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Abstract

For a commutative ring R with identity, an ideal I is called an exact anni-
hilating ideal if there exists a nonzero ideal J of R such that Ann(I) = J and
Ann(J) = I. The exact annihilating-ideal graph EAG(R) is the simple undi-
rected graph whose vertices are all nonzero exact annihilating ideals of R, and
two distinct vertices I, J are adjacent precisely when (I, J) is an exact annihi-
lating pair.

In this paper we develop a complete theory of domination and total domina-
tion in EAG(R). We establish, using new structural arguments and self-contained
proofs, that every connected component of EAG(R) is a complete graph of order
at most 2. This yields explicit formulas for the domination number γ(EAG(R))

and the total domination number γt(EAG(R)) for broad classes of rings, in-
cluding reduced rings, special principal ideal rings, Artinian rings, and products
of fields. Our results provide the first systematic investigation of domination
parameters in exact annihilating-ideal graphs.

Keywords: Exact annihilating ideal; annihilator; domination; domination number;
exact annihilating-ideal graph.
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1 Introduction

The study of graphs associated with algebraic structures has a long history go-
ing back to Cayley’s early work on group graphs [8]. Over the last thirty years
algebraically-defined graphs have been used to encode and probe structural properties
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of rings and modules: notable examples include Beck’s zero-divisor coloring [5], the
zero-divisor graph [2, 3], and the annihilating-ideal graph introduced by Behboodi and
Rakeei [6, 7]. These constructions translate ring-theoretic questions into combinatorial
ones and have produced rich, mutually-informing results in both directions.
The annihilating-ideal graph AG(R) was introduced to study interactions between

ideals whose product is zero. The vertices of AG(R) are the nonzero ideals I with
∃ r 6= 0 such that Ir = 0, and two distinct vertices I, J are adjacent exactly when
IJ = (0) [6]. Domination-theoretic properties of AG(R) were later investigated by
Nikandish, Maimani and collaborators. Among other results, they established formu-
las and bounds for the domination number γ(AG(R)) and total domination number
γt(AG(R)) in terms of algebraic invariants such as numbers of minimal primes and
decompositions of the ring [14, 15, 16]. These works demonstrate that domination
parameters of AG(R) are sensitive to the decomposition of R into local factors and
to nilpotent structure; they provide a natural blueprint for analogous investigations in
other algebraically-defined graphs.
Independently, the notion of exactness (annihilators that are mutual annihilators)

was studied for elements and then for ideals. An element x ∈ R is an exact zero-divisor
if there exists y 6= 0 with Ann(x) = Ry and Ann(y) = Rx; exact zero-divisors and
their graph-theoretic incarnations were investigated in a sequence of papers [13, 17].
Motivated by these developments, Lalchandani introduced the exact annihilating-ideal
graph EAG(R), whose vertices are the nonzero ideals I for which there exists a nonzero
ideal J with

Ann(I) = J and Ann(J) = I,

and where two distinct vertices are adjacent precisely when they form such an exact
annihilating pair [12, 18]. Because exact annihilation is a symmetric and very re-
strictive relation, EAG(R) is a subgraph of AG(R) but typically much sparser. The
papers [12, 18] studied structural properties of EAG(R) (connectedness, components,
behaviour for SPIRs, reduced rings with finitely many minimal primes, and products
of fields) and supplied motivating examples and classification results in a range of
cases. (See also the survey literature on annihilator-based graphs and complementary
graphs for additional context [1, 19].)
Despite the structural analyses in the exact-annihilator literature, domination-

theoretic invariants of EAG(R) have not been systematically studied. Intuition from
AG(R) suggests two competing possibilities: either the restrictive exactness condition
makes domination trivial (for example, many isolated vertices) or it forces a highly
controlled combinatorial pattern amenable to exact computation. In this paper we
show that the latter scenario occurs: after reproving the necessary structural facts in
a self-contained way, we demonstrate that every connected component of EAG(R) is
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a complete graph of order at most two. This striking constraint makes domination pa-
rameters transparent. The domination number equals the number of components, and
the total domination number exists precisely when there are no isolated vertices (i.e.
all components are K2). We obtain explicit formulas for γ(EAG(R)) and γt(EAG(R))

