

T, Fn = (fn1 ... f
n
M−1)

T (50)

are, respectively, the unknown vector and the vector associated to f , of orders
R
M−1, and

Gn
Σ = −(1− 12µ3)U

n
Σ +Un−1

Σ + 12µ3
∑n

j=1 λjU
n−j
Σ + τFn

Σ,

is the boundary vector of order R
M−1, where Un

Σ = (Un
0 0 0 ... 0Un

M )T and
Fn
Σ = (fn0 0 0 ... 0 fnM )T.
The following theorem ensures the existence and uniqueness of solutions by

our numerical scheme.

Theorem 4.1. The linear system (49), associated with the CFD numerical
scheme (38)-(41), has a unique solution.

Proof. Note that the matrix A is strictly diagonally dominant. Conse-
quently it is nonsingular and thus invertible. Therefore, our numerical scheme
has a unique solution.
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5. Consistency, Stability and Convergence of CFD Scheme

5.1. Consistency

We will prove that our numerical scheme is consistent with our FPDE, with
fourth-order spatial accuracy and first-order temporal accuracy.

Lemma 5.1. For each n = 1, ..., N . Let yn−j be a bounded function,
0 < γ < 1 and λj = ω1−γ

j . Then,

∣∣∣∣∣

n∑

j=0

λjy
n−j

∣∣∣∣∣ 6 Cn, Cn = cnn
γ−1, cn = max

j∈{0,...,n}

∣∣yn−j
∣∣. (51)

Proof.

∣∣∣∣∣
1

τ1−γ

n∑

j=0

λjy
n−j

∣∣∣∣∣ 6 cn
1

τ1−γ

n∑

j=0

∣∣λj
∣∣, cn = max

j∈{0,...,n}

∣∣yn−j
∣∣.

From (33) we have λj < 0 for all j = 1, ..., n. Thus,

∣∣∣∣∣
1

τ1−γ

n∑

j=0

λjy
n−j

∣∣∣∣∣ 6 cn

(
2

τ1−γ
− 1

τ1−γ

n∑

j=0

λj

)
.

From (32) and (7): 1
τ1−γ

∑n
j=0 λj =

tγ−1

n

Γ(γ) +O(τ) = (nτ)γ−1

Γ(γ) +O(τ). Hence

∣∣∣∣∣
1

τ1−γ

n∑

j=0

λjy
n−j

∣∣∣∣∣ 6 cn

(
2 τγ−1 − 1

Γ(γ)
nγ−1τγ−1 + coτ

)
.

where c0 is a constant. Thus

∣∣∣∣∣
1

τ1−γ

n∑

j=0

λjy
n−j

∣∣∣∣∣ 6 Cnτ
γ−1, Cn = cnn

γ−1,

or ∣∣∣∣∣

n∑

j=0

λjy
n−j

∣∣∣∣∣ 6 Cn.
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The local truncation error of our scheme, at a node (i, n), is given by

Rn
i

= Rn
i (h, τ) =

1

τ
δ−t U

n
i − 0δ

1−γ
t

(
Kγ

1

h2

[ δ2x
1 + 1

12δ
2
x

]
Un
i − KUn

i

)
− fni . (52)

Theorem 5.1. Let τ = h
κ

1−γ , 0 < κ < 4. The CFD numerical scheme (38)-
(41) is consistent with FPDE (9)-(12), and there exists a constant Ci,n > 0 such
that,

|Rn
i | 6 Ci,n(n

γ−1τγ−1 + 1)(h4 + τ), (53)

for all h, τ sufficiently small.

