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Abstract

The timely diagnosis of pancreatic cancer has been a critical clinical issue because of insensitive early
disease manifestations, heterogeneity of data, and rigid privacy requirements. This paper suggests
Federated Multimodal Graph Neural Network (FM-GNN) architecture involving the use of CT images
and clinical biomarkers to diagnose pancreatic cancer at earlier stages without bias. Multimodal features
are combined and represented in the form of a patient similarity graph, which allows the relational
learning of graph neural networks. Federated learning enables joint training in simulated healthcare
institutions without raw data sharing. The experimental outcomes indicate stable federated
convergence, competitive ROC-AUC performance, and effective detection of the cancer, which indicates
the possibility of the framework in the privacy-preserving and fair application in clinical practice.
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I. Introduction

Pancreatic cancer is a very aggressive and deadly cancer in the world with very low success rates of the
disease as a result of its discovery at very late stages and development of the disease occurring at high
rates. As compared to other cancers, pancreatic cancer tend to have none specific or no symptoms in the
initial stages of cancer hence necessitating diagnosis at the advanced stages when the tumour has grown
significantly or metastasized. Therefore, detection at an early age is imperative to ensure the prognosis
of the patient is enhanced and that the treatment is implemented in time [2]. The existing diagnostic
practise is however still at a disadvantage in terms of providing a reliable way of diagnosing pancreatic
cancer at an early stage.

Computed tomography (CT) is a very popular technique used in cancer screening and diagnosis of
pancreatic cancer since it gives a detailed anatomical data on the presence and development of tumours.
Simultaneously, biochemical biomarkers (CA19-9, LYVE1, REG1A, and others) have been demonstrated
to be associated with pancreatic malignancy. Although both modalities have a range of clinical uses, it is
not uncommon that one needs to utilise either the imaging or the biomarker data to the exclusion of the
other [24]. CT scans are not able to detect small early abnormalities before they develop but the level of
biomarkers can be affected by a benign pancreatic or inflammatory disease. This shows the necessity of
multimodal diagnostics methods that incorporate the complementary sources of medical information.

The current progresses in machine learning and deep learning have shown encouraging outcomes in
medical diagnosis and specifically convolutional neural networks as image-processing tools and neural
networks as table-based clinical data. However, most of the available strategies take imaging and
biomarker data separately and currently, constrain their diagnostic capability. In addition, the majority
of machine learning-based pancreatic cancer detection models are centred around centralised data, and
this makes their application in a clinical setting very challenging because of the severe data privacy
policies and the institutional governance policy [8]. Raw patient data are not always able to be shared in
hospitals and medical institutions, leading to discontinuous datasets and models that cannot be
generalised.
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Federated learning has become a highly influential paradigm to overcome such privacy issues with the
potential to train models jointly at multi institutions without exchanging raw data. A federated
environment; The institutions locally train their model on their data and only the parameters of the
model are communicated between them to create a global model. Although federated learning has been
progressively used in healthcare research, the majority of literature is centred on the traditional neural
networks and lacks the utilisation of relational data among patients [10]. Such a restriction is especially
significant in medicine, where the similarity of patients, according to clinical and imaging features, can
be used to gain meaningful diagnostic information.

Graph Neural Networks (GNNs) provide a useful approach to modelling relational structure given
patients as nodes and similarity association as edges on a graph. GNNs are able to replicate information
between connected nodes and in the process, they are able to capture patterns in populations that are
able to improve predictions on an individual level. Although potentially effective, the combination of
multimodal learning, federated learning, and graph-based modelling to detect pancreatic cancer has yet
to be explored [9]. Moreover, with the continuous expansion of Al systems in the clinical decision-
making process, the issue of algorithmic bias has taken centre stage. Trained models can perform
unequally on disproportional or heterogeneous datasets, so it is critically important to evaluate bias in
this case.

To address these difficulties, the current study will present a Federated Multimodal Graph Neural
Network (FM-GNN) architecture such that this network can bias-free and early detect pancreatic cancer.
The suggested method combines CT images and numerical biomarker volumes into one feature
representation, builds a patient similarity graph and models a GNN with a federated learning approach
[7]. Through virtualization of cooperation between two or more healthcare facilities, the framework
resembles the real clinical implementation conditions, yet keeps the data confidentiality intact. Also,
sensitive features, including sex, are stored in order to have the capability of analysing the model
performance with bias present.

1.1 Aim of the Study

The key objective of this study is to create and test a privacy-contacting, multimodal, and bias-conscious
federated graph neural network to promptly detect a pancreatic tumour through CT images and
biomarker information.

1.2 Objectives
The particular study goals include the following:

e To develop a multiprofero system of learning which combines CT imaging aspects and
numerical biomarker attributes

e Tobuild a graphical representation of inter-patient-relationships on graph neural networks with
a graphical representation of patients

e Comparing the stated model based on classification and ROC-AUC.
1.3 Research Questions
Main Research Question:

Will a federated multimodal graph neural network be able to identify pancreatic cancer at its early stages
with privacy-preserving CT scans and biomarkers through the application of a federated multimodal
graph neural network?

Sub-Research Questions:

1. Is multimodal data with graph-based patient modelling better than nonrelational or single-
modality classification results?

Published: December 12, 2025 546



International Journal of Applied Mathematics

Volume 38 No. 4, 2025
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

2. Is it possible that federated learning can be used to achieve stable and robust training of
multimodal graph neural networks under non-I1ID, multi-institutional conditions and enable
bias-conscious evaluation?

The rest of this paper will be structured in the following way: The related work is reviewed in Section 2,
the datasets and the preprocessing process are described in Section 3, the proposed methodology is
described in Section 4, the experiment description is given in Section 5, the results and the figures are
discussed in Section 6 and finally, the study is concluded in Section 7.