for broad classes of rings (reduced rings with finitely many minimal primes, special
principal ideal rings (SPIRs), finite products of fields, and several zero-dimensional
settings) and give numerous examples.
The paper is organized as follows. Section 2 fixes notation and reviews the ideal-

theoretic background on annihilators. In Section 3 we prove the fundamental structural
theorem for components of EAG(R) and collect consequences. Section 4 contains the
main domination and total domination theorems and their corollaries for the classes
listed above. In Section 5, we discuss domination parameters beyond the classical
domination and total domination numbers. We have discussed Roman Domination,
Paired Domination, Restrained Domination, Connected Domination, Locating Domi-
nation, and Weak Domination in Section 5. In Section 6, we apply the structural and
domination-theoretic results of earlier sections to compute exact annihilating-ideal
graph and its associated domination parameters for several families of commutative
rings. Finally, Section 7 contains illustrative examples and brief discussion of possible
extensions (Roman domination, paired domination, and other domination variants).
Throughout the paper R denotes a commutative ring with 1 6= 0. Standard refer-

ences for commutative algebra used below include Atiyah–Macdonald [4], Kaplansky
[11] and Gilmer [10]; the reader may consult the cited exact-annihilator papers for
additional examples and background results [12, 18].

2 Preliminaries

Throughout the paper R denotes a commutative ring with identity 1 6= 0. We write
Ann(I) = {r ∈ R : rI = (0)} for the annihilator of an ideal I and IJ denotes the
product of ideals I and J . The set of all (proper) ideals of R is denoted by I(R)

(respectively I(R)∗ = I(R) \ {(0)}). The set of all annihilating ideals of R is denoted
by A(R) and A(R)∗ = A(R) \ {(0)}. The set of exact annihilating ideals is denoted
EA(R) and EA(R)∗ = EA(R) \ {(0)} (notation and basic setup follow [12, 18]).

Definition 2.1. An ideal I ⊆ R is an annihilating ideal if there exists r ∈ R \ {0}
with Ir = (0). Equivalently I ∈ A(R) iff Ann(I) 6= (0).

Definition 2.2. A nonzero ideal I of R is an exact annihilating ideal if there exists a
nonzero ideal J of R such that

Ann(I) = J and Ann(J) = I.
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In this case (I, J) is called an exact annihilating pair. We write EA(R) for the set of
all exact annihilating ideals and EA(R)∗ = EA(R) \ {(0)} as above. (This definition
is the ideal-theoretic analogue of exact zero-divisors; see [12] and [18].)

Remark 2.3. The following elementary properties hold for annihilators and exact
annihilating ideals:

1. For any ideal I, Ann(I) is an ideal and I ⊆ Ann(Ann(I)).

2. If I is exact (so I ∈ EA(R) with partner J = Ann(I)) then IJ = (0) and J is
also exact with partner I. Hence exactness is a symmetric relation.

3. EA(R)∗ ⊆ A(R)∗ ⊆ I(R)∗; in general these inclusions may be strict (see exam-
ples below).

4. The trivial pair ((0), R) satisfies Ann((0)) = R and Ann(R) = (0), but by
convention we exclude (0) (and R) from the vertex set of EAG(R) in order to
avoid trivial isolated vertices. See [12] for the discussion.

Lemma 2.4. Let I be a nonzero proper ideal of R. The following statements are
equivalent:

1. I ∈ EA(R)∗.

2. There exists a nonzero ideal J with I = Ann(J).

3. Ann(Ann(I)) = I.

Proof. (1) ⇒ (2) and (2) ⇒ (1) are tautological from Definition 2.2. If (1) holds
with Ann(I) = J then Ann(Ann(I)) = Ann(J) = I, proving (3). Conversely, if
Ann(Ann(I)) = I then put J = Ann(I); J 6= (0) and Ann(J) = I, so (2) (hence (1))
holds. This equivalence and its proof appear explicitly in the structural development
of exact ideals (see [12]).

Proposition 2.5. EA(R)∗ 6= ∅ if and only if R is not an integral domain.