Proof. From (37),

1

τ
δ−t U

n
i = (ut)

n
i +O(τ), (54)

from (28) and (35),

0δ
1−γ
t

(
Kγ

1

h2

[ δ2x
1 + 1

12δ
2
x

]
Un
i

)

= Kγ 0δ
1−γ
t

(
(uxx)

n
i − 1

240
h4(uxxxxxx)

n
i +O(h6)

)

= Kγ

(
0D

1−γ
t (uxx)

n
i − 1

240
h4

1

τ1−γ

n∑

j=0

λj(uxxxxxx)
n−j
i

+ O(τ)
)
, (55)

and from (35)

0δ
1−γ
t

(
KUn

i

)
= K

(
0D

1−γ
t uni +O(τ)

)
. (56)

Substituting (54)-(56) in (52),

Rn
i = (ut)

n
i +O(τ)−Kγ

(
0D

1−γ
t (uxx)

n
i − 1

240
h4

1

τ1−γ

n∑

j=0

λj(uxxxxxx)
n−j
i

+ O(τ)
)
+K

(
0D

1−γ
t uni +O(τ)

)
− fni

=
Kγ

240
h4τγ−1

(
n∑

j=0

λj(uxxxxxx)
n−j
i

)
+O(τ). (57)
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By Lemma 5.1, the term of summation is bounded and, the term h4τγ−1 → 0,
if h4 → 0 faster than τγ−1. Thus, for τ = h

κ
1−γ , 0 < κ < 4, the truncation error

Rn
i → 0 as h, τ → 0. For each (i, n) fixed, we have from (57) and from constant

Cn, in (51), that

Rn
i = O

(
h4τγ−1nγ−1 + τ

)
= O

(
h4τγ−1nγ−1 + τ + h4 + nγ−1τγ

)

= O
(
(nγ−1τγ−1 + 1)(h4 + τ)

)
, h, τ → 0.

Therefore, there exists a positive constant Ci,n such that,

|Rn
i | 6 Ci,n(n

γ−1τγ−1 + 1)(h4 + τ)

for all h, τ sufficiently small.

5.2. Stability Analysis

We will analyze the stability of CFD numerical scheme (38)-(41) by means of
Fourier Analysis.

The unknown vector Un, in (50), corresponds to the theoretical solution of

numerical scheme. Denote by Ũ
n
the approximate solution of numerical scheme.

The initial condition of numerical scheme is given by U0 = (U0
1 ... U

0
M−1)

T and,

Ũ
0
denotes the initial approximation of the numerical scheme.
The round-off error of our numerical scheme is defined by ρn := Un − Ũ

n
,

n = 1, 2, ..., N . We can consider, further, ρn = (ρn1 ... ρ
n
M−1)

T.

Applying Un and Ũ
n
in (49) and subtracting both equations, we obtained

the round-off error equation

Aρn = Bρn−1 + C

n∑

j=1

λjρ
n−j , in Qτ

h (58)

with initial and boundary conditions

ρ0 = U0 − Ũ
0

on Ωh (59)

ρ0 = 0 on Στ
a (60)

ρM = 0 on Στ
b . (61)

In order to find the best approximation for the round-off error, we define,
for each n = 1, ..., N , the following function χn : [a, b] → R, by

χn(x) =





0 , a 6 x 6 a+ h
2 ,

ρni , xi − h
2 < x < xi +

h
2 , i = 1, ...,M − 1,

0 , b− h
2 < x 6 b.
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The expansion Fourier series for this function, is given by

χn(x) =
1√
b− a

∞∑

m=−∞

cn(m)ei2mπ(x−a)/(b−a) , (62)

where

cn(m) =
1√
b− a

∫ b

a
e−i2mπ(x−a)/(b−a)χn(x)dx. (63)

Theorem 5.2. The function χ satisfies the Parseval’s Identity

∫ b

a
|χn(x)|2dx =

∞∑

m=−∞

|cn(m)|2.

Proof. The proof of this identity can be found at Lemma 1 of [5].