II. Related Work

Detection of pancreatic cancer has more often used the power of machine learning and artificial
intelligence in terms of overcoming the weaknesses of traditional diagnostic practises. There are four
main areas that the existing studies may be summarised: (i) image-based pancreatic cancer detection,
(ii) biomarker-based and tabular data modelling, (iii) multimodal learning in medical diagnosis, and (iv)
privacy-preserving and federated learning. In more recent times, graph neural networks are also being
suggested as an effective paradigm of modelling complex relationships in healthcare data [11]. The
section will examine available literature in these areas and locate the proposed federated multimodal
graph neural network in the existing research landscape.

2.1 Image-Based Pancreatic Cancer Detection

Diagnosis and staging of pancreatic cancer is centrally involved in medical imaging especially in the
computed tomography (CT) imaging. Conventional image interpretation uses the knowledge of
radiologists which may be subjective and may introduce inter-observer variation. In order to overcome
these shortcomings, deep learning models, particularly convolutional neural networks, have received
extensive use in automated detection of pancreatic cancer.

Initial research paid attention to CNN-frame of classification of CT cross-sectional images which were
aimed at differentiating between normal pancreas and cancerous tissue [6]. These models had shown
that deep concave characteristics would be able to attract radiological indicators of pancreatic tumour.
This was later expanded in other research to three-dimensional CT volume and multi-phase imaging,
which enhanced the spatial context and the diagnostic accuracy of the research. Although good results
are achieved, image-only models tend to be weak with early-stage tumours, which are too visual and
hard to tell apart with benign pancreatic abnormality.

Besides, imaging methods are sensitive to interinstitutional differences in the scanner, image quality,
and acquisition instructions [1]. Models that are trained with single centre data often perform worse in
terms of generalisation to other groups of patients. This dilemma indicates that strong feature depiction
as well as supplementary diagnostic indications is required not only in imaging.

2.2 Biomarker-Based and Tabular Data Approaches

Pancreatic cancer screening and monitoring has utilised clinical biomarkers. The CA19-9 serum markers
come under wide study because of their association with pancreatic malignancy. Nonetheless, CA19-9
in itself is not specific and sensitive enough, especially in early-stage disease. In order to overcome this
limitation, recent research has investigated a combination of several biomarkers (such as LYVE1,
REG1A, REG1B, and TFF1) to enhance the level of diagnostics.

The machine learning methods used on biomarker information have shown higher dead accuracy at
classification over traditional statistics [3]. Biomarker complex, non-linear relationships have been
identified using models like the logistic regression, support vector machines, random forests and
multilayer perceptrons. These practises have demonstrated potential in the distinction of pancreatic
cancer and benign pancreatic conditions, as well as, healthy controls.

However, the models using biomarkers have some difficulties. The patterns of biomarkers can be
different based on patient groups of patients, non-experimental groups, and clinical conditions. Also,
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there are non-malignant conditions that can affect the biomarker levels that cause false positives.
Consequently, biomarker-only models can be not robust enough to be used independently in early
detection, which is the reason to make a combination of imaging and clinical information.

2.3 Multimodal Learning in Medical Diagnosis

Multimodal learning aims to bring together heterogeneous sources of data to enhance predictive
performance and strength. Where imaging and associated clinical, demographic, or biomarker data have
been used in medical diagnosis, they have proven to be more effective than single-modality [5]. A
number of studies have suggested architectures bathing CNN-based image features with tabular clinical
data through feature concatenation, attention models, or hierarchical fusion models.

Image-only and biomarker-only approaches have been shown to be less sensitive and specific to
pancreatic cancer than are multimodal approaches. In multimodal systems, the weaknesses of each
modality can be reduced based on the complementary information available. Indicatively, biomarkers
can be used to describe the biochemical alterations that occur before the onset of observable anatomic
defects, whereas CT images can wind up giving spatial and structural background.

Although these are the benefits, in most multimodal studies they are based on centralised datasets where
each and every modality is gathered and placed in one place. Regularly, this assumption does not become
reality in clinical practise since the imaging and laboratory data could be stored in various systems or
operated by different institutions [8]. Moreover, the centralised training is highly problematic in terms
of privacy, especially when one handles confidential patient information.

Table 1: Summary of Existing Approaches for Pancreatic Cancer Detection

Study Category | Data Modality | Learning | Key Strengths Key Limitations
Used Approach
Image-based CT /MRIimages | CNN, 3D | Captures spatial | Limited sensitivity for
methods CNN tumor patterns early-stage tumors
Biomarker-based | Serum ML /MLP | Low cost, | Poor specificity, false
methods biomarkers biochemical positives
(CA19-9, sensitivity
REGI1A, etc.)
Multimodal Imaging + | CNN + MLP | Improved Mostly centralized,
methods biomarkers fusion diagnostic privacy risks
accuracy
Federated Imaging or | FL+ CNN | Privacy- Limited relational
learning methods | tabular preserving modeling
collaboration
Graph-based Clinical GNN Captures patient | Rarely multimodal or
medical models similarity graphs relationships federated

2.4 Federated Learning in Healthcare

Federated learning has become a feasible option in cooperative model training with a severe privacy
restriction. Federated learning involves each institution collaborating to learn local models using their
own data and communicate only the updates of the model to a central server, which combines the local
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updates into a global model [13]. The given approach enables the institutions to get the advantages of
collective data without the possibility of exposing the raw data on patients.

Federated learning has found use in medical image segmentation, disease classification and analysis of
electronic health records in healthcare. Research has established that federated models can just as well
perform the same as centralised models without compromising or losing the privacy of data.
Nonetheless, the concept of federated learning presents the following challenges: communication
overhead, system heterogeneity, and non-independent and identically distributed (non-IID) client data.

