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Abstract: Current edge computing research strongly favors complex deep learning for 
managing resources. However, these data-heavy models often clash with the physical 
needs of edge devices, such as low latency, low energy, and total predictability. This 
study examines the trade-offs between unpredictable learning methods and the 
proposed deterministic approach, Biphasic Efficiency Model (BEM). Performance 
evaluation in PureEdgeSim shows that BEM maintains a stable completion rate 
between 38% and 44%, while traditional methods collapse to nearly 7% under high 
workload.  
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1. INTRODUCTION 

In the foundational era of sensor networks and satellite communications, systems were largely 
designed to be tolerant of delays. This approach is frequently referred to as the store-and-forward 
model. In these environments, if a network link failed or a server became overwhelmed, the data 
was simply placed in a queue to wait until resources became available. The speed of the immediate 
response was considered less critical than the eventual reliability of the delivery [1]. 

However, the emergence of the modern computing edge appears to have changed this priority. 
Contemporary applications such as autonomous driven vehicles, industrial robotics, and 
emergency safety systems operate on a strict principle of delay intolerance [2]. For a drone 
attempting to stabilize its flight path against sudden wind resistance, a computational decision that 
is delayed by even a fraction of a second late is often equivalent to a system failure. The primary 
objective of edge computing is to bring processing power closer to the physical source of data to 
eliminate these transmission delays. Still, there exists a potential conflict at the core of this design. 
These high-speed applications are increasingly being deployed on hardware that is physically 
constrained. Edge nodes frequently operate with limited battery reserves, modest processing 
capabilities, and intermittent connectivity. Consequently, the industry is attempting to run delay-
intolerant software on infrastructure that behaves similarly to a delay-tolerant network [3]. 

This contradiction presents a significant challenge for resource orchestration. The system must 
decide in real time where to execute a task to ensure it meets strict timing deadlines. To address 
this, the research community has exceedingly turned toward Artificial Intelligence. The prevailing 
hypothesis suggests that because the edge environment is volatile and unpredictable, the software 
managing it must possess a high degree of adaptability [4]. This has resulted in a steep rise in 
studies proposing Deep Learning and Reinforcement Learning models to manage edge resources. 
The underlying logic is that a sophisticated agent can learn the hidden patterns of network traffic 
and predict the optimal path for data transmission. 

While this approach holds theoretical promise, it may not be practically feasible in some scenarios. 
By embedding complex learning models directly into the edge, there is a risk of reintroducing the 
very latency that the system aims to eliminate. These models are often computationally intensive 
[5]. They require significant time to train, and they consume energy to generate decisions. In an 
environment where real-time responses are required, an algorithm that consumes excessive time to 
calculate an optimal move becomes a liability. It acts as a bottleneck. This effectively introduces 
delay into the control loop in the pursuit of intelligence. 

In contrast to these complex methods, many industrial implementations prefer to avoid such 
overhead. These systems often rely on simple and deterministic rules. Common strategies include 
Round Robin, which assigns tasks to servers in a strictly sequential order. Other systems employ 
Greedy algorithms that simply select the node with the highest amount of available storage at that 
specific moment [6]. These methods are often favored practically because they are 
computationally fast and their behavior is predictable. However, these simplified methods appear 
to suffer from a different form of limitation. They operate on the assumption that computer 
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performance scales in a linear fashion. The assumption is that a server running at near-maximum 
capacity is still fully functional and simply requires marginally more time to complete its workload. 

This assumption of linearity appears to be mathematically imprecise when applied to high-load 
scenarios. Computing systems do not behave like simple containers that can be filled to capacity 
without consequence. Evidence suggests they behave more like complex traffic systems. As a server 
approaches high utilization, it begins to experience internal friction. Tasks begin to compete for 
access to memory, storage locks, and processor cycles. This state is referred to as contention. When 
contention occurs, performance does not degrade gradually [7]. It tends to degrade rapidly. A 
server operating near its physical limit may spend more time managing the internal queue than 
actually processing data. Simple heuristic rules often fail to detect this tipping point. They continue 
to direct tasks to a node that appears available on paper but is physically on the verge of 
saturation. This triggers a backlog and forces the system back into a delay-tolerant state where 
tasks must wait in long queues to be processed. 

This paper explores a third methodological path and proposes that the solution may not lie in the 
addition of more artificial intelligence, or in the reliance on static linear rules. The solution may lie 
in a more accurate model of which is able to capture the relationship between system workload 
and its efficiency. This paper introduces it as a Biphasic Efficiency Model (BEM), with the 
understanding that initially the distribution of workload increases the efficiency of the system but 
then overload results into performance degradation. By mathematically modeling this transition, it 
is possible to derive a control strategy that retains the speed of a simple rule while maintaining the 
stability required for preventing performance dip [8].  