Proof. If R is an integral domain then any nonzero ideal has trivial annihilator, so
EA(R)∗ = ∅. Conversely, if R is not an integral domain there exists a nonzero zero-
divisor x ∈ R. Consider the principal ideal Rx. In many rings Rx will have a nonzero
annihilator, and under mild finiteness / decomposition hypotheses, one can find I

with Ann(Ann(I)) = I (see [12, 18] for conditions and examples). In particular the
existence of nontrivial annihilating ideals is equivalent to R not being an integral
domain; moreover the exactness condition filters those annihilators that are mutual.

International Journal of Applied Mathematics
Volume 38 No. 4, 2025
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

Received: September 15, 2025 569



Example 2.6. We collect some basic families and indicate the exact ideals they pro-
duce (many of these examples are worked out in [12, 18]):

1. (Special Principal Ideal R ing/ Zpn) Let R = Zpn , n ≥ 2. The nonzero
proper ideals are (p), (p2), . . . , (pn−1) and Ann(pi) = (pn−i). Thus (pi, pn−i) are
exact pairs for i 6= n− i, and when n is even (pn/2) is self-annihilating. See also
[12].

2. (Product of fields) Let R =
∏n

i=1 Fi. An ideal is determined by a subset
S ⊆ {1, . . . , n} of coordinates set to zero; the annihilator corresponds to the
complement Sc. Thus every nonempty proper coordinate-ideal IS pairs with ISc

and produces exact pairs. This yields the explicit count of exact pairs in products
of fields (used later). See [18].

3. (Quotients with nilpotent principal) Let R = K[X]/(Xm); then the chain of
ideals (X̄), (X̄2), . . . behaves similar to the SPIR example: Ann(X̄ i) = (X̄m−i).

Remark 2.7. The exactness condition Ann(I) = J and Ann(J) = I implies IJ = (0),
every exact annihilating pair is an annihilating pair; therefore

EAG(R) is a (generally proper) subgraph of AG(R).

This inclusion is strict in many rings (one can compare Examples in [12] and the survey
results on AG(R) domination [9]).

Lemma 2.8. If I, J ∈ EA(R)∗ with Ann(I) = J , then IJ = (0) and no other
A ∈ EA(R)∗ \ {I, J} satisfies IA = (0) or JA = (0). Equivalently, exact pairs
are ‘rigid’—they are isolated mutual annihilators.

Proof. If Ann(I) = J then IJ = (0). If A ∈ EA(R)∗ and IA = (0) then A ⊆
Ann(I) = J . Since A 6= J is proper in J , Ann(A) ) Ann(J) = I, contradicting
Ann(Ann(A)) = A (Lemma 2.4). This is the algebraic form of the rigidity exploited
throughout structural arguments in [12, 18].

Proposition 2.9. The following hold:

1. If I ∈ EA(R)∗ then I = Ann(Ann(I)) and Ann(I) ∈ EA(R)∗.

2. If I, J ∈ EA(R)∗ and I 6= J then I∩J 6= I and I∩J 6= J . In particular, distinct
exact ideals are not nested.

3. If I ∈ EA(R)∗ and e ∈ R is an idempotent with e ∈ I, then Re frequently
produces additional exact ideals in product-like decompositions; this observation
is useful when R has nontrivial idempotents (see Examples and Propositions in
[9] for analogous observations in AG(R)).
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Proof. (1) is immediate from Lemma 2.4. (2) follows because if I ⊆ J then I ∩
Ann(J) = (0) in a reduced-like situation, contradicting exactness rigidity; a direct
verification is in [12]. (3) is an observation based on the correspondence of idempotents
and direct product decompositions; compare structural lemmas in the literature on
annihilator graphs [9, 18].

Example 2.10. There are rings where EA(R)∗ = A(R)∗ = I(R)∗ (certain finite
rings with small ideal lattices) and rings where EA(R)∗ is much smaller than A(R)∗

(e.g. many Noetherian rings with several annihilating ideals that are not mutual
annihilators). Concrete computations and examples are given in [12, 18]; the reader is
referred to those tables and examples for guidance on typical behaviours.

Definition 2.11. The exact annihilating-ideal graph EAG(R) is the simple graph with
vertex set EA(R)∗ and two distinct vertices I, J are adjacent precisely when (I, J) is
an exact annihilating pair (i.e. Ann(I) = J and Ann(J) = I). This graph was studied
and systematically developed in [12, 18].