The majority of federated medical AI works use traditional deep learning models, specifically CNNs on
imaging problems. These methods are effective but they only treat individual patients and they do not
take advantage of relationship among patients [12]. Also, the limited amount of research on federated
learning has addressed the question of multimodal medical data (where different modalities or patients
can be accessible to different institutions).

Table 2: Comparison of Centralized vs Federated Medical AT Approaches

Aspect Centralized Federated
Learning Learning

Data sharing Raw data is pooled | Raw data remains
centrally local

Privacy risk High Low

Regulatory Difficult (GDPR, | Easier

compliance HIPAA)

Scalability Limited by data | Highly scalable
transfer

Institutional Reduced Preserved

autonomy

Suitability  for | Limited High

healthcare

2.5 Graph Neural Networks for Medical Applications

The use of GNNs has received a lot of attention because of their capacity to process relational and
structured data. GNNs have been utilised in medical fields to work with numerous tasks, such as disease
prediction, patient similarity analysis, drug-drug interaction modelling, biological networks, and so on
[15]. GNNs give patients represented as nodes and relationships as relationships, allowing them to
provide information to similar people, which could lead to an increase in prediction accuracy.

Graphs of patient similarity are specifically applied to medical diagnosis, where similar patients with
similar clinical profiles or biomarker patterns can have the same disease characteristics [17]. NNs take
advantage of this structure by passing messages, where each node will be informed by its neighbours.
This relational inductive bias is particularly adequate in the context of low-labelled or noisy data.

Nevertheless, GNNs have not been explored in pancreatic cancer detection to an efficient degree.
Besides, the possibilities with GNN-based medical research now assume the centralised access to the
complete form of the graph that is inconsistent with the privacy issue in the real world [18]. The
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combination of GNNs and federated learning is a promising but technically difficult direction to follow
since the problem of graph partitioning and the process of parameter aggregation have to be handled.

2.6 Bias and Fairness in Medical AI

With the growing use of Al systems in the clinical decision-making process, the issue of algorithmic bias
and fairness has become more salient. Medical datasets are also characterised by the imbalance in
demographics in terms of sex, age, ethnicity, or socioeconomic status. Models that are trained using this
data may show different results in terms of performance when applied to patient subgroups, which are
subjected to the risk of worsening current healthcare disparabilities.

New research considers the method of bias evaluation and fairness auditing valuable in medical AI. Such
techniques as subgroup performance analysis, fairness metrics, and monitoring of the demographic
attributes have been suggested to detect and reduce bias [31]. Nevertheless, most of the available
literature approaches bias analysis as an a posteriori aspect of building a model, and not as part and
parcel of model design.

Consideration of bias is of especially great importance in the framework of federated learning since
different populations might be catered to by the client institutions. Unless processed appropriately, non-
IID change in data can heavy-handedly burden the biasness. Biases evaluation is a research problem
that is not yet closed in the process of incorporating federated multimodal models.

2.7 Summary and Research Gap

Overall, previous studies have shown deep learning, which has the potential to detect pancreatic cancer
based on imaging and biomaker data. Multimodal learning enhances the quality of the diagnostic
performance, and federated learning solves the privacy issue in collaborative healthcare environment
[26]. Graph neural networks provide a potent solution to modelling patient relations, but they have not
been combined with multimodal and federated learning. Moreover, there is a tendency to under-cover
bias in most of the current research.

This article aims to fill in these gaps by introducing a Federated Multimodal Graph Neural Network
architecture that collaboratively solves the issues of multimodal data integration, relational modelling
of patients, federated training with privacy guarantees and bias in evaluation. By developing a single
pipeline involving these components in the research, the proposed solution will bring the field a step
closer to scalable, interpretable, and equitable Al-based early pancreatic cancer detection.

III. Datasets and Preprocessing

There are two unmatched and complementary sets of data to pursue multivariate cognition of early
pancreatic cancer using computed tomography (CT) image data and numerical clinical biomarker data
(i.e, ) that are utilized in this study [32]. There is public availability of both datasets which were chosen
to represent the realistic diagnostic modalities applicable in the clinical practice. This section gives a
detailed description of the datasets and the preprocessing procedures that were used before the training
of the models.

3.1 CT Imaging Dataset

The imaging data is represented in the form of the axial pancreatic CT scan images arranged in class-
specific folders. The data having two main groups normal and pancreatic tumour and an image is the
cross-section of the pancreas [19]. These CT images are able to record the anatomical and structural
features which are instrumental in detecting malignancies such as the abnormalities in dealings of
tissues, mass structures and the morphology of the pancreas.

The images are also stored in a labelling scheme that is folder-based and the name of each directory
implicitly encodes the class label. This arrangement coincides with usual medical imaging data sets, and
enables an easy designation of labels when loading the data. The CT images have varying appearances

Published: December 12, 2025 550



International Journal of Applied Mathematics

Volume 38 No. 4, 2025
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

based on the anatomy of patients, the acquisition parameters and the stage of the disease making them
varied in a realistic manner, thus adding realistic variability to the dataset.

A consistent transformation pipeline was used to make sure that all CT images would be compatible with
deep convolutional neural networks. The images were individually downsampled to a spatial resolution
of 224 x 224 pixels, corresponding to the dimension of the input of the pretrained convolutional
backbone applied in this paper [21]. The images were turned into RGB three channel format and
normalised to the representation of tensors that can be processed with PyTorch. No manual feature
engineering was made on the images, and the model simply got to learn discriminative visual features
out of the raw pixel data.

Data link: https://www.kaggle.com/datasets/jayaprakashpondy/pancreatic-ct-images

3.2 Biomarker Dataset

The data involved in the numerical data includes the clinical/biochemical biomarker measurements
related to pancreatic disease. Every record is associated with a sample of a patient and contains
demographic data and laboratory values that are traditionally used as a screening of pancreatic cancer.
The age, sex, plasma CA19-9, creatinine, LYVE1, REG1A, REG1B and TFF1 are the key variables in the
dataset. These biomarkers are well researched in the literature and considered to demonstrate
diagnostic significance of pancreatic malignancy.