The round-off error ρn, in the discrete l2-norm, is given by

‖ρn‖2l2 =

(
M−1∑

i=1

h|ρni |2
)

(64)

By a simple calculation we can prove that ‖ρn‖2l2 =
∫ b
a |χn(x)|2dx, see equation

(13) of [2]. Thus, by Parseval’s Identity, we have ‖ρn‖2l2 =
∑∞

m=−∞ |cn(m)|2.
Based on the above analysis we can suppose that the solution of (58) has

the following form

ρni =
1√
b− a

dne
iσih, (65)

where σ = 2π/(b − a). Substituting (65) in (58), we have

dnAe
iσih = dn−1Be

iσih +

(
n∑

j=1

λjdn−j

)
Ceiσih , in Qτ

h. (66)

The ith equation of the above linear system, is given by

ãdn = b̃dn−1 + c̃

(
n∑

j=1

λjdn−j

)
, (67)

where

ã = (1− 12µ3)e
−iσh + (10 + 12µ4) + (1− 12µ3)e

iσh

= 4
[
3− sin2

(σh
2

)]
− 12

{
µ3

[
2− 4sin2

(σh
2

)]
− µ4

}
(68)
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b̃ = e−iσh + 10 + eiσh = 4
[
3− sin2

(σh
2

)]
(69)

c̃ = 12
(
µ3e

−iσh − µ4 + µ3e
iσh
)
= 12

{
µ3

[
2− 4sin2

(σh
2

)]
− µ4

}
. (70)

Note that ã, b̃ and c̃ satisfy the following relation

ã = b̃− c̃, b > 0. (71)

From (70) we have: −c̃ = 12µ4 − 24µ3 + 48µ3sin
2
(
σh
2

)
and, from (43), 12µ4 −

24µ3 > 0. Thus, c̃ < 0 and, therefore, ã > 0.
From (67), we have

dn =
b̃

b̃− c̃
dn−1 +

c̃

b̃− c̃

(
n∑

j=1

λjdn−j

)
. (72)

If c̃ < 0, we have the following recursive formula,

|dn| 6
b̃

b̃− c̃
|dn−1| −

c̃

b̃− c̃

(
n∑

j=1

|λj ||dn−j |
)
, n = 1, ..., N. (73)

Lemma 5.2. The coefficients λj (j = 0, 1, 2, ...) satisfy

(1) λ0 = 1, λ1 = γ − 1 and λj < 0, j = 1, 2, ...
(2)

∑∞
j=0 λj = 0 and ∀n ∈ N

∗, −∑n
j=1 λj < 1.

Proof. A proof this lemma can be found at Lemma 2.1 of [4].

For the case n = 1, the recursive formula, we provide

|d1| 6
b̃

b̃− c̃
|d0| −

c̃

b̃− c̃
|λ1||d0| =

( b̃

b̃− c̃
+ λ1

c̃

b̃− c̃

)
|d0|.

By the part (1) of the Lemma 5.2,

|d1| 6 |d0|. (74)

Lemma 5.3. Let dn be the coefficient of (65) and c̃ < 0. Then,

|dn| 6 |d0|, ∀n ∈ N
∗. (75)
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Proof. We will use the Second principle of mathematical induction.
For n = 1 this was already proved in (74).
For all n ∈ N

∗, 1 6 k 6 n− 1, suppose |dk| 6 |d0|. Then, (73) imply

|dn| 6
[

b̃

b̃− c̃
− c̃

b̃− c̃

( n∑

j=1

|λj |
)]

|d0| =
[

b̃

b̃− c̃
− c̃

b̃− c̃

(
−

n∑

j=1

λj

)]
|d0|. (76)

By the second expression, of part (2) of Lemma 5.2, we conclude that |dn| 6 |d0|,
∀n ∈ N

∗.

Theorem 5.3. The CFD numerical scheme (38)-(41) is unconditionally
stable.

Proof. Applying (64), (65) and Lemma 5.3, we have

‖Un − Ũ
n‖2l2 = ‖ρn‖2l2 =

(
M−1∑

i=1

h|ρni |2
)

=

(
M−1∑

i=1

h
∣∣∣

1√
b− a

eiσih
∣∣∣
2
)
|dn|2

6

(
M−1∑

i=1

h
∣∣∣

1√
b− a

eiσih
∣∣∣
2
)
|d0|2 = ‖ρ0‖2l2 = ‖U0 − Ũ

0‖2l2

This completes the proof.