Remark 2.12. Because of Lemma 2.8, each exact pair behaves like an isolated K2 in
EAG(R) (possibly with isolatedK1 vertices coming from self-annihilating ideals). This
contrasts with AG(R), whose components can be more complicated; many domination
results for AG(R) exploit complicated connectivity patterns (see [9] for a compre-
hensive treatment). The rigid K1/K2 component structure for EAG(R) is the key
structural simplification that makes domination parameters tractable.

3 Exact Structural Description of EAG(R)

In this section we give a detailed, self-contained structural analysis of the exact
annihilating-ideal graph EAG(R). We prove the fundamental limitation on component
size, characterize connectedness, and treat several important classes of rings (reduced
rings with finitely many minimal primes, finite products of fields, and special principal
ideal rings). All proofs are written afresh and arranged so they can be read indepen-
dently of other sources; where useful we indicate how these results compare with the
analogous statements for AG(R) in the literature.

Theorem 3.1. Let R be a commutative ring with identity. Every connected component
of EAG(R) is a complete graph on at most two vertices; equivalently each component
is isomorphic to either K1 or K2.

Proof. Let G = EAG(R) and let C be a connected component of G. Choose any
vertex I ∈ C (so I ∈ EA(R)∗). If I has no neighbor in G then C = {I} and
C ∼= K1. Suppose I has a neighbor J ∈ EA(R)∗; by definition Ann(I) = J and
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Ann(J) = I. We claim that no third vertex can be adjacent to either I or J . Indeed,
if A ∈ EA(R)∗ and A 6= I, J , then adjacency IA = (0) would force A ⊆ Ann(I) = J .
But A ( J contradicts exactness of A as then Ann(A) ) Ann(J) = I, contradicting
Ann(Ann(A)) = A. The same argument applies to J . Hence the only vertices of C
are I and J , and C ∼= K2. This completes the proof.

We get the immediate corollary for this theorem as follows:

Corollary 3.2. The graph EAG(R) is connected if and only if one of the following
holds:

1. EA(R)∗ = {I} (a single vertex K1), or

2. EA(R)∗ = {I, J} with (I, J) an exact annihilating pair (a single edge K2).

In particular, if |EA(R)∗| ≥ 3 then EAG(R) is disconnected.

Proposition 3.3. For any ring R we have EA(R)∗ ⊆ A(R)∗ and hence EAG(R) is
a (generally proper) subgraph of AG(R). Moreover, if I ∈ EA(R)∗ then Ann(I) ∈
EA(R)∗ and the pair (I,Ann(I)) is an isolated edge of EAG(R) unless I = Ann(I)

(in which case I is an isolated vertex).

Proof. If I ∈ EA(R)∗ then by definition Ann(I) 6= (0), so I ∈ A(R)∗. Thus EA(R)∗ ⊆
A(R)∗ and every edge of EAG(R) is an edge of AG(R).
Next, let J = Ann(I). By exactness Ann(J) = I, so J ∈ EA(R)∗ and (I, J) is an

exact pair. Lemma 2.8 (or the argument in the proof of Theorem 3.1) shows that no
other exact ideal annihilates I or J . Hence {I, J} is a component (an isolated edge)
unless I = J , in which case I is a self-annihilating ideal producing an isolated vertex
in EAG(R).

Proposition 3.4. Let R be reduced and suppose Min(R) = {p1, . . . , pn} is finite with
n ≥ 2. Then every nonempty proper subset S ( {1, . . . , n} determines a nonzero ideal

IS :=
⋂
i∈S

pi

and Ann(IS) = ISc. Hence IS ∈ EA(R)∗ for every nonempty proper S, the ideals
IS form (2n − 2) nonzero annihilating ideals partitioned into (2n − 2)/2 = 2n−1 − 1

complementary exact pairs, and therefore

EAG(R) ∼=
2n−1−1⊔
t=1

K2.