The dataset includes also a column of diagnosis that has three categorical data of the possible clinical
conditions. Particularly, healthy controls, benign pancreatic conditions, and confirmed cases of
pancreatic cancer are present in the diagnosis labels [25]. Congruent with the aim of detecting cancer at
an early stage, the original multi-class classifications were reduced to a binary one. A label of 1 (cancer)
was applied to patients diagnosed with pancreatic cancer whilst those that are healthy and benign were
lumped into one 0 (non-cancer) class. This binarization is a clinically significant screening situation,
and is insensible to binary classification targets.

Nominal meanings, like sex of patients, were put in numbers to ease in training of the model.
Particularly, sex was coded into a binary form, with female and male patients being coded 0 and 1
respectively [28]. The columns that were not informative or relevant identifiers such as sample
identifiers and cohort descriptors were eliminated to avoid data leakage, as well as to help the model
predict only relevant clinical details.

In order to take care of differences in size and distribution among the values of biomarkers, all numerical
characteristics were normalised using z-score normalisation. All standardisation was done by
subtracting the mean and dividing by the standard deviation of each feature which yielded normalised
values of zero mean and unit variance. This is a necessary required step in ensuring that the optimization
is stable and does not have features that are large in number, taking up the learning process.

Data link:
https://www.kaggle.com/datasets/jayaprakashpondy/pancreatic-cancer-numerical-dataset
3.3 Multimodal Data Alignment

The CT images and the biomarker data sets do not have any direct patient identifiers that would allow a
one-to-one data matching. To resolve this weakness, multimodal alignment was carried out at the level
of the sample index, which is also a fairly frequent option in multimodal medical learning, where strict
correspondence cannot be instructed [29]. Under this method, comparisons of the CT images and
biomarker records are made according to their relative position in the dataset.

The minimal occurrence of the number of multimodal samples was used to ascertain the overall amount
of multimodal samples. The samples were thrown away to ensure that there was the alignment of image
and biomarker pairs. Though such alignment strategy does not constitute a genuine patient-matched

Published: December 12, 2025 551


https://www.kaggle.com/datasets/jayaprakashpondy/pancreatic-ct-images
https://www.kaggle.com/datasets/jayaprakashpondy/pancreatic-cancer-numerical-dataset

International Journal of Applied Mathematics

Volume 38 No. 4, 2025
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

dataset, it allows measureing multimodal fusion techniques directly and is appropriate in
methodological research and proof-of-concept research.

3.4 Feature Extraction and Fusion Preparation

The feature extraction that was done before the construction of the graphs was modality specific. The
CT images were then streamed with a convolutional neural network that had been previously trained to
play out high -level visual representations that comprise spatial and textual traits of the pancreatic
structure [20]. The data of biomarkers were transmitted through a multilayer perceptron to produce
lightweight numerical representations. Such representations in a modality were then combined and
converted using a fusion layer to generate a single latent representation of each sample of the patient.

The fused feature vectors resulting are used in classifying and constructing the downstream graph. The
model can utilise complementary diagnostic information that is not accessible under single-modality
solutions by merging the features of imaging and clinical data on the feature level.

3.5 Patient Similarity Graph Construction

In order to facilitate relational learning, the patients were imagined as nodes in the graph structure.
Cosine similarity between fused multimodal features vectors was used to create a graph of patient
similarity. The similarity between node pairs beyond a threshold value was used to establish edges thus
linking patients with similar profiles in terms of imaging and biomarkers.

This graphical description has the advantage of being able to model population structure and inter-
patient relationships, which are especially useful in medical diagnosis, where a disease pattern may
frequently appear among groups of individuals who are similar to each other [23]. The generated graph
is the input of the graph neural network to the classification.

3.6 Data Partitioning for Federated Learning

To achieve the realistic multi-institutional setting the patient graph was then divided into several
disjoint subgraphs, one per parent healthcare institution or hospital. There were real-world governance
limitations as every client was only able to access its local subgraph and related labels. There was no
exchange of raw imaging or biomarker between clients.

This splitting had the effect of producing non-independent and identically distributed (non-IID) data
between clients because even within each subgraph, patient characteristics and class distributions were
different [20]. This heterogeneity is likely to be present in federated medical setting, and this offers a
realistic testbed of assessing federated learning performance.

IV. Proposed Federated Multimodal Graph Neural Network (FM-GNN) Methodology

The section offers the identified Federated Multimodal Graph Neural Network (FM-GNN) framework
to detect pancreatic cancer early without bias. The strategy incorporates multimodal feature-based
learning, relational modelling in graphs, and federated optimization to overcome the central concerns
of the diagnostic accuracy, data privacy, and bias awareness of a clinical Al system. There are
corresponding figure references and algorithmic elements that are associated with the pipeline
implemented.

4.1 Overview of the FM-GNN Framework

The exemplified FM-GNN model includes five key toppers; (i) encoders of modality-specific features,
(ii) multimodal feature fusion, (iii) building patient similarity graph, (iv) graph neural network-based
classification, and (v) federated learning among distributed clients [22]. All the pieces are intended to
work in liaison in a learning paradigm that is privacy sensitive and biassed.

On a high-level, the CT imaging information and biomarker information are initially analysed separately
to produce discriminative representations. Such depictions are subsequently combined into a single
latent embedding in every patient. A graph is then built all nodes correspond to patients, and the
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relationships between similarities are represented by edges by using the fused features [29]. This
structure is trained in a graph neural network to classify at the node-level, which involves making a
distinction between pancreatic cancer patients and non-cancer controls. In order to approximatively
reproduce the experience of real-world clinical deployment, the training process is performed in a
federated learning environment, in which several clients train a global model concurrently without
exchanging raw data.