5.3. Convergence Analysis

A result analogous to the Lax Equivalence Theorem, in fractional integration, is
given in [6], which expresses that a numerical method is of p-order convergent if,
and only if, is consistent and stable, of p-order. In our case it was already shown
that the CFD numerical scheme is consistent with (nγ−1τγ−1+1)(h4+τ)-order
accuracy and unconditionally stable. Now we will show that is convergent with
(h4 + τ)-order accuracy.

In this section, we will use the inner product and norm on l2 space and we
will denote them by ( · ) and ‖ · ‖, respectively.

Before enunciate the convergence theorem first we consider the following
results.

Lemma 5.4. Let S ∈ L(Rn) be a symmetric matrix with eigenvalues ω1 6

ω2 6 ... 6 ωn. Then,

ω1x
Tx 6 xTSx 6 ωnx

Tx, ∀x ∈ R
n. (77)
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Proof. The proof of this lemma can be found in [7], p. 21.

Lemma 5.5. Let S ∈ L(Rn) be a symmetric matrix and ωmax(S) be the
maximal eigenvalue of S. Then, for all x,y ∈ R

n,

∣∣(Sx,y
)∣∣ 6 |ωmax(S)| ‖x‖‖y‖. (78)

Proof.

∣∣(Sx,y
)∣∣ 6 ‖Sx‖‖y‖ 6 ‖S‖‖x‖‖y‖.

In the l2 space, ‖S‖ = max
‖z‖=1

‖Sz‖ = ρ
(
SST

)1/2
= ρ(S) = |ωmax(S)|, where

ρ(S) is the resolvent of S.

Lemma 5.6. Let a, b, c ∈ R with ac > 0. Then, the eigenvalues of tridiag-
onal matrix, S = tridiag(a, b, c), of order M − 1×M − 1, are given by

ωi(S) = b+ 2
√
ac cos

( iπ
M

)
, 1 6 i 6M − 1. (79)

Proof. The idea of the proof of this lemma can be found in equation (2.2.40)
of [10].

In the following, we will enunciate a part of Gronwall Lemma.

Lemma 5.7. Suppose that (kn) and (pn) are non-negative sequences, and
the sequence (φn) satisfies





φ0 6 g0,

φn 6 g0 +
n−1∑

l=0

pl +
n−1∑

l=0

klφl, n > 1,
(80)

where g0 > 0. Then, φn satisfies

φn 6

(
g0 +

n−1∑

l=0

pl

)
exp

(
n−1∑

l=0

kl

)
, n > 1. (81)
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Proof. A proof of this lemma can be found in [9], p. 14.

From (53) we have

|Rn
i | 6 C(nγ−1τγ−1 + 1)(h4 + τ), C = max

(i,n)∈Qn
h

Ci,n. (82)

For all n = 1, 2, ..., N we will denote Rn = (Rn
1 ... R

n
M−1)

T. From (78),

‖Rn‖2=
(

M−1∑

i=1

|Rn
i |2
)1/2

6 C1(nγ−1τγ−1 + 1)(h4 + τ), C1 =
√

C(M − 1).(83)

For each node (i, n) ∈ Qn
h, we define the error

eni = uni − Un
i , (84)

where uni is the exact solution of the FPDE (9)-(12) at node (i, n). For each n =
0, 1, ..., N we denote the error by en = (en1 ... e

n
M−1)

T and the exact solution of
the FPDE by un = (un1 ... u

n
M−1)

T. Thus, from (84) we have that en = un−Un

for all n = 0, 1, ..., N . Applying un and Un in (49) and immediately subtracting
both equations, we have the error equation

Aen = Ben−1 + C

n∑

j=1

λje
n−j +DRn , in Qτ

h, (85)

with initial condition

e0 = 0 on Ωh. (86)