The remainder of this paper is organized as follows. Section 2 briefly reviews the related work in 
edge orchestration and identifies the limitations of current linear and stochastic approaches. 
Section 3 details the mathematical formulation of the Biphasic Efficiency Model and describes the 
mechanics of conflict in computing systems. Section 4 presents the experimental setup using the 
PureEdgeSim simulator, where the proposed deterministic strategy is compared against standard 
Round Robin and Greedy algorithms. Section 5 discusses the performance results, highlighting the 
trade-offs between speed and stability. Finally, Section 6 concludes the study and outlines future 
research directions, specifically focusing on the development of more adaptive and robust biphasic 
modeling techniques. 

2. RELATED WORK 

The evolution of resource management at the edge has transitioned through several distinct 
paradigms, moving from rigid heuristics to complex adaptive models. The trend observed in initial 
deployments favored simplicity for the sake of execution speed, as showcased by [1], [3] and [9]. 
These early efforts prioritized low-latency decision-making by utilizing static rules that did not 
account for the fluctuating nature of network traffic or node availability. 

As the complexity of edge environments grew, research shifted toward more sophisticated solvers. 
In [10] and [11], the ML/DL approaches are explained to handle the inherent unpredictability of 
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mobile edge networks. These studies demonstrate that deep reinforcement learning can effectively 
navigate multi-dimensional search spaces to find optimal offloading paths. However, as noted in 
recent critiques, these models often introduce significant computational jitter and high energy 
overhead, which can be counterproductive in real-time, power-constrained scenarios. Parallel to 
the rise of AI-driven methods, deterministic strategies have remained a staple in industrial 
applications due to their predictability [12]. The linear method used in provides a clear example of 
how threshold-based balancing is applied to distribute tasks. While such methods are 
mathematically transparent and fast, they frequently rely on the assumption that performance 
scales evenly with load. This oversight leads to a failure in detecting the "knee of the curve," where 
internal system contention begins to degrade throughput. Consequently, there is a visible gap in 
the literature for a model that combines the speed of deterministic rules with a non-linear 
understanding of system physics. 

3.  BIPHASIC EFFICIENCY MODEL (BEM) 

The discussion in this section begins with the critical observation that traditional resource 
management strategies in edge computing often consider system workload as a linear quantity. In 
most standard models, it is assumed that performance decreases steadily and predictably as more 
tasks are added to a processing node [13]. However, empirical evidence and a deep analysis of 
high-density computing environments suggest a more complex, biphasic relationship that cannot 
be captured by simple linear slopes [14]. In the first phase of this relationship, which can be 
described as constructive stimulation, a computing node often operates at a suboptimal efficiency 
level when under-utilized. This is largely because the fixed overhead of the system, including 
power leakage, basic operating system maintenance, and active cooling, remains high regardless of 
the workload. As the distribution of tasks increases, the system reaches a peak state where these 
static costs are effectively balanced against a higher rate of successful task completion, and 
hardware pipelines are kept sufficiently full to justify the energy expenditure.  

 

Figure 1: The Biphasic Efficiency Model (BEM) curve illustrating the non-monotonic 
relationship between workload and efficiency. 
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As depicted in the figure 1, the initial rise in efficiency eventually reaches a tipping point where a 
second, more dangerous phase, known as destructive contention, begins to dominate the system 
dynamics. Once this physical threshold is crossed, the addition of more tasks no longer results in 
higher throughput or better resource utilization. Instead, the hardware begins to suffer from 
internal conflicts that are inherent to the physics of computing architectures. These conflicts 
include memory bus saturation, cache thrashing, and excessive context switching, where the 
processor spends more time managing the administrative overhead of multitasking than it does 
executing actual application logic. 

 

Figure 2: Flowchart mapping the logical progression from initial low-workload states to the 
identification of the operational peak. 

This transition from beneficial resource use to harmful saturation creates an inverted-U trajectory 
that defines the actual performance boundaries of the hardware. Recognizing the "knee" or the 
apex of this curve is essential for edge orchestration, as it represents the precise point where a 
system achieves its highest potential without risking a sudden collapse into a state of heavy queuing 
and delay.  

To capture this behavior mathematically and provide a deterministic alternative to heavy learning 
models, the state of the system can be formalized through a non-linear efficiency function that 
treats workload as a form of system pressure. This model proposes that the total efficiency of an 
edge node is the product of two competing forces that act in opposition to one another and models 
it as Equation 1: 

𝐸(𝑥) = 	𝑥! ⋅ 	𝑒"#$   … (1)	

Figure 2 illustrates that the first force is an activation term, which models the initial rise in 
performance as hardware resources are engaged and fixed overhead is overcome. This is 
represented by a power function,	𝑥!, where	𝑥 is the normalized workload currently assigned to the 
node, ranging from zero to one	(0 ≤ 	𝑥 ≤ 1). The exponent	𝛼 represents the hardware’s ability to 
scale with increasing load, reflecting factors such as pipeline depth and multi-threading efficiency. 
The second force is a contention term, which models the exponential increase in internal system 
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conflict as the node approaches its physical limits. This is represented by an exponential decay 
function,	𝑒"#$, where the coefficient	𝛽 accounts for the specific sensitivity of the system to 
congestion and resource locking. 