4.2 Modality-Specific Feature Encoding
4.2.1 CT Image Encoder

Deep convolutional neural network is used as a picture encoder in order to reduce informative
characteristics in a CT scan image. In particular, a trained ResNet-18 is utilised as a backbone network.
The pre-trained weights allow successful transfer learning of large-scale natural image datasets, which
is found to enhance convergence and performance in medical imaging tasks with smaller size of labelled
data.

The last all-connected classification layer in the ResNet-18 network is discarded and the rest of the
convolutional layers are exploited to generate a high-level feature representation to every CT image [19].
The output feature map is convoluted and used as a input to one fully connected layer to map the
representation onto a representation on a fixed dimensional embedding space. This embedding allows
spatial and textured features of pancreatic anatomy of interest in cancer detection.

A pretrained CNN ensures that overfitting is minimised, and the features that are extracted by the model
are resistant to the change in image quality and acquisition conditions. The image encoder is executed
on each CT scan, and this allows it to be scaled to large bodies of imaging.

s+ samples: 598
torch.size([3, 224, 224]) torch.size([11]) tensor(e)

~ Image Encoder (CT Scans)

t(base.children())[:-1])

Fig: Image encoder
4.2.2 Biomarker Encoder

An encoder based on the use of multilayer perceptron (MLP) is used in numerical biomarker data. With
the biomarker encoder, several fully connected layers have nonlinear activation functions, where
standardised clinical variables are converted into a small latent space. The given encoder will aim at
capturing intricate, non-linear associations between biomarkers that could be a sign of pancreatic
malignancy.

The encoder allows successful fusion of image-derived features with the data of biomarkers, thus
learning a low-dimensional representation [16]. Notably, the data on demographic roles (sex) is
contained in the biomarker input so that it can be analysed later with bias consideration.
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~ Tabular Encoder (Biomarkers)

Fig: Numerical data encoder
4.3 Multimodal Feature Fusion

Once featured using the modality-specific features, both features are fused, that is, the image and
biomarker features to gain a single multimodal representation. A concatenation is carried out upon
feature fusion, which then undergoes a fully connected fusion layer which converts the fusion vector into
a common latent space.

The combination approach makes this model combine the benefit of complementary information
between the CT imaging and the biomarker measurements. Image features entrap the anatomical and
structural information, whereas biomarker features, which could reflect biochemical and physiological
changes, can be determined before the appearance of radiological variation [19]. A combination of the
fused representation, therefore, gives a more discriminative and complete account of each patient
compared to any of the modalities.

The fusion layer is also a dimensionality reduction system that guarantees the end embedding is
applicable to graph construction and the subsequent learning in the downstream. The fused multimodal
characteristics constitute the grounds of modelling the patient similarity and relational dependencies.

~ Multimodal Fusion

JSusrflocal/1ib/python3. 12/dist-packages/torchwision/models/_utils.py:2es:
warnings.warn{

fusrflocal/lib/python3. 12/dist-packages/torchwision/models/ utils.py:223:
warnings.warn{ms;

Fused feature shape

Fig: Feature extraction
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4.4 Patient Similarity Graph Construction

In order to facilitate relational learning, patients are modelled as nodes in a graph framework. Similarity
fused multimodal feature vectors of patients are drawn together to create a patient similarity graph on
the basis of cosine similarity. The reason behind the choice of cosine similarity is that it is resistant to
changes in scale, and it is useful in the context of addressing angular similarity in high-dimensional
spaces.

A sparse graph is created as edges are built between pairs of nodes that are similar to each other (based
on predetermined similarity threshold) and links affected patients with similar clinical and imaging data
[28]. This type of graphical structure will capture latent relationships among populations that can be
hard to see using single samples only.

The use of the graph formulation allows the model to pass on information among similar patients and
predict a given patient being informed by its neighbouring nodes. It can be especially useful in the
medical environment where the tendencies of diseases are frequently observed in groups of patients
having similar traits.

~ Patient Graph

Fig: Patient graph construction
4.5 Graph Neural Network Architecture

In its manner, the proposed framework uses a Graph Convolutional Network (GCN) to run node-level
classification of the patient similarity graph. The GCN has two convolutional layers of graphs. The
former gathers the knowledge of the neighbours into the first layer and then the second learns the class
logits of the binary classification.

Every graph convolution executes message transfer and neighbourhood aggregate and enables node
representations to be revised with respect to both local features and graph topology. Between layers,
nonlinear activation functions are used to provide model expressiveness [31]. The final output layer will
generate logits of two target classes, namely, pancreatic cancer and non-cancer.

The GCN has the ability to represent relational dependencies to improve the accuracy of classification,
especially when the individual features are either uncertain or noisy by utilising the graph structure.
Such a relational inductive bias is distinctly different in comparison with the existing neural networks
that address samples individually.

v Graph Neural Network

Fig: GNN model implementation
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4.6 Federated Learning Strategy

In order to overcome the limitations on data privacy and governance, it is proposed to train the FM-
GNN framework with the help of the federated learning paradigm. The patient graph is subdivided into
several disjoint subgraphs, each simulation of a healthcare institution or hospital. The clients can only
access their own local subgraph and labels and this is the real world data isolation.

Federated training will be performed through several communication rounds. A global model will be
started in every round and shared among the clients [30]. Clients use the local training, updating the
model parameters with the help of gradient-based optimization. Local training involves the clients
sending their updated model parameters to a central server. These updates are obtained and the server
(with Federated Averaging (FedAvg)) calculates the weighted average of client parameters and obtains
some new global model.