By considering the scalar product of (85) and en, we have

(
Aen, en

)
=
(
Ben−1, en

)
+

n∑

j=1

λj

(
Cen−j, en

)
+
(
DRn, en

)
. (87)

Applying the Triangular Inequality to (87),

∣∣∣
(
Aen, en

)∣∣∣ 6
∣∣∣
(
Ben−1, en

)∣∣∣+
n∑

j=1

|λj |
∣∣∣
(
Cen−j, en

)∣∣∣+
∣∣∣
(
DRn, en

)∣∣∣. (88)

By the symmetry of the matrix A, we can apply Lemma 5.4 at the first term
of (88). Thus, ∣∣∣

(
Aen, en

)∣∣∣ > |ωmin(A)| ‖en‖2. (89)
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Using the symmetry of the matrices B,C and D, and Lemma 5.5,
∣∣∣
(
Ben−1, en

)∣∣∣ 6 |ωmax(B)| ‖en−1‖ ‖en‖ ,∣∣∣
(
Cen−1, en

)∣∣∣ 6 |ωmax(C)| ‖en−j‖ ‖en‖ ,∣∣∣
(
DRn, en

)∣∣∣ 6 |ωmax(D)| ‖Rn‖ ‖en‖.
(90)

Substituting (89) and (90) in (88) and, simplifying,

|ωmin(A)| ‖en‖ 6 |ωmax(B)| ‖en−1‖+ |ωmax(C)|
n∑

j=1

|λj | ‖en−j‖ (91)

+ |ωmax(D)| ‖Rn‖.

Using Lemma 5.6 we can calculate the eigenvalues of the matrices in (91). Thus

|ωmin(A)| = 12 +
12µ2
τ1−γ

, |ωmax(B)| = 12,

|ωmax(C)| = 48µ1
τ1−γ

+
8µ2
τ1−γ

, |ωmax(D)| = 12τ.
(92)

Substituting (92) in (91),

‖en‖ 6
1

1 +
µ2
τ1−γ

‖en−1‖+
1

τ1−γ

(
4µ1 +

2

3
µ2

)

1 +
µ2
τ1−γ

n∑

j=1

|λj | ‖en−j‖ (93)

+
τ

1 +
µ2
τ1−γ

‖Rn‖,

or

‖en‖ 6 ‖en−1‖+ τγ−1
(
4µ1 +

2

3
µ2

) n∑

j=1

|λj | ‖en−j‖+ τ‖Rn‖. (94)

By the hypothesis of Theorem 5.1

‖en‖ 6 ‖en−1‖+ h−κ
(
4µ1 +

2

3
µ2

) n∑

j=1

|λj | ‖en−j‖+ τ‖Rn‖, (95)

or equivalently

‖en‖6‖en−1‖+ C2
n∑

j=1

|λj | ‖en−j‖+ τ‖Rn‖, C2=
(b− a

M

)−κ(
4µ1 +

2

3
µ2

)
. (96)
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With this result we can now state the convergence theorem.

Theorem 5.4. The CFD numerical scheme (38)-(41) is convergent and
there exists a positive constant C, such that,

‖en‖ 6 C
(
h4 + τ

)
, ∀i = 1, ..., N. (97)

Proof. Applying (83) in (96), we have

‖en‖ 6 ‖en−1‖+ C2
n∑

j=1

|λj | ‖en−j‖+ τC1(nγ−1τγ−1 + 1)(h4 + τ), (98)

or, equivalently

‖en‖6
(
1 + C2|λ1|

)
‖en−1‖+ C2

n∑

j=2

|λj | ‖en−j‖+ τC1(nγ−1τγ−1+1)(h4+τ). (99)