When these two terms are multiplied, they form the complete Biphasic Efficiency Model (BEM), 
formalized as Equation 1. This continuous and predictable curve allows the orchestrator to 
identify the optimal operational threshold through basic calculus rather than trial-and-error 
training. It is possible to pinpoint the exact workload level where the marginal gain from resource 
activation is perfectly balanced by the marginal cost of contention by calculating it as per Equation 
2, 

𝑥%&' 	=
!
#
	  … (2) 

by equating	()
($
= 0. In a real-world orchestration scenario, a controller based on this deterministic 

model does not simply search for the node with the lowest current load. Instead, it evaluates the 
current state of all available candidate nodes and selects the one where the addition of a new task 
will move the system’s state closest to that identified peak. This mechanism allows the orchestrator 
to act with the execution speed of a simple reflex while maintaining a sophisticated, context-aware 
understanding of the boundaries that prevent performance degradation and system collapse. By 
keeping nodes in this "hot" but safe operational zone, the system maintains its delay-intolerant 
nature even under heavy demand. 

4. SIMULATION SETUP 

To evaluate the performance of the proposed Biphasic Efficiency Model (BEM) against traditional 
orchestration strategies, the study utilizes PureEdgeSim [15], a specialized toolkit designed for 
simulating large-scale edge computing environments.  

Table 1: Key simulation parameters for biphasic efficiency model evaluation 
Parameter 

 
Value 

Simulator : PureEdgeSim 
Simulation area : 2000 m x 2000 m 

Network type : wlan 
Simulation durations : 1h, 2h, 4h 

Number of edge devices : 400, 800 
Number of edge datacenters : 9 

Datacenter range : 400 m 
Datacenter cores : 8–12 
Datacenter MIPS : 30,000 – 50,000 
Datacenter RAM : 16 GB – 32 GB 

Edge device types : 4 (sensor, wearable, 
camera, fixed 

compute) 
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Task generation rate : 26 tasks/sec per 
device 

Offloading scenario : EDGE_ONLY (no 
cloud fallback) 

As given by Table 1, the simulation environment is configured within a	2000𝑚 × 	2000𝑚 area, 
representing a dense urban deployment. The infrastructure consists of nine edge datacenters, each 
equipped with 8 to 12 CPU cores, processing speeds ranging from 30,000 to 50,000 MIPS, and 
RAM between 16 GB and 32 GB. These datacenters communicate via a WLAN network and 
serve a dynamic population of edge devices, ranging from 400 to 800 units. To reflect real-world 
heterogeneity, four distinct device types are modeled: sensors, wearable, cameras, and fixed 
computing units. Each device generates tasks at a high frequency of 26 tasks per second, creating a 
high-pressure workload environment. The simulation is conducted under an EDGE_ONLY 
offloading scenario, intentionally removing cloud fallback to strictly test the resilience and stability 
of the edge nodes under stress. Simulations are executed for durations of 1, 2, and 4 hours to 
observe long-term system behavior. The BEM strategy is compared against the Round Robin and 
Trade-off (load-balancing) algorithms, both of which are natively available in PureEdgeSim. To 
implement the BEM framework, custom modifications were made to the Simulation Manager and 
Orchestrator modules. These changes allow the simulator to move beyond linear task distribution 
by calculating the non-linear efficiency of candidate nodes in real-time, enabling the orchestrator 
to target the optimal operational peak rather than simply seeking the lowest available load. 

5. RESULT AND ANALYSIS 

The performance of the proposed BEM Model is evaluated against the inbuilt Trade-off and 
Round Robin algorithms of PureEdgeSim Simulator. The evaluation is done across varying 
number of device (400 and 800) and simulation intervals (1, 2 and 4 Hour). The empirical results, 
summarized in Table 2, demonstrate a significant performance gap between the proposed 
deterministic model and standard linear heuristics. 