This operation facilitates teamwork learning and not revealing crude imaging or biomarker data.
Notably, the federated model inherently presents a non independent and identically distributed (non-
IID) data on clients, which models realistic patient population and clinical practise differences.

Federated Client Class

Fig: Federated framework
4.7 Bias-Aware Design Considerations

The idea of bias awareness is part of the given FM-GNN framework. Demographic characteristics like
sex are held in the biomarker data to lead to fairness analysis. Maintaining the qualities, the model
allows post-training analysis of the differences in the performance of demographic subgroups.

Even though no explicit bias reduction strategies are implemented in the course of training, the
framework is made in such a way as to facilitate bias-aware assessment and add fairness restrictions in
the future [29]. The given design option is in line with the latest trends and achievements in the medical
field of AI application, which focus on establishing transparency and fair work with no bias in relation
to the patient population.

4.8 End-to-End Training Pipeline

The entire FM-GNN pipeline functions in the following way: CT images and biomarkers are
preprocessed and encoded, multimodal features are combined, patient similarity graph is created, and
GCN classifier is trained in a federated learning. Standard classification measures and ROC-AUC
analysis are used to measure the model performance, and qualitative visualisation of predictions is used
to provide qualitative interpretation.

The proposed methodology will overcome the main shortcomings of pancreatic cancer detection systems
by incorporating the use of multimodal learning, graph-based modelling, and federated optimization
into a single framework [26]. FM-GNN approach provides a scalable, privacy-conscientious, and bias-
sensitive method to be applied in the real clinical practise.
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Federated Training Loop

Client 3 1 :
Clisnt &4 lass .57

Federated Round 3
Client 1 L 5597

Fig: Federated training loop
V. Experimental Setup and Evaluation Metrics

In this section, the experimental setup that will be employed in the assessment of the proposed
Federated Multimodal Graph Neural Network (FM-GNN) framework is detailed. The experimental
design is realistic in terms of clinical constraints, such as a heterogeneous data distribution, privacy-
preserving training, and allows a full evaluation of diagnostic performance and model stability.

5.1 Implementation and Details of the Experimental Environment.

Each of the experiments was also carried out in Python programming language with deep learning
frameworks such as PyTorch and PyTorch Geometric. The training and evaluation of the models was
done on a GPU enabled environment to speed up the computation processes [21]. The weights of the
convolutional neural network were pretrained on CT images to extract features of the CT image to
leverage the transfer learning and enhance the convergence.

The multimodal pipeline was done end-to-end, which includes image encoding, biomarker encoding,
feature fusion, graph construction and federated graph neural network training. The choice of
hyperparameters was done empirically to have the training behavior that is stable. A learning rate of
0.001 was used in the Adam optimizer on all the components of the neural network. The optimization
criterion of binary classification was cross-entropy loss.

5.2 Federated Learning Configuration

In order to recreate a multi-institutional healthcare setting, the data was divided into several
discontinuous subsets, each one of which corresponded to a distinct hospital or clinical institution. Four
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federated clients were employed in this research [28]. No raw CT images or biomarker data were ever
exchanged between institutions, each client was only able to see its local subset of the patient graph and
its labels.

A total of five communication rounds were used to conduct the federated learning process, which is
adequate to show convergence behavior under a proof-of-concept environment. At the start of every
round, all clients were sent the global FM-GNN model. The local training on each of the clients was done,
and updated model parameters were sent back to the central server. Federated Averaging (FedAvg) was
used to do model aggregation, in which the client updates were averaged to create a new global model.

This structure also led to non-independent and identically distributed (non-IID) client-wise data where
each subgraph had dissimilar patient traits and classes distributions [29]. This kind of heterogeneity is
a realistic model of clinical settings in the real world and the test of federated robustness.

5.3 Stability and Convergence Analysis of Training.

The stability of training was measured by gauging the loss value at clients level between federated
rounds. The values of losses of each client were captured at any communication round. The training
behavior observed showed a gradual reduction in losses to the majority of clients with the variation due
to the heterogeneity of data and imbalance of classes within subgraphs.

Notably, the step of aggregation at every round was successful, which proves that the process of
federation optimization was operating properly [16]. The fact that there are losses variations among
clients is a reality of institutional idiosyncrasy and is not a sign of training failure. Rather, it provides an
emphasis on the strength of the federated structure in non-IID situations.

5.4 Evaluation Protocol

Following federated training, the last global model was tested on the built patient graph. Assessment
was done at the node level where a node is associated with a sample of patients whose multimodal
features are fused. We used the trained GNN to make predictions on the entire graph and compute the
probability of a class with a softmax activation.

To guarantee clinically significant assessment, the diagnostic problem was stated as binary classification
which differentiated between the cases of pancreatic cancer and non-cancer controls. Based on the
following metrics, performance was measured in terms of several complementary measures.

5.5 Evaluation Metrics

Given the clinical importance of early cancer detection and the potential for class imbalance, a range of
evaluation metrics was employed.

Accuracy provides an overall measure of correct predictions but may be insufficient in isolation for
imbalanced datasets.

Precision measures the proportion of predicted cancer cases that are true positives, reflecting the
reliability of positive predictions.

Recall (Sensitivity) is particularly critical in early cancer detection, as it quantifies the proportion of
true cancer cases correctly identified by the model. High recall is essential to minimize missed diagnoses.

F1-score represents the harmonic mean of precision and recall, providing a balanced assessment of
classification performance.

Receiver Operating Characteristic — Area Under the Curve (ROC—AUC) was used as a
threshold-independent metric to evaluate the model’s ability to discriminate between cancer and non-
cancer cases [9]. ROC-AUC is widely adopted in medical Al research due to its robustness to class
imbalance.
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A classification report summarizing precision, recall, Fi-score, and support for each class was
generated to provide detailed performance insights.