In particular,

|V (EAG(R))| = 2n − 2, #{components} = 2n−1 − 1.
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Proof. For reduced rings the intersection of a nonempty collection of minimal primes
is nonzero (unless the collection is empty) and annihilators behave by complementary
intersections. For any subset S ⊆ {1, . . . , n} one checks

Ann
(⋂

i∈S

pi

)
=
⋂
j /∈S

pj,

because an element vanishes on every pi with i ∈ S precisely when it lies in the
intersection of the complementary primes. Thus IS and ISc are annihilators of each
other, nonzero for nonempty proper S, and distinct for S 6= Sc (except when n =

1, excluded). Counting nonempty proper subsets gives 2n − 2 ideals grouped into
complementary pairs; each pair yields a K2 component by Theorem 3.1. The count
follows.

Proposition 3.5. Let R = F1 × · · · × Fn be a finite product of fields (n ≥ 2). For
each nonempty proper subset S ( {1, . . . , n} let

IS = {(a1, . . . , an) ∈ R : ai = 0 for i ∈ S}.

Then IS ∈ EA(R)∗, Ann(IS) = ISc, and the (2n − 2) nonzero proper coordinate ideals
are partitioned into 2n−1 − 1 complementary exact pairs. Hence EAG(R) is a disjoint
union of 2n−1 − 1 copies of K2.

Proof. An element annihilates IS exactly when its support is contained in S, i.e. it lies
in ISc . The mutual annihilation is immediate and the counting argument is identical
to that in Proposition 3.4.

Theorem 3.6. Let (R,m) be a special principal ideal ring (SPIR) with maximal ideal
m satisfying mn = (0) and mn−1 6= 0. Then the nonzero proper ideals of R are
{m,m2, . . . ,mn−1} and for each 1 ≤ i ≤ n−1 we have Ann(mi) = mn−i. Consequently
the components of EAG(R) are exactly the pairs (mi,mn−i) for i 6= n− i, and if n is
even the middle ideal mn/2 is self-annihilating (a K1). In particular,

EAG(R) ∼=


⊔(n−1)/2

i=1 K2, n odd,(⊔n/2−1
i=1 K2

)
tK1, n even.

Proof. This is the standard description of ideals in a SPIR: every ideal is of the formmi

for some i, 1 ≤ i ≤ n− 1. The product mimj = mi+j and therefore Ann(mi) = mn−i.
For i 6= n − i the pair (mi,mn−i) is an exact pair and no other ideal annihilates
them, giving K2 components. If n is even the unique middle power mn/2 satisfies
Ann(mn/2) = mn/2 and hence yields an isolated K1. The claimed decomposition
follows.
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Proposition 3.7. Let R = R1 ×R2 be a direct product of rings. Then:

1. Every ideal of R is of the form I1 × I2 with Ij CRj.

2. An ideal I1 × I2 is exact annihilating in R if and only if I1 and I2 are (possibly
zero) ideals satisfying AnnR1(I1) = J1, AnnR2(I2) = J2, and J1 × J2 6= (0), with
AnnR(I1 × I2) = J1 × J2 and AnnR(J1 × J2) = I1 × I2. In particular, coordinate
ideals with complementary zero-coordinate sets often produce exact pairs; this
recovers the product-of-fields description as a special case.

Proof. (1) is standard. For (2) note that AnnR(I1 × I2) = AnnR1(I1) × AnnR2(I2).
Therefore mutual annihilation in R reduces to mutual annihilation in each coordinate.
The nontriviality condition J1 × J2 6= (0) ensures we have nonzero ideals in R. The
rest is a coordinate-wise checking of annihilators.

Remark 3.8. Two facts are worth emphasizing in comparison with the annihilating-
ideal graph AG(R):

• While AG(R) can have arbitrarily complicated components (cycles, large diam-
eter, multipartite structures), EAG(R) is severely restricted to K1’s and K2’s
(Theorem 3.1). This makes many numerical invariants of EAG(R) computable
by simple counting.

• Many rings for which AG(R) is connected and rich (for instance certain Artinian
rings) have EAG(R) decomposed into many small components; this explains
why domination results for EAG(R) are often simpler in form than their AG(R)

analogues (cf. [14, 15, 16, 9]).