Table 2:  Comparative performance analysis of orchestration algorithms across different 
simulation durations and device loads 

No. Of  
Devices 

Simulation  
Time 

(Hour) 

Algorithm Total 
Task 

Tasks  
Completed 

(%) 

Latency(s) 

400 1 BEM 16,58,679 41.65 0.079 
TRADE_OFF 16,58,001 13.01 0.047 

ROUND_ROBIN 16,57,940 13.89 0.043 
2 BEM 32,00,231 43.78 0.062 

TRADE_OFF 32,99,677 09.74 0.032 
ROUND_ROBIN 31,91,492 09.88 0.034 

4 BEM 64,23,751 40.38 0.067 
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TRADE_OFF 64,67,552 07.12 0.036 
ROUND_ROBIN 46,54,259 07.91 0.040 

800 1 BEM 32,17,784 38.21 0.697 
TRADE_OFF 32,15,347 12.45 0.061 

ROUND_ROBIN 32,23,982 12.74 0.061 
2 BEM 64,76,318 37.80 0.834 

TRADE_OFF 64,37,324 09.10 0.049 
ROUND_ROBIN 64,34,669 10.30 0.057 

4 BEM 1,27,87,287 39.01 1.033 
TRADE_OFF 1,27,38,267 06.99 0.049 

ROUND_ROBIN 1,27,51,482 07.28 0.052 

The most notable observation is the substantial increase in the task completion percentage 
achieved by BEM. While the Trade-off and Round Robin strategies struggle to maintain efficiency 
as the simulation duration increases, BEM consistently completes approximately 38% to 43% of 
the total generated tasks. In contrast, the baseline algorithms experience a sharp decline in success 
rates. For instance, at 4-hour duration with 800 devices, the Trade-off and Round Robin 
algorithms drop to a completion rate of roughly 7%, while BEM maintains a robust 39.01%. This 
is a validation of the core principle that by identifying the Operational Peak	𝑥%&', BEM prevents 
nodes from entering the "Loss Zone" of destructive contention, whereas standard methods 
continuously push nodes into congestion. 

The data in Table 2 also reveals an expected trade-off regarding system latency. BEM exhibits 
higher average latency which ranges from 0.062 seconds in low-density scenarios to 1.033 seconds 
under high-stress conditions (800 devices, 4 hours). While the baseline algorithms report lower 
average latency (approx. 0.05 seconds), these figures are misleading as they only reflect the small 
fraction of tasks (~7%) that were successfully processed. 

The higher latency in BEM is a direct consequence of its ability to keep more tasks "alive" in the 
system. By refusing to blindly offload tasks to saturated nodes, BEM ensures that a much larger 
volume of work is eventually completed, rather than being discarded due to system thrashing. As 
the number of devices doubles from 400 to 800, BEM successfully manages over 12.7 million tasks 
in the 4-hour window, proving its stability in high-pressure, resource-constrained edge 
environments. 
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Figure 3: Performance comparison for BEM, Trade-Off, and Round Robin orchestrators. Sub-
figures (a, b) show results for 400 devices and (c, d) for 800 devices, evaluating Task Completion 
Rate (a, b) and Effective Latency (c, d). 

The performance trends established in the comparative analysis are further validated by the 
graphical data plotted in Figure 3 above, which illustrates the critical advantage of the Biphasic 
Efficiency Model (BEM) over traditional linear strategies. The task completion plots (Figures 3a 
and 3c) reveal a significant "performance collapse" in both the Trade-Off and Round Robin 
strategies as simulation time progresses. While BEM maintains a relatively stable completion rate 
between 38% and 44% regardless of device density, the baseline heuristics show a continuous 
downward trend. As the workload increases, these traditional methods drop to completion rates as 
low as approximately 7%, visually representing the transition where nodes cross from the "Gain 
Zone" of constructive stimulation into the "Loss Zone" of destructive contention. The latency 
analysis (Figures 3b and 3d) clarifies the trade-offs required for system stability in resource-
constrained networks. Although BEM exhibits higher average latency but the seemingly lower 
latency reported by baseline algorithms is statistically biased. This is because Trade-Off and 
Round Robin only process a small fraction of tasks. 
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6. CONCLUSION 

The results of this study demonstrate that the Biphasic Efficiency Model (BEM) provides an 
efficient deterministic alternative to traditional linear offloading methods. By shifting the 
orchestration paradigm from simple load balancing to a context-aware analysis of the 
"Operational Peak," the model successfully prevents edge nodes from degrading into states of 
destructive behaviour. Empirical evaluations using PureEdgeSim confirm that BEM maintains 
significantly higher task completion rates which ranges between 38% and 44% even as system 
workload increases, whereas standard Round Robin and Trade-off strategies suffer from a rapid 
performance decay to approximately 7%. While BEM introduces higher latency, but it is a result 
of managing a much larger number of tasks, it ensures system-wide stability and prevents the total 
throughput degradation observed in baseline methods. Despite these advantages, there is a clear 
path for improvement to bridge the gap between this deterministic model and the contemporary 
state-of-the-art (SOTA) solutions. Future work may focus on evolving the BEM into an adaptive 
model where the method is able to dynamically get tuned in real-time through lightweight 
feedback loops. Such improvements would allow the model to compete more effectively with 
SOTA algorithms. Additionally, future research may explore the integration of energy-aware 
constraints to further optimize the trade-off between task completion and power consumption in 
resource-constrained edge environments. 
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