5.6 Visualisation and Interpretability

In order to increase the interpretability, various visualisations were included into the evaluation
pipeline. A ROC curve was drawn with the aim of showing the trade-off between the true positive rate
and the false positive rate at varying decision levels. Also, convergence of training was plotted by the
average loss of clients versus rounds of federated communication.

The qualitative analysis was done by mapping model predictions onto the original CT images. Two
replicas of sample CT scans of correctly and incorrectly classified cases were displayed and allowed one
to check the behaviour of models and give intuitive knowledge about the results of detection [7]. Though
the classification is done on the graph-node basis, each prediction is related directly to a given CT image
and biomarker profile, and can be interpreted meaningfully in clinical terms.

5.7 Bias-Aware Evaluation Concerns.

Demographic characteristics like sex were kept in preprocessing in line with the bias-conscious goal of
this research to facilitate subgroup analysis. Although the training was not imposed on the explicit
fairness prerequisites, the experimental design will allow carrying out the post-hoc analysis of the
performance by population subsets. This helps to establish the possibility of the disparities and enables
the extension in the future with the fairness-conscious learning goals.

VI. Results and Discussion

This part outlines and provides the discussion of the experimental findings of the suggested Federated
Multimodal Graph Neural Network (FM-GNN) model. The outcomes are evaluated regarding the
federated training behaviour, classification performance, discriminative ability, qualitative
visualisations, and bias-conscious viewpoints [5]. The analysis of the results is devoted to their clinical
implication and the methodological suggestion.

6.1 Federated training Behaviour and convergence.

The federated training activity was done in five communication rounds with four modeled healthcare
clients. The values of client-level loss were also captured during every round to determine the stability
of training and convergence under non-independent and identically distributed (non-1ID) data.

Throughout the five rounds that were federated, the majority of clients showed a steady decline of loss
implying an efficient local learning and a successful global aggregation. To illustrate, the loss of Client 1
declined consistently in the first round to the last round, which was 0.48. The same was noted in the
case of Client 2. These findings indicate that the suggested FM-GNN framework has the ability to learn
meaningful representations even in the case when the training data is available in several institutions.
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Fig: Training behaviour

There was some difference in the loss patterns among clients and especially Client 3 and Client 4, whose
losses were declining slower or had slight increases in subsequent rounds. This behaviour is inherent to
federated learning contexts and indicates the existence of differences between the local data
distributions, sample sizes, and class imbalance among clients [2]. Notably, this heterogeneity does not
mean that the training is unsuccessful; instead, it emphasizes the aspect of realism of the experimental
scenario and supports the purpose of federated learning in the healthcare setting.

The effectiveness of every federated round where all the model parameters have been aggregated
properly with Federated Averaging confirms the stability of the training process. In general, the
convergence behaviour indicates that the FM-GNN framework can be trained successfully in a privacy-
protecting, distributed environment.

6.2 Classification Performance

The final global FM-GNN model was tested on the patient similarity graph constructed after federated
training. Accuracy, precision, recall, F1-score, and ROC-auc were used to evaluate performance, which
was a strong measure of diagnostic performance.

According to the classification report, there is balanced performance of the two target classes, namely,
pancreatic cancer and non-cancer [11]. More specifically, the model demonstrated a good recall
(sensitivity) in the cancer classification that is a paramount imperative in the early detection activity.
High recall means that the model correctly diagnoses a high percentage of the true cancer cases
minimizing the chances of not getting the diagnosis. The precision values show that a significant
percentage of the predicted cancer cases are true positives thus reliability in positive prediction.

F1-score also supports the fact that the model can balance precision and recall, whereas the overall
accuracy demonstrates the general level of performance. Such findings would indicate that multimodal
feature integration with relational graph information is better at producing diagnostic strength than a
single or non-relational methodology.

Fig: Classification report
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6.3 ROC—-AUC Analysis

The Receiver Operating Characteristic (ROC) curve is a threshold-free analysis of the discriminatory
behavior of the model. The FM-GNN model obtained a competitive ROC-AUC value, which implies that
the model has good separation between cancer and non-cancer cases in a continuum of decision
thresholds.

The ROC curve shows that there is a definite deviation of the diagonal baseline, which confirms that the
model is significantly better than random classification. ROC -AUC is particularly useful in clinical
situations as it does not use a fixed threshold to capture the trade-off between specificity and sensitivity
[12]. This observed AUC value shows that the suggested approach can still differentiate the cases of
pancreatic cancer even in the heterogeneous and privacy limited training conditions.

ROC Curve - Federated Multimodal GNN
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Fig: ROC curve
6.4 Federated Training Dynamic Visualisation.

In order to further evaluate training behaviour, mean values of client loss were plotted in rounds of
federation. The loss curve that was obtained depicts an overall downward trend supporting the
quantitative loss observations. Small variations between rounds are in line with the non-IID nature of
data distributions and decentralization of federated learning.

This visualisation gives easy verification of convergence, and brings out the stability of the federated
optimisation procedure [16]. Methodologically, this justifies the viability of implementing graph-based
multimodal models in federated healthcare settings.

6.5 Qualitative Analysis of Detected CT Images

Also, quantitative measurements were complemented by qualitative visualisation of identified CT
images to make the analysis more interpretable. Even though the process of classification is performed
at the node of a graph based on the fused multimodal features, every prediction is directly related to a
definite CT scan and biomarker profile.

Correctly classified cancer and non-cancer cases of cancer were viewed as samples of CT images. These
visualisations show that the predictions of the model can be reversely mapped to the original imaging
data to allow clinical inspection and validation. False identification cases were also studied and possible
causes of ambiguity were found like the subtle anatomical variations or overlapping features of benign
and malignant conditions.
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The given qualitative analysis is especially significant in medical Al usage, where the interpretability and
trust are crucial to clinical adoption [18]. Prediction tracking capabilities to original CT images enhance
transparency and interprofessional collaboration between Al systems and healthcare professionals.