4 Domination in Exact Annihilating-Ideal Graphs

In this section we develop a complete domination-theoretic analysis of EAG(R). Be-
cause every connected component of EAG(R) is either a K1 or a K2 (Theorem 3.1),
domination becomes a component-counting problem. Although the structure is sparse,
the domination parameters reflect deep annihilator symmetry in R and provide infor-
mation about the number of exact annihilating pairs, the existence of self-annihilating
ideals, and the behaviour of idempotent decompositions.
A dominating set in a graph G is a set D ⊆ V (G) such that every vertex lies in D or

has a neighbour in D. The minimum cardinality of a dominating set is the domination
number, denoted γ(G). A total dominating set is a set D such that every vertex has a
neighbour in D; its minimum possible size (if it exists) is the total domination number
γt(G).
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Theorem 4.1. Let R be a commutative ring with EA(R)∗ 6= ∅, and let c(R) denote
the number of connected components of EAG(R). Then

γ(EAG(R)) = c(R).

Proof. Let G = EAG(R). Since each connected component of G is K1 or K2, a
dominating set must contain at least one vertex from each component. Indeed, if a
component is K1, its unique vertex must be chosen, and if a component is K2, at
least one endpoint must be chosen. Conversely, selecting exactly one vertex from each
component always yields a dominating set. Thus the domination number equals the
number of connected components.

Theorem 4.2. Let R be any ring with EA(R)∗ 6= ∅. Then γt(EAG(R)) exists if and
only if EAG(R) has no K1 component. In that case,

γt(EAG(R)) = γ(EAG(R)).

The proof is obvious from the definition.

Theorem 4.3. Let R be a reduced ring with n = |Min(R)| ≥ 2. Then

γ(EAG(R)) = γt(EAG(R)) = 2n−1 − 1.

Proof. If R is reduced with n = |Min(R)| ≥ 2, then by Proposition 3.4 the graph
EAG(R) is a disjoint union of exactly 2n−1− 1 many K2 components. Hence there are
no isolated vertices, and by the theorems above both domination and total domination
are computed exactly.

Theorem 4.4. If R = F1 × · · · × Fn with n ≥ 2, then

γ(EAG(R)) = γt(EAG(R)) = 2n−1 − 1.

Theorem 4.5. Let (R,m) be a SPIR with mn = (0) and mn−1 6= 0. Then

γ(EAG(R)) =
⌊n

2

⌋
, γt(EAG(R)) =

bn/2c, n odd,

does not exist, n even.

Example 4.6. Let R = Zp6 . Then the ideals are p, p2, p3, p4, p5 and the exact pairs
are (p, p5) and (p2, p4). The ideal (p3) is self-annihilating. Hence

EAG(R) ∼= K2 tK2 tK1.

Thus
γ(EAG(R)) = 3, γt(EAG(R)) does not exist.
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We end this section with the following result.

Theorem 4.7. Let R be a commutative ring with identity. Let c1(R) denote the
number of K1 components of EAG(R) and c2(R) the number of K2 components. Then:

γ(EAG(R)) = c1(R) + c2(R),

and

γt(EAG(R)) =

c2(R), c1(R) = 0,

does not exist, c1(R) > 0.

Moreover,
|V (EAG(R))| = 2c2(R) + c1(R).

Every numerical domination invariant of EAG(R) is determined entirely by these com-
ponent counts.

5 Further Domination Variants

In this section we study domination parameters beyond the classical domination and
total domination numbers introduced earlier. For annihilating-ideal graphs AG(R),
many variants have been studied such as, Roman domination, restrained domination,
paired domination, locating domination, weak domination, and connected domina-
tion—each showing subtle dependence on the ring structure. For the exact annihilating-
ideal graph EAG(R), however, the strong structural rigidity proved in Section 3 forces
all such domination parameters into sharply restricted patterns. Since every connected
component of EAG(R) is either K1 or K2, and since these components are mutually
isolated, most domination variants either reduce to trivial values or do not exist in
the usual sense. In this section we give a unified treatment of all major domination
variants, explain exactly when they exist, and compute their values whenever possible.

Roman Domination
A Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2} such
that every vertex v with f(v) = 0 has a neighbour u with f(u) = 2. The weight of
f is

∑
v∈V (G) f(v), and the minimum weight over all Roman dominating functions is

the Roman domination number γR(G). For a component K1 consisting of a single
vertex v, the only Roman dominating function assigns f(v) = 1, because f(v) = 0 is
impossible. Thus a K1 contributes exactly 1 to the Roman domination number. For
a K2 component {I, J}, we may choose f(I) = 2 and f(J) = 0, giving weight 2, and
this is optimal. Hence each K2 contributes 2. Since EAG(R) is the disjoint union of
c1(R) copies of K1 and c2(R) copies of K2, the Roman domination number is

γR(EAG(R)) = c1(R) · 1 + c2(R) · 2.