Set C3 = 1 + C2, we have

‖en‖ 6 τC1(nγ−1τγ−1 + 1)(h4 + τ) +

n∑

j=1

|C3λj| ‖en−j‖

6
1

n

n−1∑

l=0

τC1
(
nγ−1τγ−1 + 1)(h4 + τ) +

n∑

j=1

|C3λj | ‖en−j‖

6 g0 +
n−1∑

l=0

pl +
n∑

j=1

|C3λj| ‖en−j‖, (100)

where g0 = ‖e0‖ = 0, pl = τC1
(
nγ−1τγ−1 + 1)(h4 + τ). The equation (100) is

equivalent to

‖en‖ 6 g0 +

n−1∑

l=0

pl +

n−1∑

l=0

kl ‖el‖, (101)

where kl = |C3λn−l|. Now, applying Lemma 5.7, we have

‖en‖ 6

(
g0 +

n−1∑

l=0

pl

)
exp

(
n−1∑

l=0

kl

)
(102)

= nτC1C3
(
nγ−1τγ−1 + 1)(h4 + τ) exp

(
n−1∑

j=1

|λj|
)

< nτe C1C3
(
nγ−1τγ−1 + 1)(h4 + τ) (103)

6 (T γ + T )e C1C3
(
h4 + τ

)
. (104)
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Hence, there exists a constant C = (T γ + T )e C1C3 > 0, such that, for all
n = 1, ..., N ,

‖en‖ 6 C
(
h4 + τ

)
. (105)

This completes the proof.

6. Numerical Results

In this section, we will verify the order of convergence of our numerical scheme,
by means of one example and several tests.

Example 1. Consider the following FPDE, given in [3]:

ut = 0D
1−γ
t

(
uxx − u

)
+ (1 + γ)extγ in Q

u(0) = 0 on Ω

u = t1+γ on Σ0

u = et1+γ on Σ1,

where Q = (0, 1) × (0, 1], Ω = (0, 1), Σ0 = {0} × [0, 1] and Σ1 = {1} × [0, 1].
The exact solution is given by u(x, t) = ext1+γ and, maximum error, by

‖e‖l∞ = max
16i6M−1, 16n6N

|uni − Un
i |. (106)

In order to test the order of convergence of our numerical scheme, we consider
the following experimental formula, see [5],

order(h, τ) = log2
‖e(2h, 16τ)‖l∞
‖e(h, τ)‖l∞

. (107)

Thus, we take as reference the discretization h = τ = 1/4 and, we calculate
the maximum error. Then, we consider the discretization h = 1/8, τ = 1/64
and, we calculate the maximum error. The order of convergence for this last
discretization, is given by

log2
(
‖e(1/4, 1/4)‖l∞/‖e(1/8, 1/64)‖l∞

)
.

For h = 1/16, τ = 1/1024, the order of convergence, is given by

log2
(
‖e(1/8, 1/64)‖l∞ /‖e(1/16, 1/1024)‖l∞

)
.
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In Table 1, we show the error and order of convergence of our numerical
scheme for different values of γ. It is observed that for all of values of γ the
spatial convergence is fourth-order. Thus we have improved the order of con-
vergence of 2 to 4, obtained by Chen et al [3].

γ h τ ‖e‖l∞ order

1/4 1/4 0.8460e -2 -
0.2 1/8 1/64 0.4881e -3 4.1155

1/16 1/1024 0.2724e -4 4.1631

1/4 1/4 0.1634e -1 -
0.4 1/8 1/64 0.7903e -3 4.3695

1/16 1/1024 0.3373e -4 4.5501

1/4 1/4 0.2343e -1 -
0.6 1/8 1/64 0.9904e -3 4.5642

1/16 1/1024 0.3801e -4 4.7037

1/4 1/4 0.3075e -1 -
0.8 1/8 1/64 0.1447e -2 4.4088

1/16 1/1024 0.6448e -4 4.4885

Table 1: Error and order of convergence of CFD numerical scheme.

7. Conclusion

We applied the Implicit Compaq Finite Difference numerical scheme for Frac-
tional Partial Differential Equation (Reaction-Subdiffusion Equation) and was
demonstrated that this numerical scheme is unconditionally stable and con-
verges with fourth-order accuracy for spatial variable. Finally, the numerical
result presented is coherent with our theoretical analysis.
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