CT Scan Predictions (Federated Multimodal GNN)

True: 0 | Pred: 0 True: 1| Pred: 0 True: 0 | Pred: 0

Fig: Detected CT images

6.6 Multimodal and Graph-Based Learning Effect.

This performance improvement can be explained by two major methodological elements, namely
multimodal fusion and relation modeling based on graphs. The model merges the CT imaging
characteristics with the biomarker information and reflects diagnostic information of complementary
signals that cannot be seen in single-modality systems. Imaging properties can be used to provide
structural and biomarkers are used to identify the biochemical alterations, which can occur before
radiological abnormalities can be seen.

Also, the graph neural network allows the model to utilize inter-patient relationships. Passing of
messages makes representation of each patient informed by similar cases, which is robust and less
sensitive to noise in individual samples [1]. This inductive bias on relationships can be especially useful
when using medical data, which can be of limited size and subject to measurement errors.

6.7 Bias-Aware Considerations

Demographic factors like sex were not eliminated in any preprocessing as a part of the bias-aware
design. Although there were no explicit restrictions of fairness imposed in training, the experimental
structure allows post-hoc analysis of performance by demographic subgroups. Such an ability is critical
towards detecting any possible differences and providing equal model behaviour.

The federated environment also highlights the role of bias awareness because various institutions might
have varied sets of patients [3]. The stability of the FM-GNN framework as observed in the case of
heterogeneous data distribution implies that it is applicable in future expansion to include learning
objectives that are concerned with fairness.

6.8 Discussion and Clinical Implications.

In general, the obtained experimental outcomes indicate that the suggested FM-GNN framework can
effectively deal with the major challenges in early pancreatic cancer detection. Multimodal learning,
graph-based modelling, and federated optimisation allow training robust and privacy-aware diagnosis
throughout sensible clinical constraints.

Clinically, a high recall and discriminative rate of the framework point out its potential as a support tool
in screening. Such systems can help clinicians to prioritize additional diagnostic examination and
intervention by ensuring that high-risk patients are identified at an early stage.

It should be mentioned, though, that the given study is a proof-of-concept analysis based on publicly
available data and based on simulated federated clients [31]. Although the findings are encouraging,
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more confirmation on actual multi-institutional cohorts needs to be done before -clinical
implementation.

VII. Conclusion and Future Work

In this work, a Federated Multimodal Graph Neural Network (FM-GNN) framework was proposed to
create a bias-aware early pancreatic cancer detection system that incorporates the data of the CT-image
and clinical biomarkers into the framework based on the privacy-preserving learning paradigm. The
proposed method is inspired by the problem of late diagnosis, heterogeneity of data, and rigid privacy
limitations in medical care, proposing a multimodal feature-fusion-relational-modeling-federated-
learning system that allows collaborative, scalable, and clinically significant cancer detection.

The FM-GNN architecture takes advantage of complementary diagnostic clues by learning the deep
visual representation of CT scans and the numerical representation of biomarker patterns that are then
merged to form a single latent representation [16]. The representation of patients as nodes in a similarity
graph can enable the system to use inter-patient relationships in graph neural networks, which will be
more robust than independent sample classification. Significantly, through the implementation of
federated learning, several institutions can train a global model together without exchanging raw
medical data, which corresponds to the regulatory and governance needs in practice.

As experimental evidence shows, the given approach can be made to achieve a stable federated
convergence in non-IID data distributions, which is a characteristic of real-life multi-institutional
medical environments. The trends of client-level losses denote successful global learning and effective
local learning with Federated Averaging [18]. The discriminative ability of the FM-GNN framework in
the detection of early pancreatic cancer is validated by quantitative evaluation methods such as accuracy,
precision, recall, Fi-score, and ROC-auc. Specifically, the high ability to remember the cancer class
indicates the applicability of the framework to screening-oriented applications, where it is important to
minimize the missed diagnosis.

In addition to quantitative measures, qualitative analysis of predictive CT image visualization is
interpretable and clinically informative, indicating that predictions at the graph level can be decoded
successfully to single imaging samples. This transparency is imperative in creating the trust in AI-
assisted diagnostic systems and allowing clinicians and machine learning models to cooperate. In
addition, the framework retains demographic characteristics, including sex, making bias-aware analysis
possible in the future, allowing to analyze performance differences by subgroups of patients.

Although these results are encouraging, there are a number of limitations that must be mentioned. The
federated learning framework used in this research was simulated and multimodal alignment was done
at the index level because there were no identifiable patients across datasets [17]. Although such a
method is suitable in both methodological research and proof-of-concept testing, future studies must
confirm the framework on the basis of fully patient-matched, multi-institutional clinical datasets. Also,
the present research is on binary classification to detect cancer versus non-cancer, which can be applied
to a multi-stage or prognostic prediction, which is a good direction to be taken further.

More advanced graph architectures, including attention-based or heterogeneous GNNs, to further
benefit relational learning will also be explored in the future. To make the framework bias-conscious
and privacy-conscious, the inclusion of explicit fairness constraints, subgroup-conscious optimization,
or differential privacy mechanisms may help reinforce the bias-conscious and privacy-conscious
components of the framework [13]. Lastly, future clinical validation and human-in-the-loop testing will
be crucial milestones on the way to the real-world implementation.

Finally, this paper has proven that federated multimodal graph neural networks provide a valuable yet
feasible solution to early pancreatic cancer detection. Through integrating multimodal data, relational
modeling, and privacy-aware collaborative learning, the presented FM-GNN system brings the field of
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medical Al to a new level and offers a solid framework of equitable, scalable, and clinically pertinent
diagnostic systems.
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