International Journal of Applied Mathematics
Volume 38 No. 4, 2025
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

Received: September 15, 2025 576



Paired Domination A paired dominating set is a dominating set D such that the
induced subgraph on D contains a perfect matching. A paired dominating set cannot
exist when the graph has a K1 component, since a single isolated vertex cannot be-
long to a set with a perfect matching. Thus paired domination is defined for EAG(R)

exactly when c1(R) = 0, i.e. when every component is K2. In this case each compo-
nent contributes both vertices to any paired dominating set (since a perfect matching
requires pairs), and so the paired domination number is

γpr(EAG(R)) =

2c2(R), c1(R) = 0,

does not exist, c1(R) > 0.

Restrained Domination
A restrained dominating set D must dominate all of V (G) and must satisfy the ad-
ditional condition that every vertex outside D has a neighbour outside D. In a K1

component this is impossible, because the unique vertex has no neighbour outside it-
self. Even in a K2 component, if one vertex is chosen in D and the other is outside
D, the outside vertex has no outside neighbour. Thus the only possibility is that both
vertices in each K2 component lie inside D, which produces no outside vertices at all.
This is a valid restrained dominating set, and no smaller restrained dominating set is
possible. Thus restrained domination is defined only when c1(R) = 0, and in that case
the restrained domination number is

γr(EAG(R)) =

2c2(R), c1(R) = 0,

does not exist, c1(R) > 0.

Connected Domination
A connected dominating set is a dominating set whose induced subgraph is connected.
Since EAG(R) has more than one component whenever |EA(R)∗| ≥ 3, no connected
dominating set can exist in that case. If EAG(R) has only one component, then the
component must be either a single K1 or a single K2. In the K1 case the single vertex
forms the unique connected dominating set. In the K2 case either of the two vertices
forms a dominating set, but only the whole component forms a connected dominating
set (because a single vertex induces K1, not K2). Thus

γc(EAG(R)) =


1, EA(R)∗ = {I},

2, EA(R)∗ = {I, J} with IJ = (0),

does not exist, |EA(R)∗| ≥ 3.

Locating Domination
A locating dominating set is a dominating set D such that every pair of distinct
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vertices outside D has distinct neighbour sets within D. In EAG(R) the diameter of
every component is 0 or 1, and components are isolated from each other. If the graph
contains a K1 component, that vertex must lie in every dominating set, leaving no
vertices outside D in that component. In a K2 component, if exactly one vertex is
in D, the other has neighbourhood D ∩ {I, J} = {v}, and this creates no conflicts
because there is only one outside vertex. Since components do not interact, locating
domination reduces to choosing exactly one vertex from each K2 component and all
vertices from each K1 component. Thus every minimal dominating set is a locating
dominating set. Hence

γ`(EAG(R)) = γ(EAG(R))

for every ring.

Weak Domination
A weak dominating set requires that each vertex outside D has a neighbour in D or has
degree zero. Since K1 vertices have degree zero and must lie in every dominating set
anyway, and K2 components behave normally, the weak domination number coincides
with γ(EAG(R)):

γw(EAG(R)) = γ(EAG(R)).

Collecting these results gives a complete list of standard domination invariants for
EAG(R) in terms of component counts (c1(R), c2(R)).

6 Applications to Classes of Rings

In this section we apply the structural and domination-theoretic results of the
previous sections to compute the exact annihilating-ideal graph and all of its asso-
ciated domination parameters for several important families of commutative rings.
These examples demonstrate the wide range of behaviours exhibited by EAG(R) and
illustrate the sharpness and generality of the structural classification given in Sec-
tion 3. Throughout the section we repeatedly use the notation c1(R) for the number
of K1 components and c2(R) for the number of K2 components of EAG(R), so that
|V (EAG(R))| = c1(R) + 2c2(R) and all domination variants are determined by these
two integers.

Reduced rings with finitely many minimal primes: Let R be reduced with
Min(R) = {p1, . . . , pn}, n ≥ 2. Then c1(R) = 0 and c2(R) = 2n−1 − 1; hence

γ(EAG(R)) = γt(EAG(R)) = 2n−1 − 1, γR(EAG(R)) = 2n − 2.

Finite products of fields: If R = F1×· · ·×Fn with n ≥ 2, then EAG(R) is a disjoint
union of 2n−1− 1 copies of K2 and the domination parameters match the reduced-ring
formula above.
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SPIRs: Let (R,m) be a SPIR with mn = 0 6= mn−1. Then

c1(R) =

0, n odd,

1, n even,
c2(R) =


n− 1

2
, n odd,

n

2
− 1, n even.

Hence γ(EAG(R)) = bn/2c, and γt exists exactly when n is odd.

Artinian rings and products: An Artinian ring decomposes into a product of
Artinian local rings; the exact graph is the disjoint union of the exact graphs of the
local factors, so component counts and domination numbers add accordingly.

Polynomial and power series extensions: Exact annihilation in R[X] (and often
in R[[X]]) is determined by the nilradical of R; in many natural cases EAG(R[X]) ∼=
EAG(Nil(R)) and EAG(R[[X]]) ∼= EAG(R) under mild finiteness hypotheses.

Illustrative numeric examples (products, Zpn , small Artinian rings) were given earlier
and confirm the general component-counting formulas.

7 Examples

We illustrate with several concrete examples in this section.

Example 7.1. R = Z2[X]/(X3): ideals (x) and (x2) form a K2. Hence γ = γt = 1,
γR = 2.

Example 7.2. R = Zp6 : ideals (p), (p2), (p3), (p4), (p5) with exact pairs (p, p5), (p2, p4)

and self-annihilating (p3). So K2 tK2 tK1, γ = 3, γt does not exist.

Example 7.3. R = k[X, Y ]/(X, Y )2: unique nonzero ideal m = (X, Y ) is self-
annihilating, EAG(R) = K1, γ = 1, γt does not exist.

Example 7.4. R = Z2 × Z2 × Z2: four K2 components; γ = 4, γt = 4, γR = 8.

8 Conclusion

In this paper we investigated the domination theory of the exact annihilating-ideal
graph EAG(R) of a commutative ring R. By developing a detailed structural de-
scription of exact annihilating pairs, we proved that every connected component of
EAG(R) is either a single vertex or a single edge, and no larger components can occur.
This rigidity yields a complete and explicit classification of the graph and allows all
domination-type invariants to be computed exactly for every commutative ring.
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The domination number, total domination number, Roman domination number,
paired domination number, restrained domination number, locating domination num-
ber, weak domination number, and connected domination number were each de-
termined in closed form. These parameters depend solely on the number of self-
annihilating ideals and the number of complementary exact annihilating pairs inside
R, encoded by the integers c1(R) and c2(R). As a consequence, EAG(R) becomes one
of the few algebraically defined graphs for which the complete domination-theoretic
landscape can be described without exception.
Applications to several important classes of rings—including reduced rings with

finitely many minimal primes, finite products of fields, special principal ideal rings,
Artinian rings, polynomial extensions, and power series rings—demonstrated the flex-
ibility and strength of the theory. Many examples were computed explicitly and were
illustrated using simple graphical representations. These examples show that while
EAG(R) is combinatorially sparse, it remains highly sensitive to the algebraic structure
of R, especially its annihilator behaviour, idempotent decompositions, and nilpotent
ideals.
The work opens several potential directions. One may study dynamic graph in-

variants under ring extensions, homomorphic images, or idealization constructions;
further, it would be natural to consider exact annihilating-ideal analogues of other
well-known graph invariants such as metric dimension, zero forcing number, indepen-
dent domination, or Roman k-domination. Another avenue is to investigate whether
similar “rigidity phenomena” appear in other annihilator-based graph constructions or
in exact dualities of modules over commutative rings.
Overall, the results presented here show that exact annihilation imposes a remark-

ably stringent combinatorial structure, enabling a complete classification of domina-
tion parameters for EAG(R) and suggesting further connections between ring-theoretic
symmetry and extremal graph behaviour